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1 Introduction

This paper considers models with multiple sources of endogeneity in which there is a single in-

strumental variable, which could possibly be binary. We show how parameters of interest in such

models can be identified. Our baseline model is partially linear. We provide a new estimator that

is easy to implement for the coefficient of the endogenous regressor for which no instrumental vari-

ables are available. By applying empirical process methods, we show that the estimator retains
√
n-convergence rate and is asymptotically normal even though we have a generated regressor.

The nonparametric part of the baseline partially linear model is also identified up to a constant,

and can be estimated with the standard nonparametric convergence rate. We also show how the

identification strategy used to identify the baseline model could be extended for identification in

a nonparametric model.

To see why methods developed in this paper might be useful, consider the problem of studying

the effect of maternal smoking during pregnancy on birth weight. Medical literature has long

established a link between maternal smoking and adverse birth outcomes, primarily measured

by the effect on average birth weights. However, the primary concern involved in estimating the

causal effect of maternal smoking on birth weights is the lack of an exogenous source of variation.1

Using the methods proposed in this paper, we can potentially solve this issue by using an available

IV for a second endogenous variable of interest in our structural equation. For instance, Currie

and Moretti (2003) (henceforth CM) studies the effect of maternal education on birth outcomes.

Given the former is clearly endogenous, they use the number of colleges in the county where the

mother was resident at age 17 as their instrumental variable.

To formulate ideas, suppose Y denotes birth weight of the baby, X denotes mother’s schooling,

Z represents the CM IV, and D denotes our key endogenous variable, maternal smoking during

pregnancy. Finally, ε represents all remaining unobservables. The model we study is

Y = λ(X) +Dᵀγ + ε, (1)

X = π(Z) + V. (2)

By running a first stage non-parametric regression of the endogenous regressor X on the in-

strument we could identify V . The crucial assumption we impose is that the residual from this

regression will be a control function for the endogenous variable for which an IV is available. That

is, we assume E(ε|X, V ) = E(ε|V ) =: ρ(V ). Note that inclusion of V into the outcome equation

as a regressor will only control for endogeneity of X, but not of D. This means that we could

write ε = ρ(V ) + ς, where E(ς|X, V ) = 0 by construction. In particular, X and V will be addi-

tively separable and exogenous in the outcome equation written with ς as the only unobserved

1The most comprehensive study on the question, Almond et al. (2005) also uses a selection-on-observables

framework. It is particularly hard to find a source of variation that is correlated with smoking during pregnancy

but uncorrelated with unobserved mothering ability
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term. However, E(ς|D) is not required to be 0. Given this setup, the cross partial derivative of

E(Y |X, V ) with respect to X and V must be equal to γ (the coefficient vector on the endogenous

regressors D) times the cross partial derivative of E(D|X, V ) with respect to X and V .

If the vector of cross partial derivatives of E(D|X, V ) with respect to X and V are linearly

independent, which is a testable assumption, then our coefficient of interest γ is identified. Once

γ is identified, we can subtract Dᵀγ from the outcome and identify λ(X) as well as ρ(V ) up to

some location normalization. Note that if the instrument Z is binary we could only identify the

continuous unobservable (but identifiable) control function V at two points. In that case, the

coefficient vector γ can still be identified by replacing partial derivatives with differencing, so that

cross partial derivatives are replaced by differences in differences. This is our baseline model.

Under this setup, we estimate the causal effect of smoking on birth weight in Section 4. How-

ever, our methods can be applied to a wide range of applications. Consider the empirical problem

of estimating the dynamic evolution of crime. That is, suppose we are interested in estimating

how crime in the last period affects crime in the current period. Given unobserved criminogenic

factors at the neighborhood level a naive OLS would yield biased estimates. Jacob, Lefgren and

Moretti (2007) use last period’s weather conditions as an IV for last period’s criminal activity.

However, part of this estimated effect might be due to learning-by-doing related channels on the

part of the criminals. Similarly, police response to criminal behavior in a given neighborhood,

might also respond to last period’s criminal activity making inference difficult. Moreover, we

might also be interested in evaluating the causal effect of last period’s criminal activity through

such additional channels whose own endogeneity can create further problems. The methods de-

veloped in this paper can be used to also evaluate such effects, as the scenario again incorporates

insufficiently many instrumental variables compared to endogenous regressors.

Based on our identification strategy, we propose an easy-to-compute estimator which achieves
√
n-convergence rate for γ. Asymptotic normality of this estimator is also derived. We should

point out that our approach consists of a multi-step estimation and applies the control function

approach which leaves us with a generated regressor. Consistency and
√
n-convergence results are

non-trivial when generated regressors are involved.

In Section 2, we outline how our identification strategy for the baseline model could be extended

to a non-parametric model. This extension highlights that separability of X and D is not necessary

for our methodology. On the other hand, while our identification strategy allows us to make

inferences about effects of multiple endogenous variables with few or even a single instrument, it

does rely on some crucial assumptions. As in applying any new method, researchers should make

sure that our identifying assumptions are suitable for their particular application when applying

our method.

Our baseline model is partially linear. The partially linear model has been well established in

econometric theory since the seminal works of Robinson (1988) and Speckman (1988). Identifica-

tion and estimation of partially linear models with endogeneity in either the parametric part or
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the nonparametric part have been discussed in the literature by e.g. Ai and Chen (2003), Chen

and Pouzo (2009), Florens (2003). In a recent study Florens et al. (2012) also propose a
√
n-

consistent estimator for the parametric part, when endogeneity exists in both the parametric and

nonparametric parts. However their method relies on the availability and strength of sufficiently

many instrumental variables. Our method, on the other hand, only requires the availability of

one instrumental variable.

Both in our baseline model and in non-parametric extension 1 in Section 2, V is a control

function (though as explained in detail in Section 2, V could also be an observed covariate).

As a result, this paper is also related to the control function approach (see Newey, Powell and

Vella (1999)2, Blundell and Powell (2003), Imbens and Newey (2009) among others). In our case,

however, the control function is not required to account for all sources of endogeneity; its inclusion

into the outcome equation is only required to control for endogeneity in X, but not in D. We use

a first stage nonparametric regression of X on Z to obtain this control function.

Identification of marginal effects of multiple endogenous variables with a single instrument was

first established Huang and Yıldız (2013). In Section 2 we outline two non-parametric extensions

with one of them incorporating V as a control function. As such our work is also related to

Torgovitsky (2015) and D’Haultfoeuille and Fevrier (2015). Using very different methods than

ours, in a model where both the outcome and first stage equations are strictly monotone in their

corresponding scalar unobservable variable both of these papers demonstrate that identification

of structural functions are possible even with a discrete instrument when there is a single contin-

uous endogenous variable. In both of these papers the outcome equation is non-separable in the

endogenous variable X and the unonservable variable. In our related non-parametric extension

the unobservable ε enters the outcome equation additively separably from (X,D), which are the

endogenous variables. On the other hand, we demonstrate that identification of marginal effects

of multiple endogenous variables is possible with a possibly binary, single instrument. This feature

of our paper is also shared by Caetano and Escanciano (2015, 2016), which uses a related but

different identification strategy to achieve identification of marginal effects of multiple endoge-

nous variables with a possibly single, binary instrument in the context of the non-parametric IV

modesl.

We discuss the estimation of only our baseline model in this paper. Since estimation of λ

and ρ (up to a constant) would follow almost immediately from Newey, Powell and Vella (1999).

Once a
√
n-normal estimator for γ is at hand, we focus on estimation of γ only. Based on our

identification strategy, our proposed estimator for γ is of the ratio form, where both the numerator

and the denominator are averages of cross partial derivatives of nonparametric regressions with

generated regressors. The literature on estimation problems with generated regressors has grown

significantly in recent years, see e.g. Mammen et al. (2012a, 2012b), Hahn and Ridder (2013),

and Escanciano et al. (2014). The way we handle the generated regressor in our problem is

2Our baseline model is particularly related to Newey, Powell and Vella (1999).
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mostly related to Mammen et al. (2012a). They use local linear regression to simplify technical

arguments and focus on estimation of conditional mean with a generated regressor. We consider

averages of cross partial derivatives of nonparametric regressions, and apply local polynomial

regression to obtain estimates of these cross-partial derivatives. Lee (2013) also studies averages

of such regression by using the kernel estimation. However, we have a different focus, and our main

contribution is
√
n-consistency and asymptotic normality result for the parametric estimator in a

partially linear model with a single instrument. A by-product gained in our estimation is that, as

an intermediate step, the estimator of the average of the second order derivatives is shown to be
√
n-consistent. Li et al. (2003) show that the estimator of the average of first order derivatives

converges at parametric rate. Our paper extends their results to the second order derivatives.

Instead of using U-statistics, we apply empirical process methods to address in analyzing the

asymptotic distribution of our estimator.

The paper is organized as follows. In Section 2, we introduce the model and provide conditions

under which this model is identified. Our identification conditions are novel. For this reason we

include a detailed discussion of our assumptions. We also discuss how our identification strategy

can be extended to non-parametric models. Section 3 proposes the estimators and derives the

asymptotic behavior of the estimator for γ. Section 4 provides an empirical study which illustrates

how our method can be applied. We conclude in Section 5. The proof of the main results is deferred

to the mathematical appendix.

2 The Model and the Identification

We start this section by discussing our basic identification strategy. We present our identification

strategy in the context of our baseline model, first. At the end of this section we discuss how this

strategy could be extended to a nonparametric model. The baseline model we study is given by

Y = λ(X) + γD + ε , (3)

X = π(Z) + V , (4)

where (Y,X,D,Z) is observed and (ε, V ) is unobserved. Y denotes the outcome of interest. X and

D denote the endogenous covariates, and Z is an instrumental variable. ε and V are structural

unobservables in the outcome and first stage equations, respectively. For ease of exposition, all

of these random variables are assumed to be scalar. Note that without γD this model would be

the same as the one considered in Newey, Powell and Vella (1999), and if D was exogenous then

it would be a special case of the model in Newey, Powell and Vella (1999). The presence of an

additional endogenous regressor, namely D, makes the identification of this model harder.

Now we can state the first of our two main identification assumptions:

Assumption 1 Suppose E(ε|X, V ) = E(ε|V ).
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Assumption 1 is commonly seen in control function approach literature and also imposed in

Newey, Powell and Vella (1999). This assumption states that V is a control function for X. In

other words, this assumption says that controlling for V controls for the endogeneity in X. Note,

however, that controlling for V does not necessarily control for the endogeneity in D. Under

Assumption 1, we could write

ε = ρ(V ) + ς , (5)

where ρ(V ) = E(ε|V ). Then, E(ς|X, V ) = 0 by construction, and

Y = λ(X) +Dγ + ρ(V ) + ς, (6)

so that

Y − E(Y |X, V ) = γ[D − E(D|X, V )] + ς.

Since D is still endogenous, we cannot use the method of Robinson (1988) to identify γ if instru-

mental variables for D − E(D|X, V ) exist. Therefore, we propose a new identification strategy.

In particular, we first note that by Assumption 1 we have

E(Y |X, V ) = λ(X) + γE(D|X, V ) + ρ(V ),

which means that the only way X and V can interact is through γE(D|X, V ) suggesting that one

could use the effect of this interaction on the outcome to identify γ, provided that E(D|X, V )

has a term in which X and V interact. In particular, note that for (xi, vj) ∈ Supp(X, V ) for

i, j ∈ {1.2} we get

E(Y |X = x2, V = v2)−E(Y |X = x1, V = v2, )−
[
E(Y |X = x2, V = v1)−E(Y |X = x1, V = v1)

]
= γ

{[
E(D|X = x2, V = v2)−E(D|X = x1, V = v2)

]
−
[
E(D|X = x2, V = v1)−E(D|X = x1, V = v1)

]}
.

In this equation V is varied from v1 to v2, and x1 is varied from x1 to x2. Using this equation, we

can immediately see that γ will be identified if the following additional assumption holds:

Assumption 2 There exists X1,X2,V1,V2 such that X1 ∩ X2 = ∅, V1 ∩ V2 = ∅, and Xj × Vk ⊆
Supp(X, V ), and PXV (Xj × Vk) > 0 for each j, k ∈ {1, 2}. Moreover,

E(D|X = x2, V = v2)− E(D|X = x1, V = v2)

6= E(D|X1 = x2, V = v1)− E(D|X1 = x1, V = v1),

whenever xj ∈ Xj for j = 1, 2 and vk ∈ Vk for k = 1, 2.
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This assumptions says that the change in the change in E(D|X = x, V = v) when we first change

x and then change v (or vice versa) should be nonzero with positive probability. When this

happens we can identify γ as

γ =

E
[
∆x

21∆v
21Y 1{xj ∈ Xj, vk ∈ Vk, j = 1, 2, k = 1, 2}

]
E
[
∆x

21∆v
21D1{xj ∈ Xj, vk ∈ Vk, j = 1, 2, k = 1, 2}

] , (7)

where

∆x
21∆v

21Y := E(Y |X = x2, V = v2)− E(Y |X = x1, V = v2)

−
[
E(Y |X = x2, V = v1)− E(Y |X = x1, V = v1)

]
,

∆x
21∆v

21D := E(D|X = x2, V = v2)− E(D|X = x1, V = v2)

−
[
E(D|X = x2, V = v1)− E(D|X = x1, V = v1)

]
.

Once γ is identified, we can identify λ and ρ up to constant term by a nonparametric regression

of Y − γD on X and V imposing the restriction that X and V are additively separable.

The identification and estimation of the nonparametric part are quite standard and not the

focus of our paper.

Remark 1 It is easy to see that D could be a vector with dimension J > 1. With continu-

ously distributed X and V , if Assumption 2 is changed to3: E(ωDω
ᵀ
D) has rank J , where ωD =(

∂2E(D1|X,V )
∂X1∂V

, ..., ∂
2E(DJ |X,V )
∂X1∂V

)ᵀ
, then γ, which is now J × 1 is identified.

Remark 2 The same identification strategy goes through without any change if we were interested

in the model given by equation (6) instead of the model given by equations (3) and (4), and V is

an observed covariate.

Assumption 2 is a rank condition that replaces the relevance condition in the standard IV

method. Like the relevance condition in the standard IV method, this assumption is testable.

This condition requires that exogenous variations in the instrument should lead to variations in

the endogenous variable in the model, which also leads to variations in the outcome. Here, we do

not assume that there is a valid IV for D. Given the structure of the model, however, when we

change X and then V the resulting change in E(Y |X, V ) must be due to the change in E(D|X, V ).

Thus, we can only identify the coefficient on D if the change in the conditional average of D given

X and V when X and V change sequentially is not zero.

In one particular situation it may not be reasonable to expect Assumption 1 and Assumption

2 to hold at the same time. This situation occurs if the model of interest is the one given by

3Here we assume that (X,V ) are continuously distributed only to be able to state the corresponding rank

condition in a concise way.
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equations (3) and (4) and the structural relationship between X and D is of the form

D = µ(X) + η. (8)

Here, η is the structural unobservable that generated D. In empirical applications to argue that

it is reasonable to expect Assumption 1 to hold one would try to argue that Z is independent

of (ε, V ), which is not a necessary, but a sufficient condition for Assumption 1. This is because

arguing E(ε|X, V ) = E(ε|V ) without Z being independent of ε and V is hard. In contrast,

to argue that Assumption 2 is reasonably expected to hold in an empirical context one has to

argue that η is not independent of X even after we condition on V , and to make that argument

one essentially has to argue that η is not independent of Z. This means that to believe both

Assumption 1 and Assumption 2 in an empirical context one would essentially believe that Z is

jointly independent of ε and V , but not independent of η which might be hard to believe.

In many other contexts this tension between Assumption 1 and Assumption 2 disappears.

Before we explain why this is the case, we should point out that in the next subsection we

discuss how our identification strategy can be extended to nonparametric settings, which allow

the structural function relating X and D to Y to be nonseparable in (X,D). Thus, additive

separability of X and D is not crucial to our identification strategy, and hence our method might

be applicable to a wider range of situations than the baseline model suggests.

The tension between our two identifying assumptions disappears even if the model of interest

is the one given in equations (3) and (4) in many empirical applications, like the ones we discuss

in the Introduction4. In those empirical examples there is a strong reason to believe that the data

generating process for D is a non-separable function of X and its data generating unobservable

variable. For example, smoking during pregnancy has a positive mass at 0, but takes positive

values as well (see Caetano (2015)). Similarly, Caetano and Maheshri (2016) provide strong

evidence that police response is a non-linear function of last period’s crime and cannot have an

additively separable structural unobservable. On the other hand, if D is binary, then the structural

relationship between X and D has to be non-linear in X in such a way that E(D|X, V ) will have

a term in which X and V interact as long as the structural unobservable in this relationship is not

independent of V . In such cases, the tension between our two identifying assumptions disappears.

To see this suppose that the structural function relating X to D relationship is of the form

D = h(X, η), (9)

where η denotes the structural unboservables as before. Suppose, also just for illustration pur-

poses, that X, η and V are all continuous random variables and h is continuously differentiable

and the conditional density function of η given V is continuously differentiable in V . Then even

if X is independent of η conditional on V , we have

E(D|X = x, V = v) =

∫
h(x, e)fη|V (e|v)de. (10)

4We implement one of them in this paper.
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Assuming we can interchange the order of differentiation and integration twice we would have

∂2E(D|X = x, V = v)

∂x∂v
=

∫
∂h(x, e)

∂x

∂fη|V (e|v)

∂v
de, (11)

which will be different from 0 except in knife edge situations as long as ∂h(x,e)
∂x

∂fη|V (e|v)

∂v
6= 0.5

In addition, suppose Y = θ(X,D) + ε and D = h(X) + η, with Z independent of (ε, V, η). In

this case in any expansion of θ(X,D) we could still identify the coefficients of the terms in which

X and D interact, and those might still be of interest.

Hoderlein, Su, White and Yang (2014) (HSWY), Lu and White (2014) (LW) and Lewbel, Lu

and Su (2015) (LLS) all present new tests under the assumption that the unobservable variable(s)

in the outcome equation are independent of all the covariates conditional on an observable variable

that is excluded from the structural equation. Nothing in our method says that V has to be

unobserved. We can take

Y = λ(X) + γD + ε,

as our structural equation. Then the structural function of interest is λ(X) + γD, which does not

depend on V .6 With our notation, the HSWY, LW and LLS assumption says ε is independent

of (X,D) conditional on V . As noted in HSWY, this assumption could be interpreted as: (i) an

unconfoundedness assumption for the case in which (X,Dᵀ)ᵀ is a vector of treatment variables;

(ii) a proxy variable assumption, where V is a proxy for ε. We make the weaker assumption

E(ε|V,X) = ρ(V ), which says that the observable control only eliminates the endogeneity of X,

but not of D.

If we interpret this as an unconfoundedness condition for X, then our Assumption 2 would

hold if the equation for the other treatment variable has a term in which treatment variable X

and the observable control V interact. For instance, suppose one is interested in the effects of

Women Infants and Children (WIC) program participation as well as the effect of smoking during

pregnancy on baby’s birthweight.7 If mother’s income were observable, controlling for mother’s

income might eliminate the endogeneity in WIC participation, but it may not control for the

unobserved heterogeneity in proneness to addiction. On the other hand, WIC participation may

have a causal effect on smoking behavior of mothers during pregnancy. In this case Assumption

2 would be satisfied if the difference in the conditional probability (given WIC participation and

maternal income) that a WIC participant pregnant woman smokes and a non-WIC participant

pregnant woman smokes varies across different maternal income levels. If we interpret Assumption

1 as a proxy variable assumption, on the other hand, then Assumption 1 says that the observed

5The tension between our two identifying assumptions also disappears if D = µ(X,V ) + η and E(η|X,V ) =

E(η|V ). However, convincingly arguing that the equation for D is of this form might be hard outside a structural

model.
6In Section 2.1.2 we outline identification of a non-parametric model in which the structural funtion depends

on V .
7WIC is a federal program that provides aid to low income pregnant women and their young children.
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variable V is an imperfect proxy for X (see, for example Wooldridge (2010) p.69). For example,

when estimating a wage equation one might use a measure of cognitive skills, like an IQ score or

an AFQT score (this would be the observable V ), as a proxy for cognitive ability, which might deal

with endogeneity in education/schooling. But if one of the variables whose effect is an indicator

variable for being black (D), then because of possible discrimination in the job market, controlling

for this particular V may not eliminate endogeneity in D. If the fraction of blacks conditional

on schooling, and, say AFQT score, varies differentially in AFQT score as we vary the schooling

level, which is testable, then our Assumption 2 will be satisfied, and effects of both schooling and

race will be identified.

2.1 Nonparametric Extensions:

2.1.1 Extension 1:

In this section we illustrate that separability of X and D is not crucial to our identification

strategy. In particular, we outline how our identification strategy can be extended to the following

nonparametric model:

Y = θ(X,D) + ε, (12)

X = m(Z, V ), (13)

where V is scalar, continuous and normalized to be Unif [0, 1] and m is strictly increasing in V .8

Z is assumed to be independent of (ε, V ), so that E(ε|X, V ) = E(ε|V ). In this model X and D

can flexibly interact. Note that using Imbens and Newey (2009) we can identify V as FX|Z(X|Z).

First, suppose that

θ(X,D) =
K∑
k=0

αkψk(X,D),

where K <∞ and ψk are known functions of X and D, but αk are unknown parameters. Then

E(Y |X = x, V = v) =
K∑
j=0

αk

∫
ψk(x, d)dFD|X,V (d|x, v) + ρ(v),

and letting mY (x, v) be this version of E(Y |X = x, V = v) and assuming mY (x, v) is twice

continuously differentiable we have

∂2mY (x, v)

∂x∂v
=

K∑
j=0

αk
∂2
∫
ψk(x, d)dFD|X,V (d|x, v)

∂x∂v
.

Then if E (ωωᵀ) is full rank, where

ωK :=

(
∂2
∫
ψ1(x, d)dFD|X,V (d|x, v)

∂x∂v
, . . . ,

∂2
∫
ψK(X, d)dFD|X,V (d|x, v)

∂x∂v

)ᵀ
8The equation for X could be extended to X = h(Z, V )1{h(Z, V ) ≥ 0}, or X = h(Z, V )1{c ≥ h(Z, V ) ≥ 0}.

See Caetano, Rothe and Yıldız (2016).
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then α := (α1, ..., αK)ᵀ is identified as

α = [E (ωKω
ᵀ
K)]−1 E

(
ωK

∂2mY (X, V )

∂x∂v

)
.

Note that if the coefficients of ψk in which X and D interact and the coefficients of ψk that only

depend on D are identified, then the sum of such αkψk can be subtracted from Y , after which

coefficients on ψk which only depend on X as well as ρ(v) can also be identified as in Newey,

Powell and Vella (1999). Finally, this discussion suggests that our identification method could be

extended to the case where θ(X,D) has an expansion of the form

θ(X,D) =
∞∑
k=0

αkψk(X,D).

2.1.2 Extension 2:

In this section we discuss a non-parametric model in which an observable variable V controls for

endogeneity in X, but not in D, and V itself has a structural effect on the outcome. We outline

how parameters of interest in this model can be identified. In particular, it is possible to identify

the interactive effects of V with X and/or D. Suppose

Y = θ(X,D, V ) + ρ̃1(V ) + ε, (14)

with E(ε|X, V ) = ρ̃2(V ), and (X,D, V ) is observed. Here we assume that we are interested in

the structural effects of X and D. Then letting ρ(V ) = ρ̃1(V ) + ρ̃2(V ), we get

Y = θ(X,D, V ) + ρ(V ) + ζ. (15)

As in the previous extension, suppose first that

θ(X,D, V ) =
K∑
k=0

αkψk(X,D, V ),

where K < ∞ and ψk are known functions of X, D and V , but αk are unknown parameters.

Then

E(Y |X = x, V = v) =
K∑
j=0

αk

∫
ψk(x, d, v)dFD|X,V (d|x, v) + ρ(v),

and letting mY (x, v) be this version of E(Y |X = x, V = v) and assuming mY (x, v) is twice

continuously differentiable we have

∂2mY (x, v)

∂x∂v
=

K∑
j=0

αk
∂2
∫
ψk(x, d, v)dFD|X,V (d|x, v)

∂x∂v
.

Then if E (ωωᵀ) is full rank, where

ω̃K :=

(
∂2
∫
ψ1(x, d, v)dFD|X,V (d|x, v)

∂x∂v
, . . . ,

∂2
∫
ψK(x, d, v)dFD|X,V (d|x, v)

∂x∂v

)ᵀ
11



then α := (α1, ..., αK)ᵀ is identified as

α = [E (ω̃Kω̃
ᵀ
K)]−1 E

(
ω̃K

∂2mY (X, V )

∂x∂v

)
.

This discussion suggests that that our identification method could be extended to the case where

θ(X,D, V ) has an expansion of the form

θ(X,D, V ) =
∞∑
k=0

αkψk(X,D, V ).

3 Estimation

Let mY (x, v) be a version of E(Y |X = x, V = v) and mD(x, v) be a version of E(D|X = x, V = v).
∂2m̂Y (x,v)
∂x∂v

and ∂2m̂D(x,v)
∂x∂v

will respectively denote estimators of cross partial derivative of mY (x, v)

and mD(x, v) with respect to X and V which use the values of V , and as such these will be

infeasible estimators. In contrast, ∂2m̂Y (x,v̂)
∂x∂v

and ∂2m̂D(x,v̂)
∂x∂v

will respectively denote estimators of

the same functions which use the values of V̂ , so these are the feasible estimators that we use

in the estimation of γ. In this paper, these will be local polynomial estimators. Also for a

vector of random variables W, let SW denote the support of W. In this section we assume that

(X,Z) is jointly distributed with joint density fXZ(x, z). For estimation purposes we strengthen

Assumption 2 to

Assumption 3 Suppose X and V are continuously distributed, mD(x, v) is twice continuously

differentiable and E
[
∂2mD(X,V )

∂x∂v

]
6= 0.

We should note that if there is a set of X, V values, say E, that has strictly positive probability

and such that ∂2mD(x,v)
∂x∂v

6= 0 on E, then we could instead estimate γ by using values of (x, v) that

are in E only.

The estimation procedure we propose consists of three stages,

1. We run local linear regression of X on Z for the first stage regression (4) to get π̂(·).
Subtracting π̂(Z) from X, we obtain the residual V̂ ,

V̂ = X − π̂(Z) ,

where π̂(Z) = Ê(X|Z) = α̂X is defined later by (17).

2. We use local polynomial regression to obtain the estimators ∂2m̂Y (X,V̂ )
∂x∂v

and ∂2m̂D(X,V̂ )
∂x∂v

, which

are later defined by (18) and (19). These estimate the partial derivatives ∂2mY (X,V )
∂x∂v

and
∂2mD(X,V )

∂x∂v
with the generated regressor V̂ .

12



3. Finally, we calculate the sample average for the unconditional moment using the estimators

from step two,

γ̂ =
Ê
[
∂2m̂Y (X,V̂ )

∂x∂v

]
Ê
[
∂2m̂D(x,V̂ )

∂x∂v

] , (16)

where Ê[·] is the sample average.

As we can see, the major challenge here is to solve how the generated regressor influences our final

estimator. Before we formally define the local linear estimator and local polynomial estimators

listed above, we first introduce the assumptions imposed. We impose the following regularity

conditions:

Assumption 4 (Yi, Xi, Zi) are independent and identically (i.i.d.) distributed as (Y,X,Z), where

Y,X and Z are all scalar random variables. Suppose (X,Z) has compact support SXZ ⊂ R2.

Assumption 5 (i) mY (X, V ) and mD(X, V ) have continuous derivatives of total order p + 1.

Let fX,V (x, v) denote the density function of (X, V ). fX,V (·) also has continuous derivatives of

total order 3, and inf(x,v)∈SXV fX,V (x, v) ≥ η for some η > 0; (ii) π(Z) is twice continuously

differentiable.

Assumption 6 The kernel function K(·) is a non-negative, twice continuously differentiable

function with a compact support and satisfies
∫
K(u) du = 1 and

∫
uK(u) du = 0. For any

multivariate vector ν ∈ Rdν , define K(ν) = K(ν1)K(ν2) · · ·K(νdν ).

Assumption 4 is very standard in the literature, and the i.i.d assumption can be relaxed

to weakly dependence, but that would require more complicated derivations. Compactness of

the support of (X,Z) is not strictly required. We are simply doing estimation over a compact

subset of this support. Assumption 5 assumes some smoothness condition on both the conditional

expectation and the joint density function of (X, V ); such smoothness requirements are widely

used in local polynomial regression literature. Assumption 5 also requires the joint density of X

and V to be bounded away from 0. Given that π is assumed to be smooth, compact subsets of the

support of (X,Z) are mapped to compact subsets of the support of (X, V ). Then the assumption

that the joint density of (X, V ) is bounded away from 0 will follow if we assume that both the

joint density of (X,Z) and the Jacobian of π are bounded away from 0 over the compact and

subset of the support of (X,Z) over which the estimation is done. On the other hand, since X

is observed and V is identified, the assumption that the joint density of (X, V ) is bounded away

from 0 is testable. On the other hand, one could use trimming functions as in Klein and Spady

(1993) or as in Heckman, Ichimura and Todd (1998) to avoid this assumption.

Assumption 6 is very standard in nonparametric estimation. Here we state the assumption

for any kernel used in the remainder of the paper. We use product kernels whenever there

13



are multiple (continuous) conditioning variables. There are several widely used kernel functions

satisfying Assumption 6, such as bi-weight kernel.

Here and in the sequel, denote et as a N-dimensional9 unit vector with 1 at the tth argument.

Let ∂2m̂Y (x,v̂)
∂x∂v

= eᵀ5β̂Y and ∂2m̂D(x,v̂)
∂x∂v

= eᵀ5β̂D. We have α̂i and β̂i (i = X,D, Y ) solve the following

optimization

(α̂X , β̂X) = argminα,β

n∑
i=1

(X1i − α− β(Zi − z))2Kg(Zi − z) , (17)

(α̂Y , β̂Y ) = argminα,β

n∑
i=1

(Yi − α−
∑

0≤|u|≤p

βᵀ(Xi − x, V̂i − v)u)2Kh((Xi − x, V̂i − v)) , (18)

(α̂D, β̂D) = argminα,β

n∑
i=1

(Di − α−
∑

0≤|u|≤p

βᵀ(Xi − x, V̂i − v)u)2Kh((Xi − x, V̂i − v)) . (19)

respectively, where
∑

0≤|u|≤p denotes the summation over all nonnegative integer vector u =

(u1, · · · , udu) with |u| =
∑du

l=1 ul. Also, for any vector w = (w1, · · · , wdu), wu = (wu11 , · · · , w
udu
du

),

Kg(w) = g−duK(w/g), Kh(w) = h−duK(w/h). Here, g and h are bandwidths in first and second

stage estimation.

By applying (7) and direct calculation, we expand γ̂ − γ as below,{
Ê
[
∂2m̂Y (X,V̂ )

∂x∂v

]
− E

[
∂2mY (X,V )

∂x∂v

]}
E
[
∂2mD(X,V )

∂x∂v

]
−
{
Ê
[
∂2m̂D(X,V̂ )

∂x∂v

]
− E

[
∂2mD(X,V )

∂x∂v

]}
E
[
∂2mY (X,V )

∂x∂v

]
Ê
[
∂2m̂D(X,V̂ )

∂x∂v

]
E
[
∂2mD(X,V )

∂x∂v

] .

(20)

To show that γ̂ converges to γ at the parametric rate, the major step is to demonstrate that

√
n

{
Ê

[
∂2m̂Y (X, V̂ )

∂x∂v

]
− E

[
∂2mY (X, V )

∂x∂v

]}
= OP (1)

and also
√
n
{
Ê
[
∂2m̂D(X,V̂ )

∂x∂v

]
− E

[
∂2mD(X,V )

∂x∂v

]}
= OP (1). As it is easy to see that the two identities

can be proved by the same method, to save space, we only state the result for the first one here

in Proposition 1. The result for the other is presented in the Appendix as Corollary A.1.

To apply empirical process methods, we need to restrict the complexity of the smooth class

that the cross-partial derivative of the expectation belongs to. We use the smooth class defined

in van der Vaart and Wellner (1996).

Definition Cα
M(S): For any vector s = (s1, · · · , sds) in a compact set S ∈ Rds and any integer

vector q = (q1, · · · , qd), let Dq denote the differential operator Dq = ∂|q|

∂
, where |q| =

∑d
l=1 ql. Let

α be the greatest integer smaller than α. Define

‖g‖α = max
|q|≤α

sup |Dqg(s)|+ max
|q|≤α

sup
s 6=s′
|Dqg(s)−Dqg(s′)|/‖s− s′‖α−α ,

9N is given by (32) in the Appendix.
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where the supremum is taken over the interior of S. Then Cα
M(S) is the set of all continuous

functions g : S 7→ R with ‖g‖α ≤M .

Before we state our results, we impose the following assumptions.

Assumption 7 For bandwidth g and h, as n → ∞, we have (i) logn√
ng
→ 0 and

√
ng4 → 0; (ii)

nh2p → 0 and nh6

logn
→∞. (iii) ngh8 →∞.

Assumption 8 ∂2mY (·,·)
∂x∂v

, ∂
2mD(·,·)
∂x∂v

∈ Cα
M(SXV ), where α = 2.

Assumption 9 Let u := D − E(D|X, V ), and ξ := ς + γu. E[exp(l|ξ|)|X, V ] ≤ C almost surely

for a constant C > 0 and l > 0 small enough.

Assumption 7 provides the conditions on bandwidths h and g. The second part of this as-

sumption is comparable to the corresponding assumption in Li et al. (2003). The first and third

part are due to reasons similar to the ones in Corollary 6 in Mammen et al. (2012a). Assumption

7(i) is about the first stage local linear estimation,
√
ng4 → 0 part can be relaxed if a higher

order kernel is used10. Assumption 8 and Assumption 9 are also used by Mammen et al. (2012a)

to apply empirical process theory. Assumption 8 is for the stochastic equicontinuity argument in

empirical process theory. It implies ∂2mY (X,V )
∂x∂v

and ∂2mD(X,V )
∂x∂v

belong to a Donsker class by Exam-

ple 19.9 in van der Vaart (2000). The smooth class is not limited to the one we choose, and this

assumption can be replaced by imposing a condition on the bracket entropy of the class directly.

Assumption 7 and 8 together will ensure the cccuracy and complexity assumptions in Mammen

et al. (2012a) are satisfied, which makes some of their results are applicable to our model.

For any matrix A, [A]i,j represents the (i, j) entry of matrix A. We have the following result

with the generated regressor V̂ ,

Proposition 1: Under Assumptions 1-9, we have

√
n

{
Ê

[
∂2m̂Y (X, V̂ )

∂x∂v

]
− E

[
∂2mY (X, V )

∂x∂v

]
− hp−1BiasY

}
d→ N(0,Λ) ,

where

Λ = 4E{σ2
ξ [R(X, V )]25,1}+

(
E
[
∂2mY (X, V )

∂x∂v

])2

+ E

{
V 2EX|Z

[
∂3mY (X, V )

∂x∂v2

]2
}

− 2E
{
V EX|Z

[
∂3mY (X, V )

∂x∂v2

]
∂2mY (X, V )

∂x∂v

}
,

BiasY = 2eᵀ5M
−1BE[m

(p+1)
Y (X, V )] ,

10Suppose g = n−a and h = n−b. Then Assumption 7(i) requires 1/8 < a < 1/2. The first part of Assumption

7(ii) and Assumption 7(iii) together require that 1/(2p) < b < (1− a)/8.
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M , B, R(x, v) and m
(p+1)
Y (x, v) are defined by (33), (34), (36) and the line above (36) respectively

in the Appendix. The bias term comes from estimation of ∂2mY (X,V )
∂x∂v

. Thus, even if V was observed

as opposed to generated we would still have this bias term. Similarly, even if V was observed we

would have the first two terms in Λ. The third term in Λ appears because V is estimated and

we have to differentiate ∂2mY (X,V )
∂x∂v

with respect to V to deal with this fact. The last term in Λ

appears because of the covariance of this additional term in the expansion and ∂2mY (Xi,Vi)
∂x∂v

.

As we can see, this result is about the estimation of the average of second order derivatives.

In Li et al. (2003), they show that the estimator of the average of first order derivatives converges

at parametric rate. In Proposition 1, we obtain the
√
n-consistent result for the estimator of the

average of second order derivatives as a by-product, which further extends the existing litera-

ture. This propositon may also be useful in estimation of Slutsky matrices or marginal rates of

transformation in estimation of production functions11.

In the Appendix, we state a result that is analogous to the one in Proposition 1 describing the

asymptotic behavior of Ê
[
∂2m̂D(X,V̂ )

∂x∂v

]
. These two results combined with the specific form of the

estimator gives us the theorem below. This is our main result and states that γ̂ converges at the

parametric rate.

Theorem 1: Under Assumptions 1-9, we have

√
n(γ̂ − γ)

d→ N

0,
1(

E
[
∂2mD(X,V )

∂x∂v

])2 4σ2
ςE{([R(X, V )]5,1)2}

 , (21)

where σ2
ς is the variance of ς. Recall that ς = ε − E(ε|X, V ) = ε − ρ(V ). [R(x, v)]5,1 is the

(5, 1) entity in the matrix R(x, v) defined by equation (36) in the Appendix. The R(x, v) matrix

depends on the kernel function as well as fX,V (x, v) and its first and second order derivatives.

Each piece in the expression for the asymptotic variance of our estimator can be estimated by

corresponding sample quantities. For example, E
[
∂2mD(X,V )

∂x∂v

]
can be estimated by

∑n
i=1

1
n
∂2m̂D(Xi,V̂i)

∂x∂v
.

Similarly, E{([R(X, V )]5,1)2} can be estimated by 1
n

∑n
i=1

(
[R̂(Xi, V̂i)](5,1)

)2

, where R̂(Xi, V̂i) is a

matrix defined analogously to R(X, V ) in which fX,V (x, v) and its first and second order deriva-

tives are replaced by their corresponding consistent estimators, which, of course use the generated

regressor values V̂i. Finally, σ2
ς can be estimated by 1

n

∑n
i=1 ς̂

2
i , where ς̂i are the residuals obtained

from a non-parametric regression of Y −Dγ̂ on X and V̂ .

The result indicates that our estimator has no bias terms from the local polynomial regression.

This desirable property comes from the special ratio form of the estimator we proposed and also

the equality (7), as the bias terms from the estimation of the denominator and numerator exactly

cancel each other.

11We would like to thank an anonymous referee for this suggestion.
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λ(·) and ρ(·) can be estimated by regressing Y − γ̂D on X, V̂ as in Mammen et al. (2012a).

As γ̂ converges at parametric rate, the result in Mammen et al. (2012a) holds. Therefore, we can

apply Mammen et al. (2012a) directly.

4 Empirical Example

4.1 Background

Smoking during pregnancy and its causal effect on birth outcomes has been a long standing issue

in both medical and policy circles. Medical literature has established a link between maternal

smoking and adverse birth outcomes, primarily measured by the effect on average birth weights.

The most comprehensive treatment of the question is provided by Almond et al. (2005), under

a selection-on-observables framework, and estimates a significant difference in birth weights of

around 200 grams between smokers and non-smokers. However, the primary concerns involved in

estimating the causal effect of maternal smoking on birth weights is the lack of an exogenous source

of variation to help deal with potential selection concerns between smokers and non-smokers. It

is particularly hard to find a source of variation that is correlated with smoking during pregnancy

but uncorrelated with unobserved ’mothering ability’. As Caetano (2015) argues even after using

the most comprehensive set of controls, as in Almond et. al. (2005), there is significant left over

selection that hinders meaningful causal inference. The framework developed in this paper can

potentially help contribute to this persistent problem in the literature.

To formulate the empirical setup more precisely, consider the question explored by Currie and

Moretti: the effect of maternal education on birth outcomes. Their setup can be expressed in

terms of the standard case of one endogenous variable, mother’s education attainment, and one

instrumental variable, the number of colleges in the county where the mother was resident at

age 17.12 Applying this setup to our question we can have two potentially endogenous variables

of interest in our structural equation: maternal education and maternal smoking, and an IV for

the former. Thus using the framework developed so far in this paper, we can use the artificially

generated exogenous source of variation to estimate the causal effect of smoking on birth weight.

4.2 Data

We use Vital Statistics data from 1993-2002 and closely follow the sample restrictions used by

Currie and Moretti. In particular, we restrict our sample to all singleton births to White mothers

aged between 24 and 45 years. We also drop mothers that reside in counties with less than 100,000

population and where we lack information on the instrument. This leaves us with a sample size

12In their paper, CM actually include separate IVs for the number of four-year colleges and the number of

two-year colleges in the county of the mother at age 17.
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of close to 2.2 million births. The key variables of interest for us are the two endogenous variables

in our framework, the number of years of schooling of the mother, X, and the reported number

of cigarettes smoked by the mother during pregnancy, D. Following the previous literature, our

key birth outcome of interest is the birth weight of an infant in grams, Y .13 Our instrument, Z,

is the total number of four-year and two-year colleges in the county where the mother resides at

age 17.14

4.3 Estimation

The first step of the estimation calculates the control function V using a local linear regression

with maternal education, X regressed on the instrument Z.15 In the next step, we estimate

conditional expectations of both Y and D given X and V using a degree three bivariate local

polynomial regression.16 Using the estimation results we can construct, ∂2E(Y |X,V )
∂X∂V

and ∂2E(D|X,V )
∂X∂V

,

respectively.17 The final step then takes the ratio of the two sample averages as given in equation

(16) to calculate γ̂, the effect of maternal smoking on birth weight.

4.4 Results

This subsection presents the results from the above outlined procedure to estimate the causal

effect of smoking during pregnancy on birth weight. The first column of table 1 reports OLS

results using the basic set of controls described above and estimates an effect of -17.61 grams per

cigarette smoked during pregnancy.18 Specification - II then uses a much more detailed set of

covariates including demographics of the parents, pregnancy characteristics, pregnancy history,

and various interactions between them. This specification closely follows the most comprehensive

13In our empirical setting we follow the baseline model given by equation (3) and (4), and remain in a partially

linear setup. Given that the effect of smoking during pregnancy on birth weight is primarily physiological, we do

not expect an interaction between smoking and education in our structural equation. We thank an anonymous

referee for stressing on this point.
14We are extremely grateful to Janet Currie and Enrico Moretti for graciously providing us with their novel

dataset on college openings in the US.
15In a preliminary step maternal education X is regressed on maternal age dummies, 10-year birth of cohort

dummies and mother’s county-at-age-17*year of birth fixed effects, and the residual from this regression is used in

the local linear regression to calculate V . In addition, we also restrict to mothers with education levels between 7

and 17 years of schooling to hone on to the sample for which the openings of new colleges is likely to be the most

relevant.
16This birth weight variable is cleaned off the variation solely due to maternal age dummies, 10-year birth cohort

dummies and mother’s county-at-age-17*year of birth fixed effects.
17Given the massive size of our dataset we have 227,880 unique combinations of X and V at which the local

polynomial regressions have to be evaluated. We therefore, run the local polynomial regression at 10% of the total

number of unique combinations. Results are robust even when we increase this to 20% for select combinations of

bandwidths of X and V .
18We follow Currie and Moretti closely for this specification.
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Table 1: Effect of Maternal Smoking on Birth Weight

OLS Local Polynomial

Spec - I Spec - II hX = 3;hV̂ = 1 hX = 5;hV̂ = 3

Cigarettes Smoked −17.61∗∗ −16.08∗∗ −26.22∗∗ −24.47∗∗

(0.198) (0.183) (1.302) (0.050)

Years of Schooling 18.20∗∗ 12.27∗∗ − −
(0.631) (0.644)

Number of Observations 2,257,460 2,257,460 2,257,460 2,257,460

**,* Indicates significance at 1, and 5 percent, respectively. OLS specification - I includes non-parametric

controls for mother’s age, dummies for 10-year birth cohort and mother’s county-at-age-17*year of birth fixed

effect. Specification - II controls for a more elaborate set of controls with various interactions and closely

follows the one used by Almond et. al. The last two columns then present estimates using our methodology

and employ a bi-variate local polynomial of degree 3. Standard errors are calculated as per Theorem 1.

one used in the literature so far by Almond et. al. We see a slight reduction of 1.5 grams in the

effect of each cigarette smoked on birth weight using the full set of controls.

The last two columns finally present results from the methodology developed in this paper,

implementing the estimation details given in the above section. Using a degree 3 bivariate local

polynomial estimator, we find an effect size of −26.22 grams per cigarette smoked, which is

significantly larger in magnitude compared to the OLS estimates. We use different combinations

for the bandwidth of X and V and report two of those in table 1. Table 2 then documents nine

different combinations of the two bandwidths. These reported results are also robust to running a

degree 5 polynomial instead of 3 and by using different bandwidths for the first stage estimation

of the control function V .

One might expect the OLS estimates to actually decrease in magnitude given that mother’s

who smoke are more likely to be selected negatively on unobservables. However, our estimation

methodology is inherently instrument variable based, and hence recovers only a local average

treatment effect (LATE). Using terminology from the treatment effects literature, the group of

’compliers’ for our IV are mothers who are more likely to go to college as a result of more college

openings in their county of residence. These mothers, in turn, are also more likely to be positively

selected on other unobservable dimensions which could be positively correlated with mothering

ability. This, therefore, can account for the increase in magnitude in effect sizes that we document

using our methodology compared to the OLS estimates.
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Table 2: Effect of Maternal Smoking on Birth Weight -

Bandwidth (hX)

Bandwidth (hV̂ ) 3 4 5

1 −26.22∗∗ −26.26∗∗ −25.96∗∗

(1.302) (1.615) (0.093)

2 −27.09∗∗ −26.12∗∗ −25.97∗∗

(0.396) (0.238) (0.054)

3 −26.00∗∗ −24.85 −24.47∗∗

(0.304) (0.119) (0.050)
** Indicates significance at the 1% level. Each estimate of γ is calculated using a degree

bivariate local polynomial specification. Given the large sample size of our data we

evaluate the local polynomial regressions at a 10% random sample of the total number

of unique combinations of X and V . These leave us with 22,786 evaluations each for

∂2E(Y |X,V )
∂X∂V and ∂2E(D|X,V )

∂X∂V , respectively. Standard errors are calculated as per Theorem

1.

5 Conclusion

In this paper, we propose a novel identification method which delivers identification of marginal

effects of multiple endogenous variables, with a single instrument that could even be binary.

Our baseline model is partially linear. We also outline how our identification method can be

extended to show identification in two non-parametric models. These extensions further highlight

the identifying power of the assumptions we make. While these assumptions are able to deliver

identification of parameters of interest in models with multiple endogenous variables with few,

even a single instrument, in applying our method, one has to discuss carefully the plausibility of

our identifying assumptions in the context of the application at hand. We would like to stress that

our proposed methodology does not provide a panacea for the lack of an available instrumental

variable, but instead provides an additional methodology to the toolkit of empirical researchers.

For our baseline model we develop a new and simple estimator for the coefficient of the endogenous

regressor(s), D, for which no instrument is available. We provide the asymptotic behavior of this

estimator for the case when D is scalar, and show that the proposed estimator is
√
n-normal. A

by-product of our method is an
√
n-consistent estimator of the average of second order derivatives,

which is also a new result in the literature to our knowledge. In the empirical section, we use the

methods proposed in this paper to assess the causal impact of mother’s smoking during pregnancy

on the infant’s birth weight. Our results seem to be in line with findings of the previous literature.

We leave detailed analysis of the non-parametric extensions we outlined for future research.
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A Mathematical Proof

We first introduce the definition of empirical measure that is commonly used in empirical process

theory. For any X1, · · · , Xn that are i.i.d. random variables with distribution P and for any

measurable function φ, the empirical measure Gn is defined as

φ 7→ Gnφ =
√
n(Pn − P )φ =

√
n

[
1

n

n∑
i=1

φ(Xi)− Eφ

]
. (22)

We first prove Proposition 1, which indicates that
√
n
{
Ê
[
∂2m̂Y (X,V̂ )

∂x∂v

]
− E

[
∂2mY (X,V )

∂x∂v

]}
= OP (1).

Similarly, we have Corollary A.1 which states that
√
n
{
Ê
[
∂2m̂D(X,V̂ )

∂x∂v

]
− E

[
∂2mD(X,V )

∂x∂v

]}
= OP (1).

Finally, combining the results of these two results and rearranging (20) we obtain the results of

Theorem 1.

Proof of Proposition 1: We use the directional derivative to decompose the influences of the

generated regressor. Following the proof of Corollary 6 in Mammen et al. (2012a), let

φ̄(x, z) = (φ̄1, φ̄2) =

(
∂2mY (x, φ̄2(x, z))

∂x∂v
, x1 − π(z)

)
,

φ̂(x, z) = (φ̂1, φ̂2) =

(
∂2m̂Y (x, φ̂2(x, z))

∂x∂v
, x1 − π̂(z)

)
,

where φ̄ represents the true regression function and φ̂ is the estimator.

For any φ = (φ1, φ2), define

Sn(φ) :=
1

n

n∑
i=1

φ1(Xi, φ2(Xi, Zi))− E
[
∂2mY (X, V )

∂x∂v

]
.

Then the directional derivative can be written as

Ṡn(φ̄)[φ− φ̄] = lim
s→0

1

s
[Sn(φ̄+ s(φ− φ̄))− Sn(φ̄)]

= lim
s→0

1

s

1

n

n∑
i=1

{[φ̄1 + s(φ1 − φ̄1)](Xi, φ̄2 + s(φ2 − φ̄2))− φ̄1(Xi, φ̄2 + s(φ2 − φ̄2))

+ φ̄1(Xi, φ̄2 + s(φ2 − φ̄2))− φ̄1(Xi, φ̄2)}

=
1

n

n∑
i=1

[φ1 − φ̄1](Xi, φ̄2) +
1

n

n∑
i=1

∂φ̄1

∂v
(Xi, φ̄2) · [φ2 − φ̄2](Xi, Zi)

=: T1,n(φ) + T2,n(φ). (23)

For any φ = (φ1, φ2) with bounded second derivatives, we have that

‖Sn(φ)− Sn(φ̄)− Ṡn(φ̄)[φ− φ̄]‖∞

= O(‖φ2 − φ̄2‖2
∞) +O

(
‖φ2 − φ̄2‖∞

∥∥∥∥∂φ1

∂v
− φ̄1

∂v

∥∥∥∥
∞

)
=: s.o.(φ) . (24)
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where s.o.(φ) defined above is later shown to be of small order. Replacing φ in (24) by the

estimator φ̂, we have

Sn(φ̂) = Ê

[
∂2m̂Y (X, V̂ )

∂x∂v

]
− E

[
∂2mY (X, V )

∂x∂v

]
(25)

= Sn(φ̄) + T1,n(φ̂) + T2,n(φ̂) + s.o.(φ̂)

=
1

n

n∑
i=1

φ̄1(Xi, φ̄2)− E
[
∂2mY (X, V )

∂x∂v

]
+

1

n

n∑
i=1

[φ̂1 − φ̄1](Xi, φ̄2) + T2,n(φ̂) + s.o.(φ̂)

=
1

n

n∑
i=1

φ̂1(Xi, φ̄2)− E
[
∂2mY (X, V )

∂x∂v

]
+ T2,n(φ̂) + s.o.(φ̂) , (26)

where the first term is the averaged estimator for the cross-partial derivative of the conditional

expectation with true regressor instead of generated regressor. The rest of proof consists of

three parts. Firstly, we use Lemma A.1-A.3 to prove asymptotic normality for the averaged

estimator of the cross-partial derivative of the conditional expectation with true regressor V ,

and we obtain that the estimator for the average second order cross-partial derivatives of the

conditional expectation converges at parametric rate as a by-product. Secondly, we show that

s.o.(φ̂) = oP (n−1/2). Thirdly, we apply Lemma A.4 to show
√
nT2,n(φ̂) = Op(1). Lastly, we

combine the results to finish the proof.

Let’s start from the first part. With true regressor V , we have

√
n

(
1

n

n∑
i=1

∂2m̂Y (Xi, Vi)

∂x∂v
− E

[
∂2mY (X, V )

∂x∂v

])
= Gn

[
∂2m̂Y (Xi, Vi)

∂x∂v
− ∂2mY (Xi, Vi)

∂x∂v

]
(27)

+Gn

[
∂2mY (Xi, Vi)

∂x∂v

]
(28)

+
√
nE
[
∂2m̂Y (Xi, Vi)

∂x∂v
− ∂2mY (Xi, Vi)

∂x∂v

]
, (29)

where Gn is the empirical measure defined in (22). The first term (27) is oP (1) by the stochastic

equicontinuity result in Lemma A.1. The second term (28) is OP (1) by the Donsker property

of Cα
M(SXV ). The third term (29) contributes to the influence from estimating the cross partial

derivatives of the conditional expectation which we shall see later.

Lemma A.1 (Stochastic Equicontinuity): Gn

[
∂2m̂Y (Xi,Vi)

∂x∂v
− ∂2mY (Xi,Vi)

∂x∂v

]
= oP (1).

Proof of Lemma A.1: Define Zni(φ) = 1√
n
φ(Xi, Vi) indexed by φ ∈ F = Cα

M(SXV ). Note

that ∂2m̂Y (X,V )
∂x∂v

∈ Cα
M(SXV ) with probability approaching to 1 by Masry (1996) and by the fact

that we use local polynomial estimator with a twice continuously differentiable kernel that has

a compact support. By Assumption 8 and Example 19.9 in van der Vaart (2000), we know that

Cα
M(SXV ) is P -Donsker, and also totally bounded in L2(P ) since for any ε > 0, the entropy

logN[ ](ε, C
α
M , L2(P )) <∞. The bracketing CLT (Theorem 2.11.9 in van der Vaart and Wellner,
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1996) implies that
∑n

i=1[Zni(φ) − Zni(φ̃)] is asymptotically equicontinuous in φ with respect to

the L2 norm ‖φ − φ̃‖2, which further implies (27) is of small order. To apply this theorem we

need to verify the assumptions of this theorem.

(i) We know that |φ(x, v)| is uniformly bounded as φ ∈ Cα
M(SXV ). Therefore, for any η > 0,

1‖Zni‖F>η = 0 when n is large enough. Obviously, we have
∑n

i=1 E∗‖Zni‖F1‖Zni‖F>η → 0 for

every η > 0.

(ii) We have sup‖φ−φ′‖2<δn
∑n

i=1 E[Zni(φ)−Zni(φ′)]2 = sup‖φ−φ′‖2<δn E[φ(X, V )−φ′(X, V )]2 → 0

for any δn ↓ 0.

(iii)
∫ δn

0

√
logN[ ](ε,F , L2(P )) dε→ 0 holds for every δn → 0 also by Assumption 8 and Example

19.9 in van der Vaart (2000) (or Corollary 2.7.2 in van der Vaart and Wellner, 1996).

For any integer vector j = (j1, . . . , jd+1) and random vector w = (w1, · · · , wd+1), we have

already defined that |j| = j1 + · · ·+ jd+1 and wj = (wj11 , · · · , w
jd+1

d+1 ). Let j! = j1!× · · · × jd+1!.

For ease of notation, let W = (X, V ). For the rest of the proof of Proposition 1 we will use

m(w) to denote mY (w) = mY (x, v). Also to eliminate one subscript we will use f(w) to denote

the joint density of (X, V ), fXV (x, v). As in Masry (1996a,b), k!b̂k(w) estimates the |k|th order

partial derivative Dkm(w) (or ∂|k|m(w)

∂w
k1
1 ···∂w

k2
2

), where b̂k(w) minimizes the weighted least squares

n∑
i=1

Yi − ∑
0≤|k|≤p

bk(w)(Wi − w)k

2

K

(
Wi − w

h

)
. (30)

Minimizing (30), the F.O.C can be formulated as

tn,j =
∑

0≤|k|≤p

h|k|b̂k(w)sn,j+k(w), 0 ≤ |j| ≤ p , (31)

where

tn,j =
1

n

n∑
i=1

Yi

(
Wi − w

h

)j
Kh(Wi − w) ,

sn,j =
1

n

n∑
i=1

(
Wi − w

h

)j
Kh(Wi − w) .

We write (31) in a matrix form by using a lexicographical order. Let Ni =
(
i+1

1

)
= i + 1 be the

number of distinct pairs with |j| = i, which is the number of distinct derivatives with order i.

Order these Ni pairs as a sequence in the lexicographical order with the highest priority to the

first position (highest order derivative w.r.t. x), so the sequence starts from (i, . . . , 0, 0) and ends

at (0, 0, . . . , i). Let g−1 denote this one-to-one map. Define

τn =
[
τ ᵀn,0, τ

ᵀ
n,1, . . . , τ

ᵀ
n,p

]ᵀ
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where τn,|j| is a N|j| × 1 vector with (τn,|j|)k = tn,g|j|(k). Note that τn is of dimension N× 1 with

N =

p∑
i=0

Ni . (32)

Similarly we arrange h|k|b̂k in the same order to get

β̂n =
[
β̂ᵀn,0 β̂ᵀn,1 · · · β̂ᵀn,p

]ᵀ
.

We also arrange the possible values of sn,j+k by a matrix Sn,|j|,|k| in a lexicographical order with

the (l,m) element [Sn,|j|,|k|]l,m = sn,g|j|(l)+g|k|(m). Define the N×N matrix Sn

Sn =


Sn,0,0 Sn,0,1 · · · Sn,0,p

Sn,1,0 Sn,1,1 · · · Sn,1,p
...

...
. . .

...

Sn,p,0 Sn,0,1 · · · Sn,p,p

 .

Before we proceed, we need to introduce some notations following Masry (1996a,b) and Li et al.

(2003). For each j with 0 ≤ |j| ≤ p, define

µj =

∫
υj11 υ

j2
2 K(υ) dυ , ν1,j =

∫
(υj1+1

1 , υj22 )K(υ) dυ, ν2,j =

∫
υj11 υ

j2+1
2 K(υ) dυ,

κr,j =

∫
υr1+j1

1 υr2+j2
2 K(υ) dυ, |r| = 2 ,

where υ = (υ1, υ2). Then define N×N matrices M , Us (s = 1, 2), Hr (|r| = 2), U(w) and H(w)

by

M =


M0,0 M0,1 · · · M0,p

M1,0 M1,1 · · · M1,p

...
...

. . .
...

Mp,0 Mp,1 · · · Mp,p

 , Us =


Us,0,0 Us,0,1 · · · Us,0,p

Us,1,0 Us,1,1 · · · Us,1,p
...

...
. . .

...

Us,p,0 Us,p,1 · · · Us,p,p

 , Hr =


Hr,0,0 Hr,0,1 · · · Hr,0,p

Hr,1,0 Hr,1,1 · · · Hr,1,p

...
...

. . .
...

Hr,p,0 Hr,p,1 · · · Hr,p,p

(33)

and

U(w) =
∂f(w)

∂w1

U1 +
∂f(w)

∂w2

U2 , H(w) =
∂2f(w)

∂w2
1

H(2,0) +
∂2f(w)

∂w1∂w2

H(1,1) +
∂2f(w)

∂w2
2

H(0,2)

where Mi,j, Us,i,j and Hr,i,j are Ni×Nj dimensional matrices whose (l,m) element are µgi(l)+gj(m),

νs,gi(l)+gj(m) and κr,gi(l)+gj(m) respectively. Define the centered tn,j(w) as

t∗n,j(w) =
1

n

n∑
i=1

[Yi −m(Wi)]

(
Wi − w

h

)j
Kh(Wi − w)

=
1

n

n∑
i=1

ξi

(
Wi − w

h

)j
Kh(Wi − w) .
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Then the N × 1 matrix τ ∗n(w) are defined the same way as τn(w) but with tn,j(w) replaced with

t∗n,j(w).

Use the same lexicographical order as before, we define a column vector m(p+1)(w) as the Np+1

elements of derivatives 1/j!(Djm)(w) with |j| = p+ 1. Define the N×Np+1 matrices Bn(w) and

B by

Bn(w) =


Sn,0,p+1

Sn,1,p+1

...

Sn,p,p+1

 and B =


M0,p+1

M1,p+1

...

Mp,p+1

 . (34)

Similarly as (A.9) in Li et al. (2003), applying Theorem 4 in Masry (1996b), we have (29)

becomes

eᵀt
1

h2
E[β̂n(W )− β(W )]

= eᵀt
1

h2

[∫
S−1
n (w)τ ∗n(w) dF (w) + hp+1

∫
S−1
n (w)Bn(w)m(p+1)(w) dF (w)

]
+OP (

√
log n

nh2
hp−1 + hp) ,

(35)

where t = 5. For any kth order derivative of the expectation, we shall have t ∈ {1 + N1 + · · · +
Nk−1 + 1, . . . , 1 +N1 + · · ·+Nk}. By Assumption 7(ii), OP (

√
logn
nh2

hp−1 + hp) = oP (n−1/2).

Masry (1996a,b) has shown that supx∈D |[Sn(w)]−1 − [f(w)M ]−1| = o(1), and Li et al. (2003)

have demonstrated that supw∈D |[Sn(w)]−1 − {[f(w)M ]−1 − hG(w)}| = o(h) a.s., where G(w) =

M−1U(w)M−1/f 2(w), and D ⊆ SX,V . We prove that higher order result also holds.

Lemma A.2: Under the assumptions of Proposition 1, we have

sup
w∈D
|Sn(w)− f(w)M − hU(w)− h2H(w)| = O

(
h3 +

(
log n

nh2

)1/2
)

= o(h2) .

Also, the inverse holds that

sup
w∈D
|S−1
n (w)− {[f(w)M ]−1 − hG(w) + h2Q(w)}| = o(h2) ,

where Q(w) = [f(w)M ]−1U(w)[f(w)M ]−1U(w)[f(w)M ]−1 − [f(w)M ]−1H(w)[f(w)M ]−1.

Proof of Lemma A.2: It suffices to show that for each j with 0 ≤ |j| ≤ N, supw∈D |sn,j(w)−
f(w)µj−h

∑2
s=1 f

(1)
s (w)νs,j−h2

∑
|r|=2 f

(2)
r (w)κr,j| = O(h3+[log n/(nh2)]1/2). Note that sn,j(w) =

n−1
∑n

i=1((Wi − w)/h)jKh(Wi − w), we have

E[sn,j(w)] =

∫
(wi − w)j/hjKh(wi − w)f(wi) dwi

=

∫
υjK(υ)f(w + hυ) dυ + f(w)

∫
υjK(υ) dυ + h

2∑
s=1

f (1)
s (w)

∫
υsυ

jK(υ) dυ

+ h2
∑
|r|=2

f (2)
r (w)

∫
υrυ

jK(υ) dυ +O(h3) ,
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uniformly in w ∈ D. The first result follows from this together with Theorem 2 in Masry (1996b).

Thus, we have

Sn(w) = f(w)M + hU(w) + h2H(w) +O

(
h3 +

(
log n

nh2

)1/2
)

= f(w)M{In + h[f(w)M ]−1U(w) + h2[f(w)M ]−1H(w) + o(h2)} a.s. ,

uniformly in D. The second equality is by Assumption 7(ii). It is easy to see that

{In + h[f(w)M ]−1U(w) + h2[f(w)M ]−1H(w) + o(h2)}−1

= In − h[f(w)M ]−1U(w) + h2{[f(w)M ]−1U(w)[f(w)M ]−1U(w)− [f(w)M ]−1H(w)}+ o(h2) ,

uniformly in D by Taylor expansion, as the eigenvalues of the matrix

h[f(w)M ]−1U(w) + h2[f(w)M ]−1H(w) + o(h2)

are of small order. Then we have

S−1
n (w) = [f(w)M ]−1 − hG(w) + h2Q(w) + o(h2) .

where

G(w) = [f(w)M ]−1U(w)[f(w)M ]−1

Q(w) = [f(w)M ]−1U(w)[f(w)M ]−1U(w)[f(w)M ]−1 − [f(w)M ]−1H(w)[f(w)M ]−1 .

Applying Lemma A.2 on (35), we shall show that the leading term is indeed determined by higher

order terms, as those from the first and second terms of Taylor expansion are degenerate. We

have

eᵀt
1

h2
E[β̂n(W )− β(W )] = eᵀt

1

h2

{∫
[f(w)M ]−1τ ∗n(w) dF (w)

−
∫
hG(w)τ ∗n(w) dF (w) +

∫
h2Q(w)τ ∗n(w) dF (w)

+ hp+1

∫
S−1
n (w)Bn(w)m(p+1)(w)dF (w)

}
+oP (n−1/2)

= A1 − A2 + A3 + A4 + oP (n−1/2) .

We shall show that A2 and A3 contribute to the variance, A4 is the bias term and the rest terms

are negligible. Similar to the proof of Lemma A.3 in Li et al. (2003)

A1 =

∫
f−1(w)

1

nh2

n∑
i=1

∑
0≤|j|≤p

[M−1]5,jξi

(
Wi − w

h

)j
Kh(Wi − w) dF (w)

=
1

nh2

n∑
i=1

ξi
∑

0≤|j|≤p

[M−1]t,j

∫
ujK(u) du

=
1

nh2

n∑
i=1

ξi
∑

0≤|j|≤p

[M−1]t,j[M ]j,1 =
1

nh2

n∑
i=1

ξi[M
−1M ]5,1 = 0 .
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We shall show A2 is OP (n−1/2),

A2 =

∫
1

nh

n∑
i=1

∑
0≤|j|≤p

[G(w)]5,jξi

(
Wi − w

h

)j
Kh(Wi − w) dF (w)

=
1

nh

n∑
i=1

ξi

∫ ∑
0≤|j|≤p

[G(w)]5,j

(
Wi − w

h

)j
Kh(Wi − w) dF (w)

=
1

nh

n∑
i=1

ξi
∑

0≤|j|≤p

∫
f−1(Wi − uh)[M−1U(Wi − uh)M−1]5,ju

jK(u) du

=
1

nh

n∑
i=1

ξif
−1(Wi)

∑
l

[M−1U(Wi)]5,l
∑

0≤|j|≤p

[M−1]l,j

∫
ujK(u) du

− 1

n

n∑
i=1

ξi

∫ 2∑
s′=1

(f−1)
(1)
s′ (Wi)

∑
0≤|j|≤p

[M−1U(Wi)M
−1]5,jus′u

jK(u) du

− 1

n

n∑
i=1

ξi
∑

0≤|j|≤p

∫
f−1(Wi)

2∑
s′=1

[M−1(U(Wi))
(1)
s′ M

−1]5,jus′u
jK(u) du+ oP (n−1/2) ,

where we have used Taylor expansion for f−1(Wi − uh) and U(Wi − uh). By the definition of M

and Us(Wi), we have

A2 =
1

nh

n∑
i=1

ξif
−1(Wi)

∑
k

[M−1]5,k

2∑
s=1

f (1)
s (Wi)

∑
l

[Us]k,lIl,1

− 1

n

n∑
i=1

ξi

∫ 2∑
s′=1

2∑
s=1

(f−1)
(1)
s′ (Wi)f

(1)
s (Wi)

∑
0≤|j|≤p

[M−1UsM
−1]5,jus′u

jK(u) du

− 1

n

n∑
i=1

ξi
∑

0≤|j|≤p

∫
f−1(Wi)

2∑
s=1

2∑
s′=1

f
(2)
ss′ (Wi)[M

−1UsM
−1]5,jus′u

jK(u) du+ oP (n−1/2)

=
1

nh

n∑
i=1

ξif
−1(Wi)

2∑
s=1

f (1)
s (Wi)

∑
k

[M−1]5,k[Us]k,1

− 1

n

n∑
i=1

ξi

2∑
s=1

2∑
s′=1

[(f−1)
(1)
s′ (Wi)f

(1)
s (Wi) + f−1(Wi)f

(2)
ss′ (Wi)]

∑
0≤|j|≤p

[M−1UsM
−1]5,j[Us′ ]j,1

+ oP (n−1/2)

= A21 − A22 + oP (n−1/2) .

The first term A21 is degenerate, as for any k, we can show [M−1]5,k[Us]k,1 = 0. It is sufficient to

show [M−1]5,k = 0, whenever [Us]k,1 6= 0. We have that for s = 1, 2,

Us[·, 1] = [0 �1×N1 01×N2 �1×N3 01×N4 . . . 01×Np ]
ᵀ , if p is even ,

Us[·, 1] = [0 �1×N1 01×N2 �1×N3 01×N4 . . . �1×Np ]
ᵀ , if p is odd ,
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where �1×l represents a 1 × l nonzero row vector. Note that N0 = 1. As we use product kernel,

it is easy to see that when p is odd, M is a block matrix with zero blocks and nonzero blocks

appear alternatively, i.e.

M =


�N0×N0 0N0×N1 �N0×N2 . . . 0N0×Np

0N1×N0 �N1×N1 0N1×N2 . . . �N1×Np
...

...
... . . .

...

0Np×N0 �Np×N1 0Np×N2 . . . 0Np×Np

 .

When p is even, it is clear to see M has the same pattern. We use the result of the lemma below.

Lemma A.3: M−1 has the same zero blocks as M .

Proof of Lemma A.3: We only prove the result when p is odd. When p is even, the derivation

is similar. Let p = 2q − 1, Ne = N0 + N2 + · · · + Np−1 and Ne = N1 + N3 + · · · + Np. We first

apply the row switching block elementary matrix Ti,j on M , then we have

TN1,Np−1TN3,Np−3 · · ·TNq−1,NqMTNq−1,Nq · · ·TN3,Np−3TN1,Np−1 =

[
ANe×Ne 0Ne×No

0No×Ne BNo×No

]
,

where A and B are invertible matrices. Then, we have

M−1 = (TN1,Np−1TN3,Np−3 · · ·TNq−1,Nq)
−1

[
A−1
Ne×Ne 0Ne×No

0No×N ′e B−1
No×No

]
(TNq−1,Nq · · ·TN3,Np−3TN1,Np−1)

−1 .

For the tth row of M , it belongs to the N0 +N1 + 1 to N0 +N1 +N2 block, so we have

[M ]t,· =
[
�1×N0 01×N1 �1×N2 . . .

]
.

Thus, it is obvious that A21 is degenerate. For A22, we have

A22 =
1

n

n∑
i=1

ξi

2∑
s=1

2∑
s′=1

[(f−1)
(1)
s′ (Wi)f

(1)
s (Wi) + f−1(Wi)f

(2)
ss′ (Wi)][M

−1UsM
−1Us′ ]5,1

=
1

n

n∑
i=1

ξi[R1(Wi)]5,1 ,

where R1(w) =
∑2

s=1

∑2
s′=1[(f−1)

(1)
s′ (w)f

(1)
s (w) + f−1(w)f

(2)
ss′ (w)]M−1UsM

−1Us′ .

Finally, we have

A3 =
1

n

n∑
i=1

ξi
∑

0≤|j|≤p

∫
[Q(w)]5,j

(
Wi − w

h

)j
Kh(Wi − w) dF (w)

=
1

n

n∑
i=1

ξi
∑

0≤|j|≤p

∫
[Q(Wi − uh)]5,jf(Wi − uh)ujK(u) du

=
1

n

n∑
i=1

ξi
∑

0≤|j|≤p

[Q(Wi)]5,jµjf(Wi) + oP (n−1/2) =
1

n

n∑
i=1

ξi[R2(Wi)]5,1 + oP (n−1/2) ,
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where R2(w) = Q(w)f(w)M . Combining A22 and A3, let

R(w) = R1(w)+R2(w) =
2∑
s=1

2∑
s′=1

[(f−1)
(1)
s′ (w)f (1)

s (w)+f−1(w)f
(2)
ss′ (w)]M−1UsM

−1Us′+Q(w)f(w)M .

(36)

Finally, applying the uniform results in Masry (1996b), we have

A4 = eᵀth
p−1

∫
S−1
n (w)Bn(w)m(p+1)(w) dF (w)

= eᵀth
p−1M−1BE[m(p+1)(w)] +OP (hp) .

Altogether we have

√
nE
[
∂2m̂(W )

∂w1∂w2

− ∂2m(W )

∂w1∂w2

− eᵀ5hp−1M−1BE[m(p+1)(w)]

]
=

1√
n

n∑
i=1

ξi[R(Wi)]5,1 ,

then we can apply CLT directly for the righthand side.

Now, let’s check for the order of s.o.(φ̂). From Masry (1996a,b), we have

‖π̂ − π‖∞ = OP

(
[log n/(ng)]1/2 + g2

)
.

Therefore, O(‖φ̂2 − φ̄2‖2
∞) = oP (n−1/2) by Assumption 7(i). By a similar argument as in Masry

(1996a,b) or Mammen et al. (2012a), we can show that we have ‖φ̂2 − φ̄2‖∞‖φ̂(v)
1 − φ̄

(v)
1 ‖∞ =

OP (log n/(n2gh8)1/2) = oP (n−1/2) by Assumption 7(iii). Therefore, s.o.(φ̂) = oP (n−1/2).

To show T2,n(φ̂) = OP (n−1/2), recall that

T2,n(φ̂) =
1

n

n∑
i=1

∂3mY (Xi, Vi)

∂x∂v2
(V̂i − Vi) .

By Lemma A.4 below, we can show that

T2,n(f̂) = E
[
(V̂ − V )

∂3mY (X, V )

∂x∂v2

]
+ oP (n−1/2) .

Lemma A.4: Under the assumptions of Proposition 1, we have

sup
V1,V2∈M̄n

∣∣∣∣ 1n
n∑
i=1

[V1(Xi, Zi)− V2(Xi, Zi)]
∂3mY (Xi, Vi)

∂x∂v2
− E

[
(V1 − V2)

∂3mY (X, V )

∂x∂v2

] ∣∣∣∣= oP (n−1/2) ,

Proof of Lemma A.4: Define ∆i(V1, V2) = [V1(Xi, Zi) − V2(Xi, Zi)]
∂3E(Yi|Xi,Vi)

∂x∂v2
− E[(V1 −

V2)∂
3E(Y |X,V )
∂x∂v2

]. Then the proof follows closely of Lemma A.5 in Lee (2013), which modifies that

of Lemma 1 in Mammen et al. (2012a). We need to verify that Assumption 2 (Accuracy) and

Assumption 3 (Complexity) in Mammen et al. (2012a) hold, which are

• (Accuracy) supz |π̂(z)− π(z)| = oP (n−ι) for some ι such that n−ι = o(h).
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• (Complexity) There exists sequences of sets Mn, such that

1. π̂(·) ∈Mn.

2. For a constant CM > 0 and a function πn with ‖πn − π‖∞ = o(n−ι), the set M̄n =

Mn ∩ {π? : ‖π? − πn‖∞ ≤ n−ι} can be covered by at most CM exp(c−ψλ nζ) balls with

‖ · ‖∞-radius cλ for all cλ ≤ n−ι, where 0 < ψ ≤ 2, ζ ∈ R.

and also ι − 1
2
(ιψ + ζ) > 0, which indicates κ1 > 1/2 in Lemma A.3 in Lee (2013). As we use

local linear regression for π̂(z), we know n−ι = o(h) by Assumption 7 and we can let Mn be the

set of functions defined on the compact support of Z with up to α order partial derivatives and

uniformly bounded by some multiple of nζ
?

with ζ? ≥ 0. Then, by Corollary 2.7.2 in van der

Vaart and Wellner (1996), we have ψ = 1
α

and ζ = ζ?ψ. By choosing ζ? sufficiently small and

1 < 2α, the result holds.

We know that V̂ − V = −[π̂(Z)− π(Z)], then

√
nT2,n(f̂) = − 1√

n

n∑
i=1

ViEX|Zi
{
∂3mY (X,X − π(Zi))

∂x∂v2

}
+oP (1) .

Altogether, we have by (26),

√
n{Sn(f̂)− 2eᵀth

p−1M−1BE[m
(p+1)
Y (w)]} =

2√
n

n∑
i=1

ξi[R(Wi)]5,1

− 1√
n

n∑
i=1

ViEX|Zi
{
∂3mY (X,X − π(Zi))

∂x∂v2

}
+

1√
n

n∑
i=1

{
∂2mY (Xi, Vi)

∂x∂v
− E

[
∂2mY (X, V )

∂x∂v

]}
+oP (1) .

Thus, the desired result follows by the CLT.

Let mD(w) = E(D|W = w), the following can be proved in the same way as Proposition 1.

Corollary A.1: Under assumptions of Theorem 1, we have

√
n

{
Ê

[
∂2m̂D(X, V̂ )

∂x∂v

]
− E

[
∂2mD(X, V )

∂x∂v

]
− 2eᵀ5h

p−1M−1BE[mp+1
D (X, V )]

}
=

2√
n

n∑
i=1

ui[R(Xi, Vi)]5,1

− 1√
n

n∑
i=1

ViEX|Zi
{
∂3mD(X,X − π(Zi))

∂x∂v2

}
+

1√
n

n∑
i=1

{
∂2mD(Xi, Vi)

∂x∂v
− E

[
∂2mD(X, V )

∂x∂v

]}
+oP (1) .

Proof of Theorem 1: Note that
√
n(γ̂ − γ) =

1

E
[
∂2mD(X,V )

∂x∂v

]
1
n

∑n
i=1

∂2m̂D(Xi,Vi)
∂x∂v

×
{
E
[
∂2mD(X, V )

∂x∂v

]
1√
n

n∑
i=1

(
∂2m̂Y (Xi, Vi)

∂x∂v
− E

[
∂2mY (X, V )

∂x∂v

])
− E

[
∂2mY (X, V )

∂x∂v

]
1√
n

n∑
i=1

(
∂2m̂D(Xi, Vi)

∂x∂v
− E

[
∂2mD(X, V )

∂x∂v

])}
.
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Also note that ∂2mY (X,V )
∂x∂v

= ∂2mD(X,V )
∂x∂v

, E
[
∂2mY (X,V )

∂x∂v

]
= E

[
∂2mD(X,V )

∂x∂v

]
, and ∂3mY (X,V )

∂x∂v2
= ∂3mD(X,V )

∂x∂v2
.

So it is easy to see that

E
[
∂2mD(X, V )

∂x∂v

]
1√
n

n∑
i=1

(
∂2m̂Y (Xi, Vi)

∂x∂v
− E

[
∂2mY (X, V )

∂x∂v

])
−E

[
∂2mY (X, V )

∂x∂v

]
1√
n

n∑
i=1

(
∂2m̂D(Xi, Vi)

∂x∂v
− E

[
∂2mD(X, V )

∂x∂v

])
= 0,

−E
[
∂2mD(X, V )

∂x∂v

]
1√
n

n∑
i=1

ViEX|Zi
{
∂3mD(X,X − π(Zi))

∂x∂v2

}
+E

[
∂2mY (X, V )

∂x∂v

]
1√
n

n∑
i=1

ViEX|Zi
{
∂3mY (X,X − π(Zi))

∂x∂v2

}
= 0.

Similarly, using ξ = ς + γu, we have

E
[
∂2mD(X, V )

∂x∂v

]
ξi[R(Xi, Vi)](5,1) − E

[
∂2mY (X, V )

∂x∂v

]
ui[R(Xi, Vi)](5,1) (37)

=E
[
∂2mD(X, V )

∂x∂v

]
ςi[R(Xi, Vi)](5,1). (38)

Finally, the bias terms cancel each other also because of the form of M and B. By combining and

the results of Proposition 1 and Corollary A.1, and rearranging terms we get

√
n(γ̂ − γ) =

1

E
[
∂2mD(X,V )

∂x∂v

] 2√
n

n∑
i=1

ςi[R(Xi, Vi)]5,1 + oP (1) .

Thus by CLT, we have the desired result.

Proof of Corollary 1: By the proof of Proposition 1 and the fact

∂2mY (X, V )

∂x∂v
= γ

[
∂2mD(X, V )

∂x∂v

]
and

∂3mY (X, V )

∂x∂v2
= γ

[
∂3mD(X, V )

∂x∂v2

]
,

it is easy to see that any additional term caused by generated regressor is cancelled. Therefore,

we have the identical result as the one in Theorem 1.
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