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1 Introduction

The class of stochastic games enriches the model of repeated games by allowing

the stage games to vary with some publicly observable states. It has considerably

widened the applications of repeated games.1 In particular, a stochastic game is

played in discrete time by a finite set of players and the past history is observable by

all the players. At the beginning of each stage, Nature draws some state randomly.

After the state is realized, the players choose actions and each player receives a

stage payoff that depends on the current state and the actions. The game then

moves to the next stage and a new random state is drawn, whose distribution

depends on the previous state and chosen actions. The procedure is repeated at

the new state. Each player’s total payoff is the discounted sum of the stage payoffs.

A strategy for a player in a stochastic game is a mapping from the space

of history to the space of mixed feasible actions. However, the so-called Markov

strategies, which only depend on the current state instead of the entire past history,

have received much attention in the literature. As noted in [31], the concept

of Markov perfect equilibrium, which requires the players to use only Markov

strategies, embodies various practical virtues and philosophical considerations,

including conceptual and computational simplicity. Given that the relevant

parameters in a stochastic game are time-independent, it is natural to require

the Markov strategies to be time-independent as well. Equilibria based on such

strategies are called stationary Markov perfect equilibria. In a stationary Markov

perfect equilibrium, any two subgames with the same payoffs and action spaces

will be played exactly in the same way. So “bygones” are really “bygones”; i.e.,

the past history does not matter at all.

Beginning with [42], the existence of stationary Markov perfect equilibria in

discounted stochastic games remains an important problem. Existence results on

such equilibria in stochastic games with compact action spaces and finite/countable

state spaces have been established in a number of early papers.2 Given the

1See, for example, the book [34], and the recent survey chapters [24] and [25].
2The result for two-player zero-sum games with finite actions and states was established in [42]. The

existence result for the general case with finite actions and states was proved in [15], [41] and [43].
The case with finite state spaces and compact action spaces was shown in [44]. The result in [42] was
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wide applications of stochastic games with general state spaces in various areas

of economics, the existence of equilibria in stationary strategies for such games has

been extensively studied in the last two decades. However, no general existence

result, except for several special classes of stochastic games, has been obtained in

the literature so far.3

The existence of correlated stationary Markov perfect equilibria for stochastic

games was proved in [10] and [38].4 These papers assumed that there is a

randomization device publicly known to all players which is irrelevant to the

fundamental parameters of the game. Stationary Markov perfect equilibria have

been shown to exist in [11], [35] and [40] for stochastic games with some special

structures on the state transitions. The paper [40] focused on stochastic games with

finite actions and state-independent transitions. A class of stochastic games has

been studied in [35], where the transition probability has a fixed countable set of

atoms and its atomless part is a finite combination of atomless measures that do not

depend on states and actions. Stochastic games with a specific product structure,

namely stochastic games with noise, were considered in [11]. In particular, the noise

variable in [11] is a history-irrelevant component of the state and could influence

the payoff functions and transitions. Recently, it was shown in [27] and [28] that

a stochastic game satisfying the usual conditions may not have any stationary

Markov perfect equilibrium.5 This implies that a general existence result could

only hold under some suitable conditions.

The first contribution of this paper is to introduce a general condition to

guarantee the existence of stationary Markov perfect equilibria in stochastic games.

extended by [39] to two-player nonzero-sum games with finite action spaces and countable state spaces.
The existence result for countable state spaces and uncountable action spaces was then proved by [14]
and [45]. For more detailed discussions about the literature on stochastic games and their applications,
see the surveys [4], [24, 25].

3Stochastic games possessing strategic complementarities were studied in [2, 3], [5], [9] and [37]; see
[6] and [23] for further discussions. A related class of stochastic games in which the interaction between
different players is sufficiently weak was studied in [21]. The existence of stationary p-equilibria for
two-player games with finite actions and strong separability conditions on both stage payoffs and state
transitions was proved in [19]. The existence of stationary Markov perfect equilibria in intergenerational
stochastic games was considered in [22] and [36]. All these papers impose special conditions on the payoff
functions and state transitions.

4Additional ergodic properties were obtained in [10] under stronger conditions.
5An error in the relevant example of [27] was pointed out in [28], and a new example was presented

therein.
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Based on this condition, we unify various existence results in the literature as

discussed in the previous paragraph,6 and also provide a new class of stochastic

games that is useful for economic applications and cannot be handled by existing

results. Our second contribution is methodological. We establish for the first time

a connection between the equilibrium payoff correspondences in stochastic games

and a general result on the conditional expectations of correspondences, and hence

are able to provide a simple proof for the existence of stationary Markov perfect

equilibria. In the following paragraphs, we will discuss our condition and results

in details.

The transition probability in a general stochastic game is defined in terms of the

actions and state in the previous period. As discussed above, it is assumed in [10],

[11], [38] and [40] that the actions and state in the previous period do not enter the

transition of the sunspot/noise/shock component of the states. As a result, a key

component of the transition probability in those papers is not influenced by the

actions and state in the previous period. However, dynamic economic models with

random shocks are common, and it may seem natural to assume that the transition

of shocks can endogenously depend on some important factors (actions/states) in

the previous stage. As shown by the counterexample in [28], without any restriction

on the transition kernel,7 a stationary Markov perfect equilibrium may not exist.

We introduce a new model called “stochastic games with endogenous shocks”,8

which allows the distribution of current period’s shocks to directly depend on the

“discrete” components of the states and actions from the previous period.9

In order to prove an equilibrium existence result in general stochastic games

that cover stochastic games with endogenous shocks and the class of games in which

the state transitions have a decomposable feature (see, for example, [35] and [40]),

we propose a condition called “decomposable coarser transition kernels” in the

6All those papers work with general payoffs, but impose special structure on the state transitions.
7Here the transition kernel means the Radon-Nikodym derivative of the transition probability with

respect to some reference measure on the state space.
8In contrast to the sunspot idea in [10] and [38], the innovation of [11] is to allow the noise to be

part of the stage payoffs. This feature is also shared by stochastic games with endogenous shocks as
considered in this paper.

9Dynamic economic models with some discrete components of actions and states are common, such
as entry or exit by firms in [13] and [20].
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sense that the transition kernel is decomposed as a sum of finitely many components

with each component being the product of a “coarser” history-relevant transition

function and a history-irrelevant density function. For the case of stochastic games

with endogenous shocks, the history-irrelevant density functions represent the

shocks. In particular, each discrete component of the states and actions from

the previous period naturally contributes one component in the transition kernel,

which describes the history dependence of the distribution of the shock. It thus

captures the intuition that the distribution of the random shock can directly depend

on the actions and states in the previous period.

Our Theorem 1 shows that under the condition of a decomposable coarser

transition kernel, a stochastic game has a stationary Markov perfect equilibrium. A

very simple proof is given by providing a new link between a convexity type result

of [12] on the conditional expectation of a correspondence and the equilibrium

existence problem in stochastic games. As a corollary to Theorem 1, we know

that a stationary Markov perfect equilibrium exists in a stochastic game with

endogenous shocks. Theorem 2 extends Theorem 1 by including an atomic part in

the transition probability, and covers the main existence result in [35] as a special

case. As an illustrative application of stochastic games with endogenous shocks,

we consider a stochastic version of the dynamic oligopoly model as studied in

[29, 30].10 Note that our results on stochastic games with endogenous shocks and

the stochastic dynamic oligopoly model cannot be covered by existing results in

the relevant literature, because the transition of the shock component in the state

explicitly depends on the parameters in the previous stage.

To study a dynamic problem with a stationary structure, the standard approach

is to work with a reduced problem with a recursive structure, in which players’

payoffs are given by a convex combination of the stage payoffs and players’

continuation values in terms of the Bellman equations. To solve the existence

problem for stochastic games, one often needs to work with a one-shot auxiliary

game parameterized by the state and the continuation value function.11 The central

difficulty in the existence argument is typically due to the failure of the convexity

10Further applications will be discussed in Remark 2.
11For details, see Subsection 8.2.
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of the correspondence R, which is the collection of measurable selections (in terms

of the state variable) from the equilibrium payoff correspondence of the auxiliary

game. As a result, the desirable closedness and upper hemicontinuity properties

would fail for R, and hence the classical fixed-point argument is not applicable. To

handle such issues, the standard approach is to work with the convex hull co(R)

of R. The key insight of our proof is that this imposed convexity restriction is

relaxed by showing the equivalence of the conditional expectations of co(R) and R

under the condition of a decomposable coarser transition kernel. The minimality

of our condition for this “one-shot game” approach is also demonstrated from a

technical point of view in the sense that the conditions are shown to be tight as in

Propositions 4 and 5.

The rest of the paper is organized as follows. Section 2 presents a general model

of discounted stochastic games. The main result is given in Section 3. Stochastic

games with endogenous shocks and a stochastic dynamic oligopoly model are

considered in Section 4. Section 5 provides an extension of the main existence

result by allowing the transition kernel to have an atomic part. Section 6 discusses

the relationship between our existence theorems and several related results in

the literature, and also demonstrates the minimality of our condition. Section 7

concludes the paper. The Appendix collects the proofs.

2 Discounted Stochastic Games

An m-person discounted stochastic game can be defined in terms of (1) a state

space, (2) a state-dependent feasible action correspondence for each player, (3) a

stage-payoff for each player that depends on the state and action profile, (4) a

discount factor for each player, and (5) a transition probability that depends on

the state and action profile. Formally, an m-person discounted stochastic game is

described as follows:

• I = {1, · · · ,m} is the set of players.

• (S,S) is a measurable space representing the states of nature, where S is
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countably generated.12

• For each i ∈ I, Xi is player i’ action space, which is a nonempty compact

metric space endowed with its Borel σ-algebra B(Xi). Let X =
∏

1≤i≤mXi

and B(X) = ⊗1≤i≤mB(Xi). Then X is the space of all possible action profiles.

• For each i ∈ I, the set of feasible actions of player i at state s is given

by Ai(s), where Ai is an S-measurable,13 nonempty and compact valued

correspondence from S to Xi. Let A(s) =
∏
i∈I Ai(s) for each s ∈ S.

• For each i ∈ I, ui : S × X → R is player i’s stage-payoff with an absolute

bound C (i.e., for every i ∈ I and (s, x) ∈ S × X, |ui(s, x)| ≤ C for some

positive real number C) such that ui(s, x) is S-measurable in s for each x ∈ X

and continuous in x for each s ∈ S.

• βi ∈ [0, 1) is player i’s discount factor.

• The law of motion for the states is given by the transition probability Q :

S × X × S → [0, 1].14 That is, if s is the state at stage t and x ∈ X is

the action profile chosen simultaneously by the m players at this stage, then

Q(E|s, x) is the probability that the state at stage t+ 1 belongs to the set E

given s and x.

1. Q(·|s, x) (abbreviated as Q(s,x)) is a probability measure on (S,S) for all

s ∈ S and x ∈ X, and for all E ∈ S, Q(E|·, ·) is S ⊗ B(X)-measurable.

2. For all s and x, Q(·|s, x) is absolutely continuous with respect to a

probability measure λ on (S,S). Let q be an S ⊗ S ⊗ B(X)-measurable

function from S × S × X to R+ such that for any s ∈ S and x ∈ X,

12It means that there is a countable subset D of S such that S is generated by the sets in D. This
condition is widely adopted. For example, the state spaces in [10], [11], and [27] are respectively assumed
to be a compact metric space, a Polish space, a Borel subset of a Polish space, and hence are all countably
generated.

13The correspondence Ai is said to be S-measurable (resp. weakly S-measurable) if for any closed
(resp. open) subset B of Xi, the set {s ∈ S : Ai(s) ∩B 6= ∅} belongs to S; see Definition 18.1 of [1]. In
the literature, there are some papers which assume that the correspondence Ai is weakly measurable;
see, for example, [11] and [38]. These two measurability notions coincide in our setting since Ai is
compact valued; see Lemma 18.2 in [1].

14Note that the payoff ui and the transition probability Q only need to be defined on the graph of
A. For simplicity, we follow the literature to define them on the whole product space S ×X, as in [10],
[27], [28] and [38].
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q(·, s, x) (also written as q(·|s, x) or q(s,x)) is the corresponding Radon-

Nikodym derivative of Q(·|s, x).

3. For all s ∈ S, the mapping x→ Q(·|s, x) is norm continuous; that is, for

any sequence of action profiles {xn} converging to some x0, the sequence

{Q(·|s, xn)} converges to Q(·|s, x0) in total variation.15

A strategy of player i is a measurable mapping fi from the past history to

the set of player i’s mixed actions M(Xi),
16 which places probability 1 on the

set of feasible actions Ai(s) at each state s. For any profile of strategies f =

{fi}i∈I of the players and every initial state s1 ∈ S, a probability measure P fs1 is

defined on (S ×X)∞ in a canonical way; see, for example, [7]. Given the strategy

profile f in the game starting from the state s1, the expected payoff of player i is

Efs1
(∑∞

t=1 β
t−1
i ui(st, xt)

)
, where st and xt describe the state and the action profile

in stage t, and the expectation is taken with respect to the probability measure P fs1 .

If a strategy does not depends on the history, then it is called a Markov strategy.

As highlighted in [31], Markov strategies have the advantage that these strategies

only depend on payoff-relevant data in the game.

In this paper, we shall focus on a particular class of Markov strategies, namely

the “stationary Markov strategies”, in which a player makes his decision based

only on the current state but not the calendar time. Stationary Markov strategies

are natural for the discounted payoff evaluation, since each subgame starting at

the same state are strategically equivalent in the sense that players have the

same payoffs in these subgames. In addition, stationary Markov strategies are

particularly useful because they are easy to compute and implement. Formally,

a stationary Markov strategy for player i is an S-measurable mapping fi : S →

M(Xi) such that fi(s) places probability 1 on the set Ai(s) for each s ∈ S.17

A stationary Markov strategy profile f is called a stationary Markov perfect

15The total variation distance of two probability measures µ and ν on (S,S) is ‖µ− ν‖TV =
supD∈F |µ(D)−ν(D)|. A sequence of probability measures {µn} is said to be convergent to a probability
measure µ0 in total variation if limn→∞ ‖µn − µ0‖TV → 0.

16For a Borel set D in a complete separable metric space, letM(D) be the space of all Borel probability
measures on D.

17Since Ai is measurable, nonempty and compact valued, the correspondence Ai has a measurable
graph by Theorem 18.6 in [1]. Then by Corollary 18.27 in [1], Ai has a measurable selection. As a
result, the set of stationary Markov strategies of player i is nonempty for each i.
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equilibrium if

Efs1

( ∞∑
t=1

βt−1
i ui(st, xt)

)
≥ E(gi,f−i)

s1

( ∞∑
t=1

βt−1
i ui(st, xt)

)

for any i ∈ I, s1 ∈ S and any strategy gi of player i.

In the following, we shall consider stationary Markov perfect equilibria in terms

of the recursive structure, which is much easier to work with. By standard results

in dynamic programming and stochastic games (see, for example, [8] and [38]),

this formulation is equivalent to the equilibrium notion defined above. Given

a stationary Markov strategy profile f , the continuation value v(·, f) gives an

essentially bounded S-measurable mapping from S to Rm, which is uniquely

determined by the following recursion

vi(s, f) =

∫
X

[
(1− βi)ui(s, x) + βi

∫
S
vi(s1, f)Q(ds1|s, x)

]
f(dx|s).18 (1)

The strategy profile f is a stationary Markov perfect equilibrium if the

discounted expected payoff of each player i is maximized by her strategy fi in

every state s ∈ S. It means that the continuation value v solves the following

recursive maximization problem:

vi(s, f) = max
xi∈Ai(s)

∫
X−i

[
(1− βi)ui(s, xi, x−i)

+βi

∫
S
vi(s1, f)Q(ds1|s, xi, x−i)

]
f−i(dx−i|s), (2)

where x−i and X−i have the usual meanings, and f−i(s) is the product probability

⊗j 6=ifj(s) on the product of the action spaces of all players other than player i at

the state s.

18The existence and uniqueness of the continuation value of each player follows from a standard
contraction mapping argument, see [8].
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3 Main Result

In this section, we show the existence of stationary Markov perfect equilibria for

discounted stochastic games. In particular, we introduce the notion of “(decom-

posable) coarser transition kernel” and present our main result. Subsection 8.2

provides a simple proof via establishing a new connection between stochastic games

and conditional expectations of correspondences.

Before moving to the statement of the condition and the result, we need a formal

concept of an atom over a sub-σ-algebra. Suppose that the probability measure λ

on the measurable state space (S,S) is atomless. Let G be a sub-σ-algebra of S.

A set D ∈ S of positive measure is said to be a G-atom if the restricted σ-algebras

of G and S to D are essentially the same. When the relevant σ-algebras are used

to represent information, an event D ∈ S is a G-atom simply means that given the

realization of event D, S and G carry the same information. Formally, let GD and

SD be the respective σ-algebras {D ∩D′ : D′ ∈ G} and {D ∩D′ : D′ ∈ S} on D.

The set D ∈ S is said to be a G-atom19 if the strong completion of GD is SD.20

Definition 1. A discounted stochastic game is said to have a coarser transition

kernel if for some sub-σ-algebra G of S, q(·|s, x) is G-measurable for all s ∈ S and

x ∈ X, and S has no G-atom.21

A discounted stochastic game is said to have a decomposable coarser transition

kernel if for some sub-σ-algebra G of S, S has no G-atom and for some positive

integer J , q(s1|s, x) =
∑

1≤j≤J qj(s1, s, x)ρj(s1), where qj is S ⊗ S ⊗ B(X)-jointly

measurable and qj(·, s, x) is G-measurable for each s ∈ S and x ∈ X, qj(·, s, x)

and ρj are nonnegative and integrable on the atomless probability space (S,S, λ),

j = 1, . . . , J .

Note that the condition of “coarser transition kernel” is a special case of the

condition of “decomposable coarser transition kernel”.

19The notion of a G-atom has been considered in [17] and [33], see also Definition 1.3.3 in [26]. The
authors of this paper are grateful to an anonymous referee for providing these references.

20The strong completion of GD in S under λ is the set of all sets in the form E4E0, where E ∈ GD
and E0 is a λ-null set in SD, and E4E0 denotes the symmetric difference (E \ E0) ∪ (E0 \ E).

21When G is the trivial σ-algebra {S, ∅}, S has no G-atom if and only if λ is atomless.
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Below, we provide a simple example to illustrate the condition of “a decompos-

able coarser transition kernel”.

Example 1. Suppose that the state space is S = [0, 1]× [0, 1] (resp. S1 = [0, 1]×

[0, 1]) with the generic element s = (h, r) (resp. s1 = (h1, r1)), λ is the uniform

distribution on the unit square, and the space of action profiles is X ⊆ Rl. For

simplicity, the density function constructed below does not depend on x ∈ X.

Let

ρ1(s1) = h1, ρ2(s1) = r1;

q1(s1, s) =
h1 + h

2/3 + h
, q2(s1, s) =

2h1 + r

1 + r
;

q(s1|s) = q(s1, s) = q1(s1, s)ρ1(s1) + q2(s1, s)ρ2(s1).

It is easy to check that the integration of q(s1, s) with respect to s1 on S1 is 1 for

any s ∈ S.

Let S be the Borel σ-algebra on [0, 1]× [0, 1] and G = B([0, 1])⊗{∅, [0, 1]}, where

B([0, 1]) is the Borel σ-algebra on [0, 1]. For any s ∈ S, both q1(·, s) and q2(·, s)

are linear functions of h1 and do not depend on r1. Thus, the σ-algebra generated

by {q1(·, s), q2(·, s)}s∈S is G.22 As a result, the density function q satisfies the

condition of a decomposable coarser transition kernel.

Notice that the functions {q(·, s)}s∈S are measurable with respect to the σ-

algebra S. Below, we show that S is indeed generated by the collection of functions

{q(·, s)}s∈S. The proof is left in the Appendix.

Claim 1. In Example 1, the σ-algebra generated by {q(·, s)}s∈S is S.

The measurability requirements on the action correspondences, the stage

payoffs, the transition probability and the transition kernel simply mean that

the σ-algebra S is generated by the four collections of mappings {Ai(·)}i∈I ,

{ui(·, x)}i∈I,x∈X , {Q(E|·, x)}E∈S,x∈X and {q(·|s, x)}s∈S,x∈X . When the transition

kernel is in the form q(s1|s, x) =
∑

1≤j≤J qj(s1, s, x)ρj(s1), let G be the σ-

algebra generated by the mappings {qj(·|s, x)}j∈J,s∈S,x∈X . In the context of

22A σ-algebra is said to be generated by a collection of mappings taking values in some complete
separable metric spaces if it is the smallest σ-algebra on which these mappings are measurable.
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Example 1, if one works with some S-measurable action correspondences and stage

payoffs, then the mappings {Ai(·)}i∈I , {ui(·, x)}i∈I,x∈X , {Q(E|·, x)}E∈S,x∈X and

{q(·|s, x)}s∈S,x∈X generate the σ-algebra S = B([0, 1])⊗B([0, 1]) (which is already

generated by {q(·|s, x)}s∈S,x∈X , as shown in Claim 1). On the other hand, The σ-

algebra generated by {q1(·, s), q2(·, s)}s∈S is G = B([0, 1])⊗{∅, [0, 1]}. The condition

of a decomposable coarser transition kernel is satisfied in this case because S has

no G-atom.

We now state the main result of this paper.

Theorem 1. Every discounted stochastic game with a (decomposable) coarser

transition kernel has a stationary Markov perfect equilibrium.

4 Applications

In this section, we shall present some applications. In particular, we introduce

in Subsection 4.1 a subclass of stochastic games with a decomposable coarser

transition kernel, where the discrete components in the actions and states could

directly influence the transition of the random shocks. Games in this subclass are

called stochastic games with endogenous shocks.23 As an illustrative application,

we shall consider in Subsection 4.2 a stochastic version of a dynamic oligopoly

model as studied in [29, 30].

4.1 Stochastic games with endogenous shocks

Economic models with both discrete and continuous components of actions are

common. For example, firms make discrete choices like entry or exit of the market,

and continuous choices like quantities and prices of the products. Here we shall

consider stochastic games where the discrete choices may play a distinct role. For

this purpose, we assume that for each player i ∈ I, her action space has two

components in the form Xi = Xd
i ×X

−
i , where Xd

i is a finite set representing the

discrete choices, and X−i is a compact metric space representing possibly other

types of actions. Let Xd =
∏
i∈I X

d
i and X− =

∏
i∈I X

−
i .

23As in [11], we also allow the random shocks to enter into the stage payoffs of the players.
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Since actions in the previous period could be part of the current state, the state

space may have discrete and continuous components as well. On the other hand,

random shocks form a common feature in various economic models. As a result,

we assume that the state space has the form S = Hd ×H− × R. Here R models

the random shocks. The components Hd and H− represent respectively a finite

set of fundamental parameters and the residual part of fundamental parameters in

the states.

As defined in Section 2, the state transition in a stochastic game generally

depends on the actions and state in the previous period. However, as shown by

the counterexample in [28], a stationary Markov perfect equilibrium in a stochastic

game may not exist without restriction on the transition kernel. Indeed the

restriction, as considered in [10], [11] and [38], is to assume that the transition

of random shocks in the stochastic games does not depend on the actions and

state in the previous period explicitly. For a stochastic game whose state space

is in the form S = Hd × H− × R, our innovation is to allow that the transition

of random shocks directly depends on the discrete components Hd and Xd of the

state and actions from the previous period.

We shall now describe formally the state space and the law of motion in a

stochastic game with endogenous shocks with the rest of parameters and conditions

as in Section 2.

1. The state space can be written as S = Hd×H−×R and S = Hd⊗H−⊗R,

where Hd is a finite set with its power set Hd, H− and R are complete

separable metric spaces endowed with the Borel σ-algebras H− and R

respectively. Denote H = Hd ×H− and H = Hd ⊗H−.

2. Recall that Q : S × X × S → [0, 1] is the transition probability. For

s ∈ S, x ∈ X, let QH(·|s, x) be the marginal of Q(·|s, x) on H. There is

a fixed probability measure κ on (H,H) such that for all s and x, QH(·|s, x)

is absolutely continuous with respect to κ with the corresponding product

measurable Radon-Nikodym derivative φ(·|s, x). For each s ∈ S, QH(·|s, x)

is norm continuous in x.

3. The distribution of r′ ∈ R in the current period depends on h′ ∈ H in the
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current period as well as hd and xd in the previous period. In particular,

QR : Hd ×Xd ×H ×R → [0, 1] is a transition probability such that for all

s = (hd, h−, r), x = (xd, x−), and Z ∈ S, we have

Q(Z|s, x) =

∫
H

∫
R

1Z(h′, r′)QR(dr′|hd, xd, h′)QH(dh′|s, x).24

4. For any hd, xd and h′, QR(·|hd, xd, h′) is absolutely continuous with respect to

an atomless probability measure ν on (R,R) with the corresponding product

measurable Radon-Nikodym derivative ψ(·|hd, xd, h′).

Remark 1. A noisy stochastic game as considered in [11] is the case that Hd and

Xd are singletons. When both H− and X− are singletons, the random shocks in

the current period could fully depend on the action profile and the fundamental part

of the state in the previous period since QR could fully depend on (hd, xd) in the

previous period; see, for example, the stochastic dynamic oligopoly model in the

next subsection. Remark 2 below considers possible applications in which Hd, Xd,

H− and X− are all non-singletons.

The following result is a simple corollary of Theorem 1.

Corollary 1. A stochastic game with endogenous shocks has a decomposable

coarser transition kernel, and hence possesses a stationary Markov perfect equi-

librium.

Proof. Let λ = κ⊗ ν, and G = H⊗ {∅, R}. Since ν is atomless, S has no G-atom

under λ. It is clear that for all s = (hd, h−, r), x = (xd, x−), and Z ∈ S, we have

Q(Z|s, x) =

∫
H×R

1Z(h′, r′)φ(h′|s, x) · ψ(r′|hd, xd, h′) dλ(h′, r′), 25

which means that the corresponding transition kernel

q(s′|s, x) = φ(h′|s, x) · ψ(r′|hd, xd, h′)
24For any set A, the indicator function 1A of A is a function such that 1A(y) is 1 if y ∈ A and 0

otherwise.
25For clarity and notational simplicity, we use s, (h, r), and (hd, h−, r) interchangably (similarly for

their “prime” versions).
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for s′ = (h′, r′).

For any fixed x̃d ∈ Xd and h̃d ∈ Hd, define an S ⊗ S ⊗ B(X)-measurable

function φ̂(h̃d,x̃d) on S × S ×X and an S-measurable function ψ̂(h̃d,x̃d) on S such

that for any s′ = (h′, r′) ∈ S, s = (hd, h−, r) ∈ S and x = (xd, x−) ∈ X,

• φ̂(h̃d,x̃d)(s′, s, x) = φ(h′|s, x) · 1{(h̃d,x̃d)}
(
(hd, xd)

)
;

• ψ̂(h̃d,x̃d)(s′) = ψ(r′|h̃d, x̃d, h′).

It is clear that φ̂(h̃d,x̃d)(·, s, x) is G-measurable for any fixed s and x. Then we have

q(s′|s, x) = φ(h′|s, x) · ψ(r′|h′, hd, xd) =
∑

h̃d∈Hd,x̃d∈Xd

φ̂(h̃d,x̃d)(s′, s, x) · ψ̂(h̃d,x̃d)(s′).

Since Hd and Xd are both finite, the stochastic game with endogenous shocks

has a decomposable coarser transition kernel, and a stationary Markov perfect

equilibrium by Theorem 1.

4.2 Stochastic dynamic oligopoly with price competi-

tion

As mentioned in the previous subsection, it is natural to model certain economic

situations as stochastic games with endogenous shocks. In this subsection, we shall

consider a stochastic analog of a dynamic oligopoly asynchronous choice model as

studied in [29, 30]. We verify that such a stochastic dynamic oligopoly model is

actually a stochastic game with endogenous shocks. Corollary 1 then allows us to

claim the existence of a stationary Markov perfect equilibrium.

Competition between two firms (i = 1, 2) takes place in discrete time with an

infinite horizon. Each period begins with a set of firms active in the market, a

vector of prices from the previous period, and a demand shock. An active firm

will make the price decision while an inactive firm follows its price in the previous

period. The firms’ profits depend on the prices of both firms and the demand shock.

This model is an extension of the model as considered in [30], where firms move

alternatively. In contrast, we allow for any possible transition between inactive

and active firms, and introduce endogenous demand shocks which is considered
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desirable in [30, p. 587].

Formally, the player space is I = {1, 2}. An element θ in the set Θ = {θ1, θ2, θ3}

indicates which players are active at the beginning of each period. Player 1 (resp.

player 2) is active if θ = θ1 (resp. θ2); both players are active if θ = θ3. That

is, instead of focusing on a fixed short commitment for two periods, we allow for

random commitments (see [29] for more discussion). As in the model of [30, p. 573],

the price space P1 = P2 = P is assumed to be finite, which means that firms cannot

set prices in units smaller than, say, a penny. Let P̃ = P , and P̃ 2 = P̃ × P̃ denote

the set of prices from the previous period. Let R be a set of demand shocks,

which is a closed subset of the Euclidean space Rl. The state of the market is then

summarized by a vector (θ, (p̃1, p̃2), r).

A decision of firm i is to propose a price ai ∈ Pi. At state (θ, (p̃1, p̃2), r), the

set of feasible actions for firm i is Pi if θ = θi or θ3, and {p̃i} otherwise. If a firm is

active, then it can pick any price in Pi. If the firm is inactive, then it must commit

to its price from the previous period.

Given the state s = (θ, (p̃1, p̃2), r) and action profile (p1, p2) in the previous

period, the state in the current period, denoted by (θ′, (p̃1
′, p̃2

′), r′), is determined

as follows:

1. θ′ is determined by s and (p1, p2), following a transition probability κ1(·|s, p1, p2);

2. p̃i
′ = pi for i = 1, 2, which means that the action profile in the previous period

is publicly observed and viewed as part of the state in the current period;

3. r′ is determined by an atomless transition probability µ(·|θ′, p1, p2, θ, p̃1, p̃2),

which means that demand shocks are directly determined by the prices and

firms’ relative positions in the previous and current periods.

Suppose that the market demand function D : P × R → R+ and the cost

function c : R → R+ are both bounded. At the state s = (θ, (p̃1, p̃2), r), firm i’s
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profit is given by

ui(p1, p2, r) =


(pi − c(r))D(pi, r) pi < pj ;

(pi−c(r))D(pi,r)
2 pi = pj ;

0 pi > pj .

where (p1, p2) is the action profile in the current period. Firm i discounts the

future by a discount factor 0 < βi < 1.

We shall show that this stochastic dynamic duopoly model can be viewed as

a stochastic game with endogenous shocks. For both firms, Xd
i = Pi and X−i

is a set with only one element. Let Hd = Θ × P̃ 2, H− be a singleton set, and

H = Hd ×H−. Let κ be the counting probability measure on H and

ν =
1

J

∑
(θ,θ′)∈Θ2,(p1,p2)∈P1×P2,(p̃1,p̃2)∈P̃ 2

µ(·|θ′, p1, p2, θ, p̃1, p̃2),

where J is cardinality of the product space Θ2 × P 4. Then the marginal measure

QH(·|s, p1, p2) is absolutely continuous with respect to κ, and QR(·|h′, hd, p1, p2) =

µ(·|θ′, p1, p2, θ, p̃1, p̃2) is absolutely continuous with respect to ν. Since the space

of action profiles is finite, the continuity requirement on the payoff functions and

transition kernel is automatically satisfied. Therefore, the following proposition

follows from Corollary 1.

Proposition 1. The above dynamic duopoly model has a stationary Markov perfect

equilibrium.

Remark 2. In the above model, the position of a firm (active or inactive) is

randomly determined, and hence is not a choice variable. One can consider a

dynamic market model in which the positions of the firms are determined by the

endogenous entry/exit decisions; see, for example, [11], [13] and [20]. In particular,

in the application on firm entry, exit, and investment in [11], each firm needs to

make decisions on entry/exit as well as on the production plan. Thus, the action

space naturally has two components. The state space can be divided as a product

of three parts: the first part Z provides a list of firms which are present or absent
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in the market in the current period; the second part K is the available capital stock

in the current period; and the last part R represents exogenously given random

shocks which are i.i.d with a density with respect to the Lebesgue measure. This

was formulated in [11] as a noisy stochastic game, which can also be viewed as a

stochastic game with endogenous shocks with Hd as a singleton set and H− = Z ×

K. This model can be extended by letting Hd = Z, H− = K, and the transition of

R depend on firms’ positions in the previous and current periods. Such dependence

of the random shocks allows for the interpretation that the change in the number

of active firms as well as the shift of market positions by some firms26 do matter

for the demand/supply shocks. For example, the decision of a big firm to quit the

market is a shock that could significantly distort the expectation of the demand

side, while the exit decision of a small firm may not even be noticed. The extended

model remains a stochastic game with endogenous shocks, which has a stationary

Markov perfect equilibrium.27

5 An Extension

In Section 3, we assume that the probability measure λ is atomless on (S,S).

Below, we consider the more general case that λ may have atoms. To guarantee

the existence of stationary Markov perfect equilibria, we still assume the condition

of decomposable coarser transition kernel, but only on the atomless part.

1. There exist disjoint S-measurable subsets Sa and Sl such that Sa ∪ Sl = S,

λ|Sa is the atomless part of λ while λ|Sl
is the purely atomic part of λ. The

subset Sl is countable and each singleton {sl} with sl ∈ Sl is S-measurable

with λ(sl) > 0.28

2. For sa ∈ Sa, the transition kernel q(sa|s, x) =
∑

1≤j≤J qj(sa, s, x)ρj(sa) for

26If 1 and 0 represent active or inactive firms respectively, then a shift of market position for the
active (inactive) firm means to change its position from 1 to 0 (0 to 1).

27As noted in the introduction, our existence results on stochastic games, whose state transition for
the shock component explicitly depends on the parameters in the previous stage, cannot be covered by
earlier results. These include Corollary 1, Proposition 1 as well as the results suggested in Remark 2.

28This assumption is only for simplicity. It is immediate to extend our result to the case that Sl is a
collection of at most countably many atoms in the usual measure-theoretic sense. Note that for a set
{s} with one element in S, we use λ(s) to denote the measure of this set instead of λ({s}).
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some positive integer J , and for each s ∈ S and x ∈ X, where qj is product

measurable, and qj(·, s, x) and ρj are nonnegative and integrable on the

atomless measure space (Sa,SSa , λ|Sa) for j = 1, . . . , J .29

Definition 2. Let G be a sub-σ-algebra of SSa. A discounted stochastic game

is said to have a decomposable coarser transition kernel on the atomless

part if SSa has no G-atom under λ|Sa and qj(·, s, x) is G-measurable on Sa for

each s ∈ S and x ∈ X, j = 1, . . . , J .

The following theorem shows that the equilibrium existence result still holds.

Theorem 2. Every discounted stochastic game with a decomposable coarser

transition kernel on the atomless part has a stationary Markov perfect equilibrium.

6 Discussion

In this section, we shall discuss the relationship between our results and several

related results. In particular, we show that our results cover the existence

results on correlated equilibria, noisy stochastic games, stochastic games with

state-independent transitions, and stochastic games with mixtures of constant

transition kernels as special cases. We also explicitly demonstrate why a recent

counterexample fails to satisfy our conditions, and discuss the minimality of our

conditions.

Correlated equilibria

It was proved in [38] that a correlated stationary Markov perfect equilibrium

exists in discounted stochastic games in the setup described in our Section 2.

Ergodic properties of such correlated equilibria were obtained in [10] under stronger

conditions. They essentially assumed that players can observe the outcome of

a public randomization device before making decisions at each stage.30 Thus,

the new state space can be regarded as S′ = S × L endowed with the product

29It is clear that for any E ∈ S, the transition probability Q(E|s, x) =
∫
E∩Sa

q(sa|s, x) dλ(sa) +∑
sl∈Sl

1E(sl)q(sl|s, x)λ(sl) for any s ∈ S and x ∈ X.
30For detailed discussions on such a public randomization device, or “sunspot”, see [10] and their

references.
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σ-algebra S ′ = S ⊗ B and product measure λ′ = λ ⊗ η, where L is the unit

interval endowed with the Borel σ-algebra B and Lebesgue measure η. Denote

G′ = S⊗{∅, L}. Given s′, s′1 ∈ S′ and x ∈ X, the new transition kernel q′(s′1|s′, x) =

q(s1|s, x), where s (resp. s1) is the projection of s′ (resp. s′1) on S and q is the

original transition kernel with the state space S. Thus, q′(·|s′, x) is measurable

with respect to G′ for any s′ ∈ S′ and x ∈ X. It is obvious that S ′ has no G′-atom.

Then the condition of coarser transition kernel is satisfied for the extended state

space (S′,S ′, λ′), and the existence of a stationary Markov perfect equilibrium

follows from Theorem 1.31 The drawback of this approach is that the “sunspot”

is irrelevant to the fundamental parameters of the game. Our result shows that it

can indeed enter the stage payoff u, the correspondence of feasible actions A and

the transition probability Q.

Stochastic games with finite actions and state-independent transi-

tions

In [40], they studied stochastic games with finite actions and state-independent

atomless transitions. Namely, Xi is finite for each i ∈ I and the transition

probability Q does not directly depend on s (to be denoted by Q(·|x)). We shall

check that such a stochastic game satisfies the condition of decomposable coarser

transition kernels.

Let λ =
∑

x∈X Q(·|x). Then, for each x, Q(·|x) is absolutely continuous with

respect to λ, and the corresponding Radon-Nikodym derivative is denoted by q(·|x)

(abbreviated as qx). Let δx be the Dirac function on X: δx(y) = 1 if y = x, and 0

otherwise. Then we have

q(s′|x) =
∑
y∈X

δy(x)qy(s
′).

It is obvious that the condition of decomposable coarser transition kernels is

satisfied with G = {∅, S}. Then a stationary Markov perfect equilibrium exists

by Theorem 1.

31As noted in [38], a stochastic version of Caratheodory’s theorem implies that one can find a
stationary Markov correlated equilibrium strategy as a stochastic convex combination of stationary
Markov strategies.
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Decomposable constant transition kernels on the atomless part

Stochastic games with transition probabilities as combinations of finitely many

measures on the atomless part were considered in [35]. In particular, the structure

of the transition probability in [35] is as follows.

1. S2 is a countable subset of S and S1 = S\S2, each point in S2 is S-measurable.

2. There are atomless nonnegative measures µj concentrated on S1, nonnegative

measures δk concentrated on S2, and measurable functions qj , bk : S ×

X → [0, 1], 1 ≤ j ≤ J and 1 ≤ k ≤ K, where J and K are positive

integers. The transition probability Q(·|s, x) = δ(·|s, x) + Q′(·|s, x) for each

s ∈ S and x ∈ X, where δ(·|s, x) =
∑

1≤k≤K bk(s, x)δk(·) and Q′(·|s, x) =∑
1≤j≤J qj(s, x)µj(·).

3. For any j and k, qj(s, ·) and bk(s, ·) are continuous on X for any s ∈ S.

We shall show that any stochastic game with the above structure satisfies the

condition of decomposable coarser transition kernel on the atomless part.

Without loss of generality, assume that µj and δk are all probability measures.

Let λ(E) = 1
J+K

(∑
1≤j≤J µj(E) +

∑
1≤k≤K δk(E)

)
for any E ∈ S. Then µj is

absolutely continuous with respect to λ and assume that ρj is the Radon-Nikodym

derivative for 1 ≤ j ≤ J .

Given any s ∈ S and x ∈ X, let

q(s′|s, x) =



∑
1≤j≤J qj(s, x)ρj(s

′), if s′ ∈ S1;

δ(s′|s,x)
λ(s′) , if s′ ∈ S2 and λ(s′) > 0;

0, if s′ ∈ S2 and λ(s′) = 0.

Then Q(·|s, x) is absolutely continuous with respect to λ and q(·|s, x) is the

transition kernel. The condition of a decomposable coarser transition kernel on

the atomless part is satisfied with G = {∅, S1}. Then a stationary Markov perfect

equilibrium exists by Theorem 2.

Noisy stochastic games
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It was proved in [11] that stationary Markov perfect equilibria exist in stochastic

games with noise – a component of the state that is nonatomically distributed and

not directly affected by the previous period’s state and actions. As indicated in

Remark 1, a noisy stochastic game is a special case of a stochastic game with

endogenous shocks such that Hd and Xd are both singletons.

By Corollary 1, a noisy stochastic games has a decomposable coarser transition

kernel. Below, we directly show that any noisy stochastic game indeed has a coarser

transition kernel. The existence of stationary Markov perfect equilibria in noisy

stochastic games thus follows from Theorem 1. The proof of the proposition below

is left in the appendix.

Proposition 2. Every noisy stochastic game has a coarser transition kernel.

Nonexistence of stationary Markov perfect equilibrium

A concrete example of a stochastic game satisfying all the conditions as stated

in Section 2 was presented in [28], which has no stationary Markov perfect

equilibrium. Their example will be described in the following.

1. The player space is {A,B,C,C ′, D,D′, E, F}.

2. Player A has the action space {U,D}, and player B has the action space

{L,M,R}. Players C,C ′, D,D′ have the same action space {0, 1}. Players

E, F have the action space {−1, 1}.

3. The state space is S = [0, 1] endowed with the Borel σ-algebra B.

4. For any action profile x, let

h(x) = xC + xC′ + xD + xD′ ,

where xi is the action of player i. For each s ∈ [0, 1], let

Q̃(s, x) = (1− s) · 1

64
h(x),

and U(s, 1) be the uniform distribution on [s, 1] for s ∈ [0, 1). The transition
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probability is given by

Q(s, x) = Q̃(s, x)U(s, 1) + (1− Q̃(s, x))δ1,

where δ1 is the Dirac measure at 1.

The following proposition shows that the condition of a decomposable coarser

transition kernel on the atomless part is violated in this example.32

Proposition 3. The atomless part Q̃(s, x)U(s, 1) of the transition probability in

the Example of [28] does not have a decomposable coarser transition kernel.

Minimality

We have shown the existence of stationary Markov perfect equilibria in

discounted stochastic games by assuming the presence of a (decomposable) coarser

transition kernel. This raises the question of whether our condition is minimal and,

if so, then in what sense.

As discussed in the introduction, the main difficulty in the existence argument

for stochastic games is due to the failure of the convexity of the equilibrium

payoff correspondence P of a one-shot auxiliary game as parameterized by state

s and continuation value function v. As will be shown in Subsection 8.2, the

correspondence R(v), which is the collection of selections from the equilibrium

payoff correspondence P (v, ·), will live in an infinite-dimensional space if there is

a continuum of states. Thus, the desirable closedness and upper hemicontinuity

properties would fail even though P has these properties in terms of v. To handle

such issues, the standard approach is to work with the convex hull co(R). We

bypass this imposed convexity restriction by using the result that I(S,G,λ)
G = I(S,G,λ)

co(G)

for any S-measurable, integrably bounded,33 closed valued correspondence G

provided that S has no G-atom. Moreover, for the condition of a decomposable

coarser transition kernel, we assume that the transition kernel can be divided into

32Proposition 3 can also be implied by the nonexistence result in [28] and our Theorem 2. However,
the argument in [28] is deep, and our proof explicitly demonstrates why their example fails to satisfy
our sufficient condition in Theorem 2.

33A correspondence G : (S,S, λ)→ Rn is said to be integrably bounded if there exists some integrable
function ϕ : (S,S, λ)→ R+ such that ‖G(s)‖ ≤ ϕ(s) for λ-almost all s, where ‖ · ‖ is usual norm on Rn.
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finitely many parts. The following propositions demonstrate the minimality of our

condition from a technical point of view.

Proposition 4. Suppose that (S,S, λ) has a G-atom D with λ(D) > 0. Then there

exists a measurable correspondence G from (S,S, λ) to {0, 1} such that I(S,G,λ)
G 6=

I(S,G,λ)
co(G) .

The key result that we need in the proof of Theorem 1 is I(S,G,λ)
H = I(S,G,λ)

co(H) .

The question is whether a similar result holds if we generalize the condition of a

decomposable coarser transition kernel from a finite sum to a countable sum. We

will show that this is not possible.

Let (S,S, λ) be the Lebesgue unit interval (L,B, η). Suppose that {%n}n ≥0 is a

complete orthogonal system in L2(S,S, λ) such that %n takes value in {−1, 1} and∫
S %n dλ = 0 for each n ≥ 1 and %0 ≡ 1. Let ρn = %n+1 for each n ≥ 1 and ρ0 = %0.

Let {En}n≥0 be a countable measurable partition of S and qn(s) = 1En for each

n ≥ 0. Suppose that a transition kernel q is decomposed into a countable sum

q(s1|s, x) =
∑

n≥0 qn(s)ρn(s1). The following proposition shows that the argument

for the case that J is finite is not valid for such an extension.34

Proposition 5. Let G(s) = {−1, 1} for s ∈ S, and f be the measurable selection

of co(G) that takes the constant value 0. Then, for any sub-σ-algebra F ⊆ S, there

is no S-measurable selection g of G with Eλ(gρn|F) = Eλ(fρn|F) for any n ≥ 0.

Thus, our condition is minimal in the sense that if one would like to adopt

the “one-shot game” approach as used in the literature for obtaining a stationary

Markov perfect equilibrium, then it is a tight condition.

7 Concluding Remarks

We consider stationary Markov perfect equilibria in discounted stochastic games

with a general state space. So far, such equilibria have been shown to exist only

for several special classes of stochastic games. In this paper, the existence of

stationary Markov perfect equilibria is proved under some general conditions, which

34It is a variant of a well known example of Lyapunov.
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broadens the scope of potential applications of stochastic games. We illustrate

such applications via two examples, namely, stochastic games with endogenous

shocks and a stochastic dynamic oligopoly model. Our results unify and go beyond

various existence results as in [10], [11], [35], [38] and [40], and also provide some

explanation for a recent counterexample which fails to have an equilibrium in

stationary strategies.

In the literature, the standard recursive approach for the existence arguments

is to work with a one-shot auxiliary game parameterized by the state and the

continuation value function. We adopt this approach and provide a very simple

proof under the condition of “(decomposable) coarser transition kernels”. The

proof is based on a new connection between stochastic games and conditional

expectations of correspondences. We demonstrate from a technical point of view

that our condition is minimal for the standard “one-shot game” approach.

8 Appendix

8.1 Proof of Claim 1

Let F be the sub-σ-algebra of S that is generated by the collection of functions

{q(·, s)}s∈S . Let (ĥ, r̂) = (0, 0) (resp. (h̃, r̃) = (1
3 , 0)), and denote q̂ (resp. q̃) as

the corresponding value of q(s1, ĥ, r̂) (resp. q(s1, h̃, r̃)). Then both q̂ and q̃ are

functions of s1 and F-measurable. We have the following system of equations:

q̂ =
3

2
h2

1 + 2h1r1, (3)

q̃ = h2
1 +

1

3
h1 + 2h1r1. (4)

We can view h1 and r1 as two functions of (q̂, q̃). By subtracting Equation (4) from

Equation (3), we get q̂− q̃ = 1
2h

2
1− 1

3h1. By the definition, this equation must have

solutions in terms of h1 for the given value q̂ − q̃. Thus, we have 1
9 + 2(q̂ − q̃) ≥ 0,

and h1 = 1
3 +

√
1
9 + 2(q̂ − q̃) or 1

3 −
√

1
9 + 2(q̂ − q̃), with at least one of them in

26



[0, 1]. We can denote

α̂(q̂, q̃) =


1
3 +

√
1
9 + 2(q̂ − q̃), if 1

3 +
√

1
9 + 2(q̂ − q̃) ∈ [0, 1];

1
3 −

√
1
9 + 2(q̂ − q̃), otherwise.

By substituting h1 = α̂(q̂, q̃) into Equation (3), we can solve r1 as a function of

(q̂, q̃), which is denoted by r1 = α̃(q̂, q̃).35

Let πh and πr be the projection mappings on S1 with πh(h1, r1) = h1 and

πh(h1, r1) = r1 respectively. Because both q̂ and q̃ are F-measurable functions

on S1, and πh = α̂(q̂, q̃) and πr = α̃(q̂, q̃), the mappings πh and πr are also F-

measurable. As a result, both B([0, 1]) ⊗ {∅, [0, 1]} and {∅, [0, 1]} ⊗ B([0, 1]) are

contained in F . Thus, S ⊆ F . Since F ⊆ S by the definition of F , we have F = S.

8.2 Proof of Theorem 1

In this subsection, we shall prove Theorem 1.

Let L1((S,S, λ),Rm) and L∞((S,S, λ),Rm) be the L1 and L∞ spaces of all

S-measurable mappings from S to Rm with the usual norm; that is,

L1((S,S, λ),Rm) = {f : f is S-measurable and

∫
S
‖f‖ dλ <∞},

L∞((S,S, λ),Rm) = {f : f is S-measurable and essentially bounded under λ},

where ‖ · ‖ is the usual norm in Rm. By the Riesz representation the-

orem (see Theorem 13.28 of [1]), L∞((S,S, λ),Rm) can be viewed as the

dual space of L1((S,S, λ),Rm). Then L∞((S,S, λ),Rm) is a locally convex,

Hausdorff topological vector space under the weak∗ topology. Let V = {v ∈

L∞((S,S, λ),Rm) : ‖v‖∞ ≤ C}, where C is the upper bound of the stage payoff

function u and ‖ · ‖∞ is the essential sup norm of L∞((S,S, λ),Rm). Then V

is nonempty and convex. Moreover, V is compact under the weak∗ topology by

Alaoglu’s Theorem (see Theorem 6.21 of [1]). Since S is countably generated,

L1((S,S, λ),Rm) is separable, which implies that V is metrizable in the weak∗

35By the construction, both α̂ and α̃ are obviously Borel measurable functions.
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topology (see Theorem 6.30 of [1]).

Given any v = (v1, · · · , vm) ∈ V and s ∈ S, we consider the game Γ(v, s). The

action space for player i is Ai(s). The payoff of player i with the action profile

x ∈ A(s) is given by

Ui(s, x)(v) = (1− βi)ui(s, x) + βi

∫
S
vi(s1)Q(ds1|s, x). (5)

A mixed strategy of player i is an element in M(Ai(s)), and a mixed strategy

profile is an element in
⊗

i∈IM(Ai(s)). The set of mixed strategy Nash equilibria

of the static game Γ(v, s), denoted by N(v, s), is a nonempty compact subset of⊗
i∈IM(Xi) under the weak∗ topology due to the Fan-Glicksberg Theorem (see

[16] and Corollary 17.55 in [1]). Let P (v, s) be the set of payoff vectors induced

by the Nash equilibria in N(v, s), and co(P ) the convex hull of P . Then co(P )

is a correspondence from V × S to Rm. Let R(v) (resp. co(R(v))) be the set of

λ-equivalence classes of S-measurable selections of P (v, ·) (resp. co(P (v, ·))) for

each v ∈ V .

Following the arguments in Lemmas 6 and 7 in [38] (see also [32]),36 for each

v ∈ V , P (v, ·) (abbreviated as Pv(·)) is S-measurable and compact valued, and

co(R(v)) is nonempty, convex, weak∗ compact valued and upper hemicontinuous.

Then the correspondence co(R) : V → V maps the nonempty, convex, weak∗

compact set V (a subset of a locally convex Hausdorff topological vector space) to

nonempty, convex subsets of V , and it has a closed graph in the weak∗ topology.

By the classical Fan-Glicksberg Fixed Point Theorem, there is a fixed point v′ ∈ V

such that v′ ∈ co(R)(v′). That is, v′ is an S-measurable selection of co(P (v′, ·)).

Recall that a correspondence G : S → Rn is said to be integrably bounded if

there exists some integrable function ϕ such that ‖G(s)‖ ≤ ϕ(s) for λ-almost all

s, where ‖ · ‖ is usual norm on Rn. For any integrably bounded correspondence G

from S to Rm, define

I(S,G,λ)
G = {Eλ(g|G) : g is an S-measurable selection of G},

36In [38], a slightly stronger condition was imposed on the transition probability Q that the mapping
q(·|s, x) satisfies the L1 continuity condition in x for all s ∈ S. Their arguments on the convexity,
compactness and upper hemicontinuity properties still hold in our setting.
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where the conditional expectation is taken with respect to λ.

The following lemma is from [12, Theorem 1.2].

Lemma 1. If S has no G-atom,37 then for any S-measurable,38 λ-integrably

bounded, closed valued correspondence G, I(S,G,λ)
G = I(S,G,λ)

co(G) .

Now we are ready to prove Theorem 1.

Proof. Given v′, let

H(s) = {(a, a · ρ1(s), . . . , a · ρJ(s)) : a ∈ Pv′(s)},

and co(H(s)) the convex hull of H(s) for each s ∈ S. It is clear that H is S-

measurable, λ-integrably bounded and closed valued. Then I(S,G,λ)
H = I(S,G,λ)

co(H) by

Lemma 1, which implies that there exists an S-measurable selection v∗ of Pv′ such

that Eλ(v∗ρj |G) = Eλ(v′ρj |G) for each 1 ≤ j ≤ J . For each i ∈ I, s ∈ S and x ∈ X,

we have

∫
S
v∗i (s1)Q(ds1|s, x) =

∑
1≤j≤J

∫
S
v∗i (s1)qj(s1, s, x)ρj(s1)λ(ds1)

=
∑

1≤j≤J

∫
S
Eλ(v∗i ρjqj(·, s, x)|G)(s1)λ(ds1)

=
∑

1≤j≤J

∫
S
Eλ(v∗i ρj |G)(s1)qj(s1, s, x)λ(ds1)

=
∑

1≤j≤J

∫
S
Eλ(v′iρj |G)(s1)qj(s1, s, x)λ(ds1)

=
∑

1≤j≤J

∫
S
Eλ(v′iρjqj(·, s, x)|G)(s1)λ(ds1)

=
∑

1≤j≤J

∫
S
v′i(s1)qj(s1, s, x)ρj(s1)λ(ds1)

=

∫
S
v′i(s1)Q(ds1|s, x).

37In [12], a set D ∈ S is said to be a G-atom if λ(D) > 0 and given any D0 ∈ SD, λ
(
s ∈ S : 0 <

λ(D0 | G)(s) < λ(D | G)(s)
)

= 0. The conditions that S has no G-atom as in [12] as well as in our paper
and the book [26] are equivalent; see Lemma 2 in [18].

38In [12], the correspondence G is said to be measurable if for any x ∈ Rm, the function d(x,G(s))
is measurable, where d is he usual metric in the Euclidean space. Their notion of measurability of a
correspondence coincides with our definition of the measurability of a correspondence, see Theorem 18.5
in [1].
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By Equation (5), Γ(v∗, s) = Γ(v′, s) for any s ∈ S, and hence P (v∗, s) = P (v′, s).

Thus, v∗ is an S-measurable selection of Pv∗ .

By the definition of Pv∗ , these exists an S-measurable mapping f∗ from S to⊗
i∈IM(Xi) such that f∗(s) is a mixed strategy Nash equilibrium of the game

Γ(v∗, s) and v∗(s) is the corresponding equilibrium payoff for each s ∈ S.39 It is

clear that Equations (1) and (2) hold for v∗ and f∗, which implies that f∗ is a

stationary Markov perfect equilibrium.

8.3 Proof of Theorem 2

Let Va be the set of λ-equivalence classes of S-measurable mappings from Sa to

Rm bounded by C. For each i ∈ I, let Fi be the set of all fi : Sl → M(Xi) such

that fi(s)
(
Ai(s)

)
= 1 for all s ∈ Sl, F =

∏
i∈I Fi. Let Vl be the set of mappings

from Sl to Rm bounded by C, which is endowed with the supremum metric and

hence a complete metric space.

Given s ∈ S, va ∈ Va and vl ∈ Vl, consider the game Γ(va, vl, s). The action

space for player i is Ai(s). The payoff of player i with the action profile x ∈ A(s)

is given by

Φi(s, x, v
a, vl) = (1− βi)ui(s, x) + βi

∑
1≤j≤J

∫
Sa
vai (sa)qj(sa|s, x)ρj(sa)λ(dsa)

+βi
∑

sl∈Sl
vli(sl)q(sl|s, x)λ(sl). (6)

The set of mixed-strategy Nash equilibria in the game Γ(va, vl, s) is denoted as

N(va, vl, s). Let P (va, vl, s) be the set of payoff vectors induced by the Nash

equilibria in N(va, vl, s), and co(P ) the convex hull of P .

Given va ∈ Va, f ∈ F , define a mapping Π from Vl to Vl such that for each

i ∈ I, vl ∈ Vl and sl ∈ Sl,

Πi(v
a, f−i)(v

l)(sl) = max
φi∈Fi

∫
X−i

∫
Xi

Φi(sl, xi, x−i, v
a, vl)φi(dxi|sl)f−i(dx−i|sl). (7)

39Note that v∗ is indeed the corresponding equilibrium payoff for λ-almost all s ∈ S. However, one
can modify v∗ on a null set such that the claim holds for all s ∈ S; see, for example, [38].
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Let β = max{βi : i ∈ I}. Then for any va ∈ Va, vl, v̄l ∈ Vl, x ∈ X and s ∈ Sl,

∣∣Φi(s, x, v
a, vl)− Φi(s, x, v

a, v̄l)
∣∣ ≤ βi ∑

sl∈Sl

∣∣vli(sl)− v̄li(sl)∣∣q(sl|s, x)λ(sl)

≤ βi sup
sl∈Sl

∣∣vli(sl)− v̄li(sl)∣∣ ≤ β sup
sl∈Sl

∣∣vli(sl)− v̄li(sl)∣∣.
Thus, Π is a β-contraction mapping. There is a unique v̄l ∈ Vl such that

Πi(v
a, f−i)(v̄

l)(sl) = v̄li(sl) for each i ∈ I and sl ∈ Sl. Let W (va, f) be the set

of all φ ∈ F such that for each i ∈ I and sl ∈ Sl,

v̄li(sl) =

∫
X−i

∫
Xi

Φi(sl, xi, x−i, v
a, v̄l)φi(dxi|sl)f−i(dx−i|sl). (8)

Let v̄l be the function on Sl generated by va and f as above, and R(va, f)

the set of λ-equivalence classes of S-measurable selections of P (va, v̄l, ·) restricted

to Sa. Then, the convex hull co(R(va, f)) is the set of λ-equivalence classes of

S-measurable selections of co
(
P (va, v̄l, ·)

)
restricted to Sa. Denote Ψ(va, f) =

co(R(va, f))×W (va, f) for each va ∈ Va and f ∈ F .

As shown in [35], Ψ is nonempty, convex, compact valued and upper hemi-

continuous. By Fan-Glicksberg’s Fixed Point Theorem, Ψ has a fixed point

(va
′
, f l
′
) ∈ Va × F . Let vl

′
be the mapping from Sl to Rm that is generated

by va
′

and f l
′

through the β-contraction mapping Π as above. Then va
′

is an S-

measurable selection of co
(
P (va

′
, vl
′
, ·)
)

restricted to Sa; and furthermore we have

for each i ∈ I and sl ∈ Sl,

vl
′
i (sl) =

∫
X−i

∫
Xi

Φi(sl, xi, x−i, v
a′ , vl

′
)f l
′
i (dxi|sl)f l

′
−i(dx−i|sl), (9)

Πi(v
a′ , f l

′
−i)(v

l′)(sl) = vl
′
i (sl). (10)

Following the same argument as in the proof of Theorem 1, there exists an

S-measurable selection va∗ of P(va′ ,vl′ ) such that E(va∗ρj |G) = E(va
′
ρj |G) for each

1 ≤ j ≤ J , where the conditional expectation is taken on (Sa,SSa , λSa) with

λSa the normalized probability measure on (Sa,SSa). For any s ∈ S and x ∈

A(s), Φi(s, x, v
a′ , vl

′
) = Φi(s, x, v

a∗, vl
′
), Γ(va

′
, vl
′
, s) = Γ(va∗, vl

′
, s), and therefore
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P (va
′
, vl
′
, s) = P (va∗, vl

′
, s). Thus, va∗ is an S-measurable selection of P(va∗,vl′ ),

and there exists an S-measurable mapping fa∗ : Sa →
⊗

i∈IM(Xi) such that

fa∗(s) is a mixed-strategy Nash equilibrium of the game Γ(va∗, vl
′
, s) and va∗(s)

the corresponding equilibrium payoff.

Let v∗(s) be va∗(s) for s ∈ Sa and vl
′
(s) for s ∈ Sl, and f∗(s) be fa∗(s) for s ∈ Sa

and f l
′
(s) for s ∈ Sl. For sa ∈ Sa, since va∗ is a measurable selection of P(va∗,vl′ ) on

Sa, the equilibrium property of fa∗(sa) then implies that Equations (1) and (2) hold

for v∗ and f∗. Next, for sl ∈ Sl, the identity Φi(sl, x, v
a′ , vl

′
) = Φi(sl, x, v

a∗, vl
′
)

implies that Equations (9) and (10) still hold when va
′

is replaced by va∗, which

means that Equations (1) and (2) hold for v∗ and f∗. Therefore, f∗ is a stationary

Markov perfect equilibrium.

8.4 Proof of Proposition 2

In this subsection, we shall follow the notations in Subsection 4.1. As discussed in

Remark 1, a noisy stochastic game is a stochastic game with endogenous shocks

in which Hd and Xd are both singletons. As a result, we can slightly abuse the

notations by viewing QR to be a mapping from H × R to [0, 1], and its Radon-

Nikodym derivative ψ to be a mapping defined on H×R. For simplicity, we denote

νh(·) = QR(·|h).

Let λ(Z) =
∫
H

∫
R 1Z(h, r)ψ(r|h) dν(r) dκ(h) for all Z ∈ S, and G = H⊗{∅, R}.

Recall that φ(·|s, x) is the Radon-Nikodym derivative of QH(·|s, x) with respect to

κ. For each (s, x), φ(·|s, x) is a mapping which does not depend on r, and hence

is G-measurable. We need to show that S has no G-atom under λ.

Fix any Borel subset D ⊆ S with λ(D) > 0. There is a measurable mapping

α from (D,SD) to (L,B) such that α can generate the σ-algebra SD, where L is

the unit interval endowed with the Borel σ-algebra B. Let g(h, r) = h for each

(h, r) ∈ D, Dh = {r : (h, r) ∈ D} and HD = {h ∈ H : νh(Dh) > 0}.

Denote gh(·) = g(h, ·) and αh(·) = α(h, ·) for each h ∈ HD. Define a mapping

f : HD × L → [0, 1] as follow: f(h, l) =
νh

(
α−1
h ([0,l])

)
νh(Dh) . Similarly, denote fh(·) =

f(h, ·) for each h ∈ HD. For κ-almost all h ∈ HD, the atomlessness of νh implies

νh ◦ α−1
h ({l}) = 0 for all l ∈ L. Thus, the distribution function fh(·) is continuous
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on L for κ-almost all h ∈ HD.

Let γ(s) = f(g(s), α(s)) for each s ∈ D, and D0 = γ−1([0, 1
2 ]), which is a

subset of D. For h ∈ HD, let lh be max{l ∈ L : fh(l) ≤ 1
2} if fh is continuous,

and 0 otherwise. When fh is continuous, fh(lh) = 1/2. For any E ∈ H, let

D1 = (E ×R) ∩D, and E1 = E ∩HD. If λ(D1) = 0, then

λ(D0 \D1) = λ(D0) =

∫
HD

νh ◦ α−1
h ◦ f

−1
h

(
[0,

1

2
]
)

dκ(h)

=

∫
HD

νh
(
α−1
h ([0, lh])

)
dκ(h) =

∫
HD

f(h, lh)νh(Dh) dκ(h)

=
1

2

∫
HD

νh(Dh) dκ(h) =
1

2
λ(D) > 0.

If λ(D1) > 0, then

λ(D1 \D0) =

∫
E1

∫
R

1D\D0
(h, r) dνh(r) dκ(h) =

∫
E1

νh ◦ α−1
h ◦ f

−1
h

(
(
1

2
, 1]
)

dκ(h)

=

∫
E1

νh ◦ α−1
h ◦ f

−1
h

(
[0, 1] \ [0,

1

2
]
)

dκ(h) =
1

2

∫
E1

νh(Dh) dκ(h) =
1

2
λ(D1) > 0.

Hence, D is not a G-atom. Therefore, S has no G-atom and the condition of coarser

transition kernel is satisfied.

8.5 Proof of Proposition 3

Given the state s ∈ [0, 1) and action profile x in the previous stage, suppose that

players C, C ′, D and D′ play the strategy 1, the transition probability in the

current stage is

Q(s, x) =
(
1− 1

16
(1− s)

)
δ1 +

1

16
(1− s)U(s, 1).

It is clear that U(s, 1) is absolute continuous with respect to the Lebesgue measure

η with the Radon-Nikodym derivative

q(s1|s) =


1

1−s s1 ∈ [s, 1],

0 s1 ∈ [0, s).

33



Suppose that the atomless part Q̃(s, x)U(s, 1) has a decomposable coarser

transition kernel; so does U(s, 1). Then, for some positive integer J , we have

q(·|s) =
∑

1≤j≤J qj(·, s)ρj(·) for any s ∈ [0, 1), where qj is nonnegative and product

measurable, ρj is nonnegative and integrable. Let G be the minimal σ-algebra (with

strong completion) with respect to which qj(·, s) is measurable for all 1 ≤ j ≤ J

and s ∈ [0, 1). The condition of a decomposable coarser transition kernel implies

that B has no G-atom. We shall show this condition is not satisfied and thus derive

a contradiction.

Denote Dj = {s1 ∈ S : ρj(s1) = 0} for 1 ≤ j ≤ J . Since q(s1|0) = 1 for all

s1 ∈ S, we must have ∩1≤j≤JDj = ∅, and hence η
(
∩1≤j≤J Dj

)
= 0.

First suppose that η(Dj) = 0 for all j. Let D̄ = ∪1≤j≤JDj ; then η(D̄) = 0.

Fix s′ ∈ [0, 1). Let Ej = {s1 ∈ S : qj(s1, s
′) = 0} and E0 = ∩1≤j≤JEj . Then

Ej ∈ G for 1 ≤ j ≤ J , and hence E0 ∈ G. For any s1 ∈ [s′, 1], since q(s1|s′) > 0,

there exists 1 ≤ j ≤ J such that qj(s1|s′) > 0, which means that s1 /∈ Ej and

s1 /∈ E0. Hence, E0 ⊆ [0, s′). For any s1 ∈
(
[0, s′) \ D̄

)
, we have q(s1|s′) = 0, and

ρj(s1) > 0 for each 1 ≤ j ≤ J , which implies that qj(s1|s′) = 0 for each 1 ≤ j ≤ J ,

and s1 ∈ E0. That is,
(
[0, s′) \ D̄

)
⊆ E0. Hence, η(E04[0, s′]) = 0. Therefore,

[0, s′] ∈ G for all s′ ∈ [0, 1), which implies that G coincides with B and B has a

G-atom [0, 1). This is a contradiction.

Next suppose that η(Dj) = 0 does not hold for all j. Then there exists a set,

say D1, such that η(D1) > 0. Let Z = {K ⊆ {1, . . . , J} : 1 ∈ K, η(DK) > 0},

where DK = ∩j∈KDj . Hence, {1} ∈ Z, Z is finite and nonempty. Let K0 be the

element in Z containing most integers; that is,
∣∣K0

∣∣ ≥ ∣∣K∣∣ for any K ∈ Z, where∣∣K∣∣ is the cardinality of K. Let Kc
0 = {1, . . . , J}\K0. Then Kc

0 is not empty since

η
(
∩1≤j≤J Dj

)
= 0. In addition, η

(
DK0 ∩ Dj

)
= 0 for any j ∈ Kc

0. Otherwise,

η
(
DK0 ∩ Dj

)
> 0 for some j ∈ Kc

0 and hence (K0 ∪ {j}) ∈ Z, which contradicts

the choice of K0. Let D̂ = ∪k∈Kc
0

(
DK0 ∩Dk

)
; then η(D̂) = 0. For all s1 ∈ DK0 ,

q(s1|s) =
∑

k∈Kc
0
qk(s1, s)ρk(s1) for all s ∈ [0, 1).

Fix s′ ∈ [0, 1). Let Ek = {s1 ∈ S : qk(s1, s
′) = 0} and EKc

0
= ∩k∈Kc

0
Ek. Then

Ek ∈ G for any k and hence EKc
0
∈ G. For any s1 ∈ [s′, 1], since q(s1|s′) > 0,

there exists k ∈ Kc
0 such that qk(s1|s′) > 0, which means that s1 /∈ Ek and
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s1 /∈ EKc
0
. Hence, EKc

0
⊆ [0, s′), and EKc

0
∩ DK0 ⊆ [0, s′) ∩ DK0 . Now, for

any s1 ∈
((

[0, s′) ∩DK0
)
\ D̂
)

, we have q(s1|s′) = 0, and ρk(s1) > 0 for each

k ∈ Kc
0, which implies that qk(s1|s′) = 0 for each k ∈ Kc

0, and s1 ∈ EKc
0
. That is,((

[0, s′) ∩DK0
)
\ D̂
)
⊆ EKc

0
∩DK0 . Hence, ([0, s′]∩DK0)\ (EKc

0
∩DK0) ⊆ D̂, and

η
(
(EKc

0
∩DK0)4([0, s′] ∩DK0)

)
= 0. Thus, B has a G-atom DK0 . This is again a

contradiction.

8.6 Proof of Propositions 4 and 5

Proof of Proposition 4. Define a correspondence

G(s) =


{0, 1} s ∈ D;

{0} s /∈ D.

We claim that I(S,G,λ)
G 6= I(S,G,λ)

co(G) . Let g1(s) = 1
21D, where 1D is the indicator

function of the set D. Then g1 is an S-measurable selection of co(G). If there is

an S-measurable selection g2 of G such that Eλ(g1|G) = Eλ(g2|G), then there is a

subset D2 ⊆ D such that g2(s) = 1D2 . Since D is a G-atom, for any S-measurable

subset E ⊆ D, there is a subset E1 ∈ G such that λ(E4(E1 ∩D)) = 0. Then

λ(E ∩D2) =

∫
S

1E(s)g2(s) dλ(s) =

∫
S
Eλ
(
1E11Dg2|G

)
dλ =

∫
S

1E1Eλ
(
g2|G

)
dλ

=

∫
S

1E1Eλ
(
g1|G

)
dλ =

1

2

∫
S

1E11D dλ =
1

2
λ(E1 ∩D) =

1

2
λ(E).

Thus, λ(D2) = 1
2λ(D) > 0 by choosing E = D. However, λ(D2) = 1

2λ(D2) by

choosing E = D2, which implies that λ(D2) = 0. This is a contradiction.

Proof of Proposition 5. Suppose that there exists an S-measurable selection g of

G such that Eλ(gρn|F) = 0 for any n ≥ 0. Then there exists a set E ∈ S such that

g(s) =


1 s ∈ E;

−1 s /∈ E.
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Thus,

λ(E)− λ(Ec) =

∫
S
gρ0 dλ =

∫
S
Eλ(gρ0|F) dλ = 0,

which implies λ(E) = 1
2 . Moreover,

∫
S
g%n dλ =

∫
S
gρn dλ−

∫
S
g dλ =

∫
S
Eλ(gρn|F) dλ− 0 = 0

for each n ≥ 1, which contradicts with the condition that {%n}n≥0 is a complete

orthogonal system.
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[24] A. Jaśkiewicz and A. S. Nowak, Zero-Sum Stochastic Games, Manuscript
(2016a).
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