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Abstract

We show that wages in administrative data and in online markets exhibit considerable bunching
at round numbers that cannot all be explained by rounding of responses in survey data. We
consider two hypotheses—worker left-digit bias and employer optimization frictions—and
derive tests to distinguish between the two. Symmetry of the missing mass distribution around
the round number suggests that optimization frictions are more important. We show that a
more monopsonistic market requires less optimization frictions to rationalize the bunching in
the data, and use this to derive bounds on employer market power. We provide experimental
validation of these results from online labor markets, where rewards are also highly bunched at
round numbers. By randomizing wages for an identical task, our online experiment provides
an independent estimate of the extent of employer market power, and fails to find evidence of
any discontinuity in the labor supply function as predicted by workers’ left-digit bias. Overall,
the extent and form of round-number bunching suggests both employer mis-optimization and
wage setting power are important features of the labor market.
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1 Introduction

In the product market, prices are more frequently observed to end in 99 cents than can

be explained by chance, and a literature has emerged to document and explain this (e.g

Levy et al. 2011). This paper shows that there is similar bunching in the hourly wage

distribution, though at “round” numbers. For example, in the Current Population Survey

(CPS) data for 2016, a wage of $10.00 is about 50 times more likely to be observed than

either $9.90 or $10.10. Figure 1 shows that the hourly wage distribution from the CPS

outgoing rotation group (ORG) data between 2010 and 2016 has a visually striking modal

spike at $10.00 (top panel). The bottom panel of the figure also shows that since 2002, the

modal wage has been exactly $10.00 in at least 30 states, reaching a peak of 48 in 2008.

This is remarkable given the considerable variation in the level and dispersion of wages

across these states.1 It seems highly unlikely that such bunching at $10.00 is present in the

distribution of underlying marginal products of workers.

We use data from both administrative sources and an online labor market to show

that there is true bunching of wages at round numbers, and it is not simply an artifact

of survey reporting. To explain bunching, we provide an imperfectly competitive model

with both workers’ left-digit bias, and imperfect firm optimization in the form of employer

preferences for round wages. The notion of optimization frictions on the part of employers

draws on Chetty 2012. However, unlike the case typically considered in the literature

where optimization errors prevent bunching, we consider the case where firms prefer

paying round numbers despite potentially lower profits.2 We show that, in general, excess

bunching at round-numbered wages are a function of worker left-digit bias, the percent of

1The bottom panel in Figure 1 shows the number of states over time with $10.00 reported as the modal
hourly wage. While means, medians, and variances of log wages vary greatly across states, a remarkably
large number of number of states show a mode of exactly $10.00, reaching a peak of 48 states prior to the
2008 recession. The middle panel shows that the fraction of wages that end .00 is also a strikingly stable
30-40% of wages over the past 30 years.

2As in Chetty (2012), we deliberately abstract from the details of the employer optimization frictions,
which may reflect administrative costs, inattention, limits on manager cognition, or norms that constrain
wage setting behavior.
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profits employers are willing to forgo to pay a round number wage, and the elasticity of

labor supply facing the firm.3 The existence of labor market power makes both worker

and firm biases candidate explanations for bunching. Even if workers have left digit

bias, in a perfectly competitive labor market with profit maximizing firms, wages will

equal marginal products—whose distribution is unlikely to have spikes at round numbers.

Moreover, as we show in this paper, lower monopsony power also implies a higher loss in

profits from employers mistakenly paying round numbers.

Using both direct experimental as well as indirect evidence, we do not find evidence

of worker left-digit bias. This is in contrast to the literature on price-bunching at 99

cents, where the most common hypothesis is left-digit bias— consumers think $9.99 is a

much lower price than $10—in a market where producers have some pricing power (Basu

1997,Heidhues and Kőszegi 2008). Subsequently, we show how the degree of bunching

can then be used to bound the extent of imperfect competition. Simply put, if—as we

find—workers are not misperceiving wages, then a more competitive labor market restricts

the space employers have to make mistakes in setting wages. We also consider other

explanations, including round-numbered reference points in efficiency wage models and

round-numbered focal points in bargaining models, and show that they are inconsistent

with patterns in our data—particularly the experimental evidence from the online labor

market.

We begin by providing the first (to our knowledge) credible evidence on the extent

to which wages are bunched at round numbers in high quality, representative data on

hourly wages from Unemployment Insurance records from the two largest U.S. states

(Minnesota and Washington) that collect information on hours. We compare the size of the

bunches in the administrative data to those in the CPS, also use a unique CPS supplement

3While other configurations are logically possible, they do not easily explain why wages are bunched at
round numbers. For example, if employers had a left-digit bias, any heaping would likely occur at $9.99 and
not at $10.00, which is not true in reality. Similarly, if workers tended to round off wages to the nearest dollar,
this would not encourage employers to set pay exactly at $10.00. In contrast, both workers’ left-digit bias
and employers’ tendency to round off wages provide possible explanations for a bunching at $10.00/hour.
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which matches respondents’ wage information with those from the employers to correct for

reporting error in the CPS. We further assess the extent of bunching in online labor markets,

using a near universe of posted rewards on the online platform Amazon Mechanical Turk

(MTurk).

The two explanations—worker versus firm biases—have very different predictions

about the the origin of the missing mass corresponding to bunching at the round num-

ber. Worker left-digit bias implies an asymmetry in the distribution of missing mass as

employers who would otherwise pay a wage slightly below a salient round number have

a stonger incentive to bunch than those above. In contrast, employer optimization frictions

imply that jobs from both above and below the round number will offer the round number

wage, implying a symmetry in the missing mass. Our estimates using administrative data

do not indicate an asymmetry in the missing mass distribution, suggesting that left-digit

bias is less important than employer mis-optimization as an explanation for bunching at

round numbers. Next, we use the estimated extent of bunching along with our model to

quantify the extent of optimization frictions and the labor supply elasticity facing firms

using “economic standard errors” as in Chetty (2012). Any given quantity of bunching

can be explained by a combination of how much profit falls as wages deviate from the

firm’s optimum, which is given by the extent of labor market competition, together with

how much profit employers are will to give up to pay a round number. We estimate the

former by bounding the latter. We conclude that if employers are assumed to not give up

more than, say, 1% in profits by picking a round number wage, the implied competition

in the labor market is quite low, with firm-specific labor supply elasticities of around

1; even allowing a 10% loss in profits, the implied labor supply elasticities are around

3.5. We show these results are robust to allowing very general forms of heterogeneity in

both labor supply elasticities facing firms as well as heterogeneity in the extent of firm

misoptimization.

As an added validation, we design and implement an experiment (N=5,017) on an
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online platform (MTurk). We randomly vary rewards above and below 10 cents for the

same task to estimate the labor supply function facing an online employer. Like offline

labor markets, the task reward distribution on MTurk exhibits considerable bunching.

However, our experimentally estimated labor supply function shows no evidence of

discontinuity as would be predicted by worker left-digit bias. Together with bunching

evidence from offline and online observational data, the experimental evidence suggests

that employer-side optimization frictions are the most plausible explanation for bunching.

At the same time, our experimental (and observational) evidence imply that the labor

supply facing online employers is highly inelastic, with elasticities around 0.1, consistent

with other research on online labor markets. Together, these findings suggest very small

optimization frictions for those who are bunching in the online labor market.

To summarize, this paper makes three main contributions—documenting the existence

of bunching in wage distributions that cannot be explained as measurement error, provid-

ing evidence that employer optimization frictions rather than employee left-digit biases

are a more likely cause, and providing estimates of the size of those frictions and employer

market power both of which we find to be economically significant. We show there is a

fundamental trade-off between the extent of employer market power and optimization

frictions in rationalizing the extent of bunching. The more competitive the labor market,

the higher the degree of misoptimization required to rationalize a given level of bunching.

The intuition is that the penalty for a given deviation from the optimal wage is larger the

more competitive is the labor market.

In observational data, we do not have enough information to separately identify the

market power of employers and the size of the optimization frictions—though we show

that at least one of them must be large. But in the MTurk data we have a separate

experimental estimate of the market power of employers, and we use this together with

the missing mass estimate to compute the size of optimization frictions. In the appendix,

we replicate the experimental specification on non-experimental observational data, and
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find similarly low labor supply elasticities and little employee left-digit bias.

The plan of the paper is as follows. In section 2, we briefly review the literature on left-

digit bias, bunching, and wage-setting power in the labor market. In section 3, we provide

evidence on bunching at round numbers using administrative data as well as data from the

CPS corrected for measurement error, and benchmark these against the raw CPS results. We

recover the source of the bunched observations by comparing the observed distribution to

an estimated smooth latent wage distribution. In section 4, we develop a model of bunching

that nests worker left-digit bias and firm optimization frictions as special cases. Section 5

recovers the degree of misoptimization and monopsony from the bunching estimates under

a variety of assumptions about the degree of heterogeneity in both, and recovers labor

supply elasticities consistent with alternative degrees of optimization frictions. Section 6

reports findings from the online experiment, combining them with bunching estimates

from the observed online labor market to estimate the extent of optimization friction for

employers in the online platform. Section 7 concludes.

2 Literature

A large literature has discussed cognitive biases in processing price information, but

little of this has discussed applications to wage determination4. For example, Levy et al.

(2011) show that 65% of prices in their sample of supermarket prices end in 9 (33.4% of

internet prices), and prices ending in 9 are 24% less likely to change than prices ending in

other numbers. Snir et al. (2012) also document asymmetries in price increases vs. price

decreases in supermarket scanner data, consistent with consumer left-digit bias. A number

of field and lab experiments document that randomizing prices ending in 9 results higher

4Numerous other deviations from the standard model (e.g. concerns about fairness and time-
inconsistency) have been documented in a wide variety of labor markets, see e.g. Babcock et al. (2012) for
an overview. This suggests that it is not simply the case that workers are sophisticated when it comes to
such a high-stakes price as their wage. Particularly relevant to our setting are Chen and Horton (2016) and
Della Vigna and Pope (2016) who show a number of behavioral phenomena are present in Mechanical Turk
workers, although neither examines left digit bias.
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product demand (Anderson and Simester (2003), Thomas and Morwitz (2005), Manning

and Sprott (2009)). Pope, Pope and Sydnor (2015) show that final negotiated housing

prices exhibit significant bunching at numbers divisible by $50,000, suggesting that round

number focal points can matter even in high stakes environments. Lacetera et al. (2012)

show that car prices discontinuously fall when odometers go through round numbers such

as 10,000. Allen et al. (2016) document bunching at round numbers in marathon times,

and interpret this as reference-dependent utility. Backus, Blake and Tadelis (2015) show

that posted prices ending in round numbers on eBay are also a signal of willingness to

bargain down.5

A large literature in behavioral industrial organization has explored how firms choose

prices facing behavioral consumers (e.g.Gabaix and Laibson (2006). See Heidhues and

Kőszegi (2018) for a survey), to explain these and other pricing anomalies. Theoretical

models to explain bunches in prices (e.g. Basu 1997, 2006; Heidhues and Kőszegi 2008)

assume firms have some market power (e.g. Basu (1997) has a single monopolist supplying

each good, Basu (2006), has oligopolistic competition, and Heidhues and Kőszegi (2008)

uses a Salop differentiated products model) and this assumption plays an important role

in these models as it allows prices to deviate from marginal costs (which do not plausibly

have bunches). Our paper is also related to a small but growing literature on behavioral

firms (rather than consumers or workers), which documents a number of ways firms fail

to maximize profits (DellaVigna and Gentzkow (2017); Goldfarb and Xiao (2011); Hortacsu

and Puller (2008); Bloom and Van Reenen (2007); Cho and Rust (2010)).

In the models we develop of wage-bunching, it is also important to assume that firms

have some labor market power. A recent literature has argued that, far from requiring

explicit collusion (as in professional sports) or restrictive non-compete contracts (Starr,

5Hall and Krueger (2012) show that wage posting is much more frequent in low wage labor markets than
bargaining. Their data shows that more than 75% of jobs paying an hourly wage of around $10 were ones
where employers made take-it-or-leave-it offers without any scope for bargaining. We also find that the
bunching at the $10/hour wage in the Hall and Krueger data is almost entirely driven by jobs with such
take-it-or-leave-it offers. Along with our evidence from MTurk, where there is no scope for bargaining, this
makes it unlikely that employers offer round number wages as a signal for bargaining.
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Bishara and Prescott 2016, Krueger and Ashenfelter 2017) or being confined to particular

institutional environments (e.g. Naidu 2010, Naidu, Nyarko and Wang 2016), a degree of

monopsony is in fact pervasive in modern labor markets (Manning 2011). One piece of

evidence for this comes from significant rent-sharing elasticities and the importance of

firm fixed-effects in explaining the distribution of wages (Card et al. 2016), and another

piece of evidence comes from minimum wage effects on turnover and tenure (Dube, Lester

and Reich (2010)). Direct evidence showing occupation-commuting zone concentration

measures negatively affect wages is provided by Azar et al. (2017) A further piece of

evidence comes from estimating the impacts of worker deaths on payroll, revenues, and

worker substitution (Isen (2013) , Jäger (2016)). Finally, direct estimates of monopsony

power from shocks to firm value-added that increase worker wages and employment, as

with the patent grants used by Kline et al. (2017), also provide evidence of employer market

power. We show that existence of wage-bunching at arbitrary numbers, together with

auxiliary evidence we provide, can be used as further evidence in favor of monopsony.

While not the primary focus of this paper, we are also related to a recent literature on

platform labor markets. Katz and Krueger (2016) document a large rise in “alternative”

work arrangements in the U.S. between 2010 and 2015, including work on platforms such

as Amazon Mechanical Turk. Our experimental evidence shows that left-digit biases by

workers seem not to explain the pervasive bunching seen on this online platform. The

same experimental evidence does show considerable employer market power, however,

a fact we corroborate using a wide variety of estimates in our companion paper (Dube

et al. (2017)). Calibrating our model with the experimental evidence, we further find that

employers on Mechanical Turk seem to exhibit only a small degree of optimization friction,

less than 1% of profits worth.
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3 Bunching of wages at round numbers

There is little existing evidence on bunching of wages. One possible reason is that hourly

wage data in the Current Population Survey comes from self-reported wage data, where it

is impossible to distinguish the rounding of wages by respondents from true bunching of

wages at round numbers. Documenting the existence of wage-bunching requires the use

of other higher-quality data.

3.1 Administrative hourly wage data from select states

Earnings data from administrative sources such as the Social Security Administration or

Unemployment Insurance (UI) payroll tax records is high quality, but most do not contain

information about hours. However, 4 states (Minnesota, Washington, Oregon, and Rhode

Island) have UI systems that collect detailed information on hours, allowing us to estimate

hourly wages, and we have obtained data from the largest two (MN and WA). We have

micro-aggregated hourly wage data from Unemployment Insurance payroll records for Minnesota

and Washington between 2003q1 and 2007q4. The UI payroll records cover over 95% of all wage

and salary civilian employment. Hourly wages are constructed by dividing quarterly earnings by

total hours worked in the total number of hours worked in the quarter. The micro-aggregated data

are state-wide counts of employment (and hours) by nominal $0.05 bins between $0.05 and $35.00,

along with a count of employment (and hours) above $35.00. The counts exclude NAICS 6241 and

814, home-health and household sectors which were identified by the state data administrators as

having substantial reporting errors.

Figure 2 shows the distribution of hourly wages (we report the distributions separately

in the Appendix). The histogram reports normalized counts in $0.10 (nominal) wage bins,

averaged over 2003q1 and 2007q4. The counts in each bin are normalized by dividing by total

employment. The wages are clearly bunched at round numbers, with the modal wage at

the $10.00 bin representing more than 0.015 of overall employment. This suggests that

observed wage bunching is not solely an artifact of measurement error, and is a feature
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of the “true” wage distribution. Further, the histogram reveals spikes at the MN and WA

minimum wages in this period, suggesting that the hourly wage measure is accurate.

3.2 Hourly wage data from Current Population Survey, and Supple-

ment

For comparison, we next show an analogous histogram of hourly nominal wage data using

the national CPS data. In Figure 3, we plot the nominal wage distribution in U.S. in 2003 to

2007 in $0.10 bins. There are notable spikes in the wage distribution at $10, $7.20 (the bin

with the federal minimum wage), $12, $15, along with other whole numbers. At the same

time, the spike at $10.00 is substantially larger than in the administrative data (exceeding

0.045), indicating rounding error in reporting may be a serious issue in using the CPS to

accurately characterize the size of the bunching.

We also use a 1977 CPS supplement, which matches employer and employee reported

hourly wages, to correct for possible reporting errors in the CPS data. We re-weight wages

by the relative incidence of employer versus employee reporting, based on the two ending

digits in cents (e.g., 01, 02, ... , 98, 99). As can be seen in Figure 4, the measurement error

correction produces some reduction in the extent of visible bunching, which nonetheless

continues to be substantial. For comparison, the probability mass at $10.00 is around

0.02, which is closer to the mass in the administrative data than in the raw CPS. This is

re-assuring as it suggests that a variety of ways of correcting for respondent rounding

produces estimates suggesting a similar and substantial amount of bunching in the wage

distribution.
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3.3 Task rewards in an online market: Amazon Mechanical Turk

Amazon MTurk is an online task market, where “requesters” (employers) post small

online Human Intelligence Tasks (HITs) to be done by “Turkers” (workers).6 Psychologists,

political scientists, and economists have used MTurk to implement surveys and survey

experiments (e.g. Kuziemko et al. (2015)). Labor economists have used MTurk and other

online labor markets to test theories of labor markets, and have managed to reproduce

many behavioral properties in lab experiments on MTurk (Shaw et al. 2011).

We obtained the universe of MTurk requesters from Panos Ipeirotis at NYU. We then

used the API developed by Ipeirotis to download the near universe of HITs from MTurk

from May 2014 to February 2016, resulting in a sample of over 5 million tasks. We have

data on reward, time allotted, description, requester id, first time seen and last time seen

(which we use to estimate duration of the HIT request before it is taken by a worker).

Descriptive statistics are in the Appendix and are described more fully there.

Figure 5 shows that there is considerable bunching at round numbers in the MTurk

reward distribution. The modal wage is 30 cents, with the next modes at 5 cents, 50 cents,

10 cents, 40 cents, and at $1.00. This is remarkable, as this is a spot labor market has

almost no regulations, suggesting the analogous bunching in real world is not driven by

unobserved institutional constraints, including long-term implicit or explicit contracts.

3.4 Estimating the origin of the missing mass

The excess mass in the wage distribution at a bunch that has been documented in the

previous sections must come from somewhere in the distribution. This section describes

how we estimate the origin of this “missing mass”. To do so, we follow the now standard

approach in the bunching literature of fitting a flexible polynomial to the observed distri-

bution, excluding a range around the threshold, and using the fitted values to form the

6The sub header of MTurk is “Artificial Artificial Intelligence", and it owes its name to a 19th century
“automated" chess playing machine that actually contained a “Turk” person in it.
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counterfactual at the threshold (see Kleven 2016 for a discussion).

We focus on the bunching at the most round number (10.00 in the wage data, 1.00 in the

MTurk rewards data). We ignore the secondary bunches; this will attenuate our estimate

of the extent of bunching, as we will ignore the attraction that other round numbers exert

on the distribution.

We use bin-level counts of wages cw in, say, $0.10 bins, and define pw = cw
∑∞

j=0 cj
as the

normalized count or probability mass for each bin. We then estimate:

pw =
w0+∆w

∑
j=w0−∆w

β j1w=j +
K

∑
i=0

αiwi + εw (1)

In this expression j sums over 10 cent wage bins (we use 1 cent bins in the MTurk

data), and the ∑K
i=0 αiwi terms are a Kthorder polynomial, while β j terms are coefficients

on dummies for bins in the excluded range around w0, between wL = w0 − ∆w and

wH = w0 + ∆w. βw0 is the excess bunching (EB) at w0. In addition, ∑w0−10
j=w0−∆w β j is the

missing mass strictly below w0 (MMB), while ∑w0+∆w
j=w0+10 β j is the missing mass strictly

above w0 (MMA).

Since ∆w is unknown, we use an iterative procedure similar to Kleven and Waseem

(2013). Starting with ∆w = 10, we estimate equation (1) and calculate the excess bunching

EB and compare it with the missing mass MM = MMA + MMB. If the missing mass is

smaller in magnitude than the excess mass, we increase ∆w and re-estimate equation (1).

We do this until we find a ∆w such that the excess and missing masses are equalized. Since

∆w is itself estimated, we estimates its standard error using a bootstrapping procedure

suggested by Chetty (2012) and Kleven (2016). In particular, we resample (with replace-

ment) the errors ε̂w from equation (1) and add these back to the fitted p̂w to form a new

distribution p̃w, and estimate regression (1) using this new outcome. We repeat this 500

times to derive the standard error for ∆w. The estimate of ∆w and its standard error will

be useful later for the estimation of other parameters of interest.7

7Following the literature, our procedure assumes that the missing mass is originating entirely from the
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In Figure 6 we show the estimates for the administrative data from MN and WA, using

polynomial order K = 6. For visual ease, we plot the kernel-smoothed β̂ j for the missing

mass. Moreover, we show the excess and missing mass relative to the counterfactual

p̂C
w = ∑6

i=0 αiwi. There is clear bunching at $10.00 in the administrative data, consistent with

evidence from the histogram above. We find that the excess bunching can be accounted

for by missing mass spanning ∆w = $0.80, or ω = 0.08. Visually, the missing mass is

coming from both below and above $10.00, which is relevant when considering alternative

explanations.

These estimates are also reported in Table 1, column 1. The bunch at $10.00 is statistically

significant, with a coefficient of 0.010 and standard error of 0.002. In addition, the size of

the missing mass from above and below w0 are quantitatively very close, at -0.006 and

-0.007 respectively; t-statistic for the null hypothesis that they are equal is 0.030. This

provides strong evidence against worker left-digit bias, which would have implied an

asymmetry in the missing masses. The width of the missing mass interval is ω = 0.08,

with a standard error of 0.023. In other words, employers who are bunching appear to be

paying as much as 8% above or below the wage that maximizes profits under the nominal

model.

In column 2, we use the CPS data limited to MN and WA only. We find a substantially

larger estimate for the excess mass, around 0.032. In column 3, we report estimates using

the re-weighted CPS counts for MN and WA adjusted for rounding due to reporting

error using the 1977 supplement (CPS-MEC). The CPS estimate of bunching adjusted for

measurement error is much closer to the administrative data, with an estimated magnitude

of 0.016; while it is still somewhat larger, we note that the estimate from the administrative

data is within the 95 percent confidence interval of the CPS-MEC estimate. In column 4,

we use the raw CPS data for all states and find the excess mass estimate of 0.041. Therefore,

while some of the gap between the all-state CPS and the MN-WA administrative data

surrounding basin. However, the extent to which
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estimates is due to the differences in samples (MN and WA versus all states), most of

it is due to rounding error of respondents in the CPS. The use of the CPS supplement

substantially reduces the discrepancy, which is re-assuring. At the same time, we note

that the estimates for ω using the CPS (0.07) are remarkably close to those using the

administrative data (0.08). The graphical analogue of column 2 is in Figure 7.

Since the counterfactual involves fitting a smooth distribution using a polynomial in

the estimation range, in Table 2 we assess the robustness of our estimates to alternative

polynomial orders between 2 and 6. Both the size of the bunch, and the width of the

interval with missing mass, ω, are highly robust to the choice of polynomials. For example,

using the pooled administrative data, the bunching β0 is always 0.01, and ω is always 0.08

for all polynomial order, K.

The main conclusions from this section are that the missing mass seems to be drawn

symmetrically from around the bunch and from quite a broad range. As the next section

shows, these facts are informative about possible explanations for bunching and the nature

of labor markets.

4 A model of round-number bunching in the labor market

This section presents a model of bunching in the labor market which builds on features in

the price-bunching literature (e.g. Basu 1997, 2006) and the optimization friction literature

(e.g. Chetty 2012).

Suppose there are many workers differing in their marginal product p assumed to

have density k(p) and CDF K(p)—assume labor is supplied inelastically to the market as a

whole. We assume there is only one “round number” wage in the vicinity of the part of

the productivity distribution we consider—denote this by w0. We do not here attempt to

micro-found w0. There are various functions of wj that could deliver w0, for example we

could set w0 = wj− mod (wj, 10h), where mod (w, 10h) denotes the remainder when w is
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divided by 10h and h is the highest digit of w. Or we could impose the formulation in Basu

(1997), where agents form expectations about the non-leftmost digits. In contrast to Basu

(1997), which delivers a strict step function, the discrete choice formulation allows supply

to be increasing even at non-round numbers, as well as relaxing the assumption that each

good is provided by a single monopolist (Basu (2006) considers a Bertrand variant of a

similar model, showing that .99 cents can be supported as a Bertrand equilibrium with a

number of homogeneous firms). We also extend the formulation of digit bias from Lacetera

et al. (2012) by allowing utility to depend on the true wage w as well as the leading digit.8

We consider two reasons why w0 might be chosen—left-digit bias on the part of workers,

and mis-optimization on the part of employers in the form of paying round numbered

wages.

We model the left-digit bias of workers in the following way. Assume that, for workers

with marginal product, p, the supply of workers to firm that pays wage w is given by:

l(w, p) =

[
weγ1w≥w0

]η

C
k (p) (2)

where C ≡ ∑M
j=1

[
wje

γ1wj≥w0
]η

. We assume that there are a sufficiently large number

of firms that C is treated as exogenous by each individual firm. If γ > 0 then there is

a discontinuity at w0: the curve is plotted in figure 8 for specific parameter values. γ

is the percentage increase in labor supply that comes from the left-digit bias of workers

so the size of γ is a natural measure of the extent of left-digit bias. Our model of labor

supply to individual firms can be micro-founded using a multinomial logit model—see

Card et al. (2016) for an application to the labor market.9. Our baseline model assumes

some imperfect competition in the labor market but perfect competition is a special case

8However we do not parameterize the extent of “left-digitness” as Lacetera et al. (2012) do. We are
implicitly assuming “full inattention” to non-leading digits.

9Matejka and McKay (2015) provides foundations for discrete choice that incorporates inattention, and
see Gabaix (2017) for applications of inattention to a wide variety of behavioral phenomena, including
left-digit bias.
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as η → ∞. Denote by l∗(w, p) = wη

C k (p) the “nominal” labor supply curve facing the firm,

without any worker left-digit bias.

The other possible explanation for bunching that we consider is employer misopti-

mization. We now extend the model to allow employers to “benefit” by paying a round

number, despite lowered profits.10 While consistent with employers preferring to pay

round numbers, it could reflect internal fairness constraints or administrative costs internal

to the firm. These could be transactions costs involved in dealing with round numbers,

cognitive costs of managers, or administrative costs facing a bureaucracy. δ is a simple way

to capture satisficing behavior by firms willing to use a simple heuristic (choose nearest

round number) instead of bearing the costs of locating the exact profit-maximizing wage.

These costs may be substantial, as evidenced by the pervasive use of round-numbers in

publicly stated wage-policies of large firms.11

The presence of δ results in a profit function that looks like:

π(w, p) = (p− w)l(w, p)eδ1w=w0 (3)

where δ is the percentage “gain” in profits from paying the round number.12 This specifi-

cation parallels that in Chetty (2012), who restricts optimization frictions to be constant

fractions of optimal consumer expenditure (in the nominal model), except applied to the

employer choice of wage for a job rather than a consumer’s choice of a consumption-

leisure bundle. In the taxable income model, optimization frictions parameterize the lack

of responsiveness to tax incentives, while in our model they parameterize the willingness

to forgo profits in order to pay a round number.

Given (2) and (3) profits from paying a wage w to a workers with marginal product p
10It would be equivalent to assume that firms suffer an effective loss from not paying a round number.
11The National Employment Law Project (2016) documents a large number of voluntary wage policies

by employers. McDonald’s, T.J. Maxx, The Gap, and Walmart all voluntarily adopted a 10.00 base wage
in 2015/2016, and many other firms have company wage policies that mandate round numbers from 9.00
(Target) to 18.00 (Hello Alfred).

12Matějka (2015) shows that rationally inattentive monopoly sellers will choose a discrete number of
prices.
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can be written as:

π(w, p) = (p− w)
wη

C
eηγ1w≥w0 eδ1w=w0 h (p) = (p− w)l∗(w, p)eηγ1w≥w0 eδ1w=w0 (4)

Define ρ (w, p) = (p− w)l∗(w, p). Here ρ (w, p) is, in the language of Chetty (2012), the

“nominal model” that parameterizes profits in the absence of left-digit bias or optimization

errors. Optimizing wages in the nominal model would yield a smooth “primitive” profit

function of productivity given by π(pj) = (
pj

1+η )1+η, but the presence of worker and firm

biases induces discontinuities in true profits at round numbers. In deciding on the optimal

wage for employers one simply needs to compare the profits to be made by maximizing

the nominal model and paying the round number. Consider the wage that maximizes the

nominal model. Given the isoelastic form of the labor supply curve to the individual firm

this can simply be shown to be:

w∗(p) =
ηp

1 + η
(5)

i.e. a mark-down on the marginal product with the size of the mark-down determined

by the extent of imperfect competition in the labor market. If the labor market is perfectly

competitive, η = ∞, wages are equal to marginal product. We will refer to the wage that

maximizes the nominal model as the latent wage. The firm will pay the round number

wage as opposed to the latent wage if:

π(w0, p) > π(w∗(p), p) (6)

which can be written as:

eηγ1w∗(p)<w0 eδ >
ρ (w∗ (p) , p)

ρ (w0, p)
(7)
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Taking logs, we obtain that a firm will pay the round number if

δ + ηγ1w∗(p)<w0
> ln ρ (w ∗ (p) , p)− ln ρ (w0, p) (8)

This shows that bunching is more likely the greater is the left-digit bias of workers

and the optimization cost for employers. The optimization bias is symmetric whether the

latent wage is above or below the round number. But left-digit bias is asymmetric because

it only has an impact if the latent wage is below the round number. The right-hand side

of (8) can be approximated using the following second-order Taylor series expansion of

ρ (w0, p) about w∗ (p)13:

ln ρ (w0, p) ' ln ρ (w∗, p) +
∂ ln ρ (w∗, p)

∂w
[w0 − w∗] +

1
2

∂2 ln ρ (w∗, p)
∂w2 [w0 − w∗]2 (9)

The first-order term is zero by the definition of the latent wage (Akerlof and Yellen

(1985) use this idea to explain price and wage rigidity). Using the definition of the nominal

model, the second derivative can be written as:

∂2 ln ρ (w, p)
∂w2 = − 1

(p− w)2 −
η

w2 (10)

Using (5) this can be written as:

∂2 ln ρ (w∗, p)
∂w2 = −η (1 + η)

w∗2
(11)

where it is convenient to invert (5) and express in terms of the latent wage because

wages are observed but marginal products are not. Substituting (11) into (9) and then into

(8) leads to the following expression for whether a firm pays the round number:

13One can use the actual profit functions not the approximation, but the difference is small for the
parameters we use, and the approximation has a clearer intuition.
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[
w0 − w∗

w∗

]2

≡ ω2 ≤ δ + ηγ1w∗<w0

η (1 + η)
(12)

The left-hand side (12) implies that the size of the loss in nominal profits from bunching

is increasing in the square of the proportional distance of the latent wage from the round

number (ω). The right-hand side tells us that, for a given latent wage, whether a firm will

bunch depends on the extent of left-digit bias as measured by γ (only relevant for wages

below the round number), the extent of optimization frictions as measured by δ and the

degree of competition in the labor market as measured by η. The extent of labor market

competition matters because the loss in profits from a sub-optimal wage are greater the

more competitive is the labor market. Define:

z0 =
δ + ηγ

η (1 + η)
, z1 =

δ

η (1 + η)
(13)

Assume, for the moment, that there is some potential variation in (δ, γ, η) across firms

which is independent of the latent wage and leads to a CDF for z0 of Gz
0 (z) and a CDF

for z1 of Gz
1 (z). From (13) it must be the case that Gz

0 (z) ≤ Gz
1 (z) with equality if there is

no left-digit bias. The way in which we use this is the following—suppose the fraction

of firms with a latent wage, w∗who bunch is denoted by φ (ω) = φ
(

w0−w∗
w∗

)
, where ω is

the proportionate gap between the optimal wage under the nominal model (w∗) and the

round number w0. Then (12) implies that we will have for ω < 0, :

φ (ω) = 1− Gz
0

[
ω2
]

(14)

and for w > w0, :

φ (ω) = 1− Gz
1

[
ω2
]

(15)

The left-hand side of (14) and (15) have been estimated in the earlier section on the

origin of the missing mass. So, (14) and (15) imply that data on the source of the missing
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mass in the wage distribution can be used to identify, non-parametrically, the distributions

of z0 and z1, G0 and G1. This does not allow us to identify the underlying distribution of

(δ, γ, η), the underlying economics parameters of interest.

5 Recovering left-digit bias, monopsony, and optimization

frictions from bunching estimates

The first result of our framework above is that worker left-digit bias implies that the degree

of bunching is asymmetric, in that missing mass will come more from below the round

number than above. Thus, finding symmetry in the origin of the missing mass implies

that G0 = G1 allows us to accept the hypothesis that γ = 0. The intuition for this is that

left-digit bias implies that firms with a latent wage 5 cents below the round number have a

higher incentive to bunch than those with a latent wage 5 cents above. We fail to reject

symmetry of the missing mass in Table 1 and so we proceed holding γ = 0.

Note that the presence of missing mass greater than w0 also rules out many imperfect

competition stories that do not require monopsony in the labor market. If the labor market

were perfectly competitive, then no worker could be underpaid, even though misoptimizing

firms could still overpay workers. Explanations involving product market rents or other

sources of profit for firms cannot explain why firms systematically can pay below the

marginal product of workers; only labor market power can account for this. Similarly,

however, the presence of missing mass below w0 rules out pure employer collusion around

a focal wage of w0, as the pure collusion case would imply that all the missing mass was

coming from above w0.

Taking γ = 0 as given, our estimates of the proportion of firms who bunch for each latent

wage identifies the CDF of z1 = δ
η(1+η)

, but does not allow us to identify the distributions

of δ and η separately. This section describes how one can make further assumptions

to identify these separate components. First, note that if there is perfect competition

20



in labor markets (η = ∞) or no optimization frictions (δ = 0), we have that z1 = 0 in

which case there would be no bunches in the wage distribution. The existence of bunches

implies that we can reject the joint hypothesis of perfect competition for all firms and no

optimization frictions for all firms. But there is a trade-off between the extent of labor

market competition and optimization friction that can be used to rationalize the data on

bunches. To see this note that if the labor market is more competitive i.e. η is higher, a

higher degree of optimization friction is required to explain a given level of bunching.

Similarly, if optimization frictions are higher i.e. a higher δ, then a higher degree of labor

market competition is required to explain a given level of bunching.

To estimate η and δ separately from φ(w), we need to make assumptions about the joint

distribution. A natural first place to start is to assume a single value of η and a single value

of δ. In this case, the missing mass takes the form of a flat basin of attraction around the

whole number bunch with all latent wages inside the basin bunching and none outside. If

there is no left-digit bias (γ = 0) (because of the symmetry in the missing mass), and the

proportional width of the basin on either side of the bunch is ω = ∆w
w0

, η and δ must satisfy:

δ

η (1 + η)
= ω2 (16)

This expression shows that armed with an empirical estimate of ω, we can draw a locus in

δ-η, showing the values of δ and η that can together rationalize a given ω. For a given size

of the basin, a higher value of optimization frictions (higher δ) implies a more competitive

labor market (a higher η). 14

But our estimates of the “missing mass” do not suggest a basin with this shape. At

all latent wages, there seem to be some employers who bunch and others who do not. To

rationalize this requires a non-degenerate distribution of δ and/or η . We make a variety

of different assumptions on these distributions in order to investigate the robustness of

14Andrews, Gentzkow and Shapiro (2017) make a similar point in a different context, arguing that differing
percentages of people with optimization frictions can substantively affect other parameter estimates using
the example of DellaVigna, List and Malmendier (2012).
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our results.

We always assume that the distributions of η and δ are independent with cumulative

distributions H(η) and G(δ). At least one of these distributions must be non-degenerate

because, by the argument above, if they both have a single value for all firms one would

observe an area around the bunch where all firms bunch so the missing mass would be

100% - this is not what the data look like. Our estimates imply that there are always some

firms who do not bunch, however close is their latent wage to the bunch. We rationalize

this as being some fraction of employers who are always optimizers i.e. have δ = 0.

We first make the simplest parametric assumptions that are consistent with the data:

we assume that η is constant, and δ has a 2-point distribution with δ=0 with probability

G and δ = δ∗ with probability 1− G, so that E[δ|δ > 0] = δ∗. Below, we will extend this

formulation to consider other possible shapes for the distribution G(δ|δ > 0), keeping a

mass point at G(0) = G.

This then implies the missing mass at w is given by:

φ(ω) = [1− G] I
[

ω2 <
δ∗

η (1 + η)

]

In this model, the share of jobs with a latent wage close to the bunch that continue to pay

a non-round w identifies G, and the width of the basin of attraction in the distribution

identifies δ∗

η(1+η)
. The width of the basin was estimated, together with its standard error,

in the estimation of the missing mass where, relative to the bunch, it was denoted by ∆w
w0

.

Under assumptions about δ∗ we can recover a corresponding estimate of η and vice versa.

What do plausible values of optimization error imply about the likely labor supply

elasticities for bunchers? To answer this question, we report bounds using “economic

standard errors” similar to Chetty (2012). We calculate estimates of η assuming δ∗equal

to 0.01, 0.05 or 0.1 in rows A, B, and C, of Table 3 respectively. The implied labor supply

elasticity η varies between 0.846 and 3.484 when we vary δ∗ between 0.01 and 0.1. Even
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assuming a substantial amount of misoptimization (around 10% of profits) suggests a

labor supply elasticity facing a firm of less than 5; while the 90 percent confidence bounds

rule out elasticities greater than 7.4. If we assume, instead, a 1% loss in profits due to

optimization friction, the 90 percent confidence bounds rule out η > 2.1. While our

estimate for the labor supply elasticity are not highly precise, the extent of bunching at

$10.00 suggests considerable wage setting power on firms’ part even for a sizable amount

of optimization frictions, δ.

The admissible values of δ, η can also be seen in Figure 9. Here we plot the δ∗, η

locus for the sample mean of estimated bunching, ω, as well as for 90 percent confidence

interval around it. We can see visually that as we consider higher values of δ∗, the range

of admissible η′s increase and become larger in value. However, even for sizable δ∗’s the

implied values of the labor supply elasticity are often modest, implying at least a moderate

amount of monopsony power. Our estimates are plausible given the recent literature:

Kline et al. (2017) estimate a labor-supply elasticity facing the firm of 2.7, using patent

decisions as an instrument for firm productivity, which would be well within the range of

η implied by our estimates together with a δ∗ less than 0.05.

We examine robustness of the estimates to alternative specifications of the latent dis-

tribution of wages in Table 4. Columns 1 and 2 add indicator variables for “secondary”

modes, to capture the bunching induced at 50 cent and 25 cent bins. Columns 3 and 4

specify the latent distribution as a Fourier polynomial, in order to allow the specification

to pick up periodicity in the latent distribution that even a high-dimensional polynomial

may miss. Columns 5 and 6 of table 4 explore changing the degree of the polynomial used

to fit the main estimates in table 3, Column 5 uses a quadratic and Column 6 uses a quartic,

and our results stay very similar to our main estimates in Table 3.
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5.1 Alternative assumptions on heterogeneity

While assuming a single value of non-zero δ and a constant elasticity η may seem restrictive,

it is a restriction partially made for empirical reasons as our estimate of the missing mass at

each latent wage is not very precise and we will also be unable to distinguish heterogeneous

elasticities in our experimental design. Nonetheless, there is a concern that different

assumptions about the distribution of δ and η might be observationally indistinguishable

but have very different implications for the extent of optimization frictions and monopsony

power in the data. This section investigates whether that is the case.

While it is not possible to identify arbitrary nonparametric distributions of δ and η as

robustness checks we consider polar cases allowing each to be unrestricted one at a time,

and then finally a semi-parametric deconvolution approach that allows for an unrestricted,

non-parametric distribution H(η), along with a flexible, parametric distribution G(δ).

First, we continue to assume a constant η and but allow δ to be have an arbitrary

distribution G(δ|δ > 0) while continuing to fix the probability that δ = 0 at G. In this case,

for a given value of η the non-missing mass at ω would equal:

φ (ω) = 1− Ĝ(η(1 + η)ω2)

This implicitly defines a distribution Ĝ(δ):

Ĝ(δ) = 1− φ

(√
δ

η(1 + η)

)
(17)

Note that this implies that δ ∈ [0, δmax] where δmax = ω2η(1 + η) where ω2 is the width

of the basin of attraction. We then fix E(δ|δ > 0) at a particular value, similar to what we do

with δ∗, and then can identify both an arbitrary shape of Ĝ(δ) as well asη. Figure 10 shows

the distribution along with values of η from equation (17) in the MN-WA administrative

data. As can be seen, a higher η implies a first-order stochastic dominating distribution of

δ, thus average δ is higher for higher η.
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A natural question is how our estimates could differ if, instead of a constant η and

flexibly heterogeneous δ, we assume a heterogeneous η with an arbitrary distribution H(η),

along with some specified distribution G(δ). The simplest variant of this is to consider

a two-point distribution (where δ is either 0 or δ∗) as in our baseline case above. In this

variant of the model each firm is allowed to have its own labor supply elasticity, and each

firm either mis-optimizes profits by a fixed fraction δ∗, or not at all. In this case the missing

mass at ω should be equal to:

φ (ω) = [1− G] H

(
1
2

(√
1 +

4δ∗

ω2 − 1

))

Since we can identify G = G(0) = 1− limω→0+ φ̂(ω), for a particular δ∗ we can empiri-

cally estimate the distribution of labor supply elasticities as follows:

Ĥ(η) =

φ̂

(√(
4δ∗

(2η+1)2−1

))
1− G

(18)

We can use Ĥ(η) to estimate the mean ˆE(η) for a given value of δ∗:

ˆE(η) =
∫ ∞

0
ηd ˆH(η)

Note that under these assumptions, η is bounded from below at ηmin = 1
2

√
1 + 4δ∗

ω2 − 1.

In other words, the lower bound of η from the third method is equal to the constant

estimate of η from our baseline, both of which come from the marginal bunching condition

at the boundary of the interval ω. While we can only recover η conditional on δ > 0

(i.e. the bunchers), note that we cannot explain the non-bunching mass by assuming the

non-bunchers have δ > 0 but η = ∞, as in our model those firms would be unable to attract

workers from those firms with δ = 0 and η = ∞. The gradual reduction in the missing mass

φ (ω) that occurs from moving away from ω = 0 is entirely due to heterogeneity in η′s.

It rules out, for instance, that such a gradual reduction is generated by heterogeneity in
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δ′s in contrast to the second method. As a result, the third method is likely to provide the

largest estimates of the labor supply elasticity.

In parallel fashion to the previous case, we graphically show the implied distribution

of η with a 2-point distribution for δ in figure 11. This figure shows the distribution of η

implied by different values of δ from the MN-WA administrative data. As can be seen, a

higher η implies a first-order stochastic dominating distribution of η, thus average η is

higher for higher δ.15

Finally, we can extend this framework to allow for G(δ) to have a more flexible para-

metric form (with known parameters) than the 2-point distribution. We rely on recently

developed methods in non-parametric deconvolution of densities to estimate the implicit

H(η). If we condition on δ > 0,we can take logs of equation 14 (again maintaining that

γ = 0) we get

2 ln(ω) = − ln(η(1 + η) + ln(δ) = − ln(η(1 + η)) + E[ln (δ) |δ > 0] + ln(δres) (19)

Here ln(δres) ∼ N(0, σ2
δ ), and we fix E[ln (δ) |δ > 0] = ln (E(δ|δ > 0)) + 1

2 σ2
δ . We can use

the fact that the cumulative distribution function of 2 ln(ω) is given by 1−φ (exp {2 ln(ω)})

to numerically obtain a density for 2 ln(ω). This then becomes a well-known deconvolution

problem, as the density of − ln(η(1 + η)) is the deconvolution of the density of 2 ln(ω) by

the Normal density we have imposed on ln(δres). We can then recover the distribution

of η,H(η), from the estimated density of − ln(η(1 + η)) + E[ln (δ) |δ > 0]. Details on using

Fourier transforms to recover the distribution H(η) are in the Appendix. We use the

Stefanski and Carroll (1990) deconvolution kernel estimator. We choose the bandwidth

using a bootstrap procedure proposed by Delaigle and Gijbels (2004), taking the bandwidth

15This exercise is in the spirit of Saez (2010) who estimated taxable income elasticities using bunching in
income at kinks and thresholds in the tax code (Kleven 2016). Kleven and Waseem (2013) use incomplete
bunching to estimate optimization frictions, similar to our exercise in this paper; however, in our case
optimization frictions produce bunching while in Kleven and Waseem (2013) they prevent it. This has been
applied to estimating the implicit welfare losses due to various non-tax kinks, such as gender norms of
relative male earnings (Bertrand, Kamenica and Pan (2015)) as well as biases due to behavioral constraints
(Allen et al. 2016).
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that minimizes the mean-squared error over 1,000 bootstrap samples.

In Figure 12, we show the distribution of η using the deconvolution estimator, assuming

a lognormal distribution of δ. In the first panel, we estimate H(η) assuming the standard

deviation σln(δ) = 0.1, which is highly concentrated around the mean. In the second

panel, we instead assume σln(δ) = 1. This is quite dispersed: among those with a non-zero

optimization friction, δ around 16% have a value of δ exceeding 1, and around 31% have

a value exceeding 0.5. As a result, we think the range between 0.1 and 1 to represent a

plausible bound for the dispersion in δ. As before, we see a higher E[δ|δ > 0] leads to

first-order stochastic dominance of H(η). For both cases with high- and low-dispersion

of δ, the distribution H(η) is fairly similar, though increase in σln(δ) tends to shift H(η) up

somewhat, producing a smaller E(η).

We quantitatively show robustness of our main estimates to alternate specifications in

Table 5. Column 1 shows the implied E[δ|δ > 0] and δ̄ when an arbitrary distribution of

δ is allowed. The implied η for E[δ|δ > 0] = 0.01 is 1.143 instead of 0.846 in the baseline

estimates from Table 3. Similarly, in Column 2 we see the estimates under the 2-point

distribution for δ and an arbitrary distribution for η. The mean η of 1.175 in this case

is quite close to the estimate of 1.143 to Column 1. The implied bounds are somewhat

larger, with a 1% loss in profits for those bunching (i.e., E(δ|δ > 0) = 0.01) generating 95%

confidence intervals that rule out estimates of 4 or greater. Under 5% loss in profits, we get

elasticities in columns 1 and 2 that are just over 3, but still quite close to our baseline case

of 2.339. Therefore, allowing for heterogeneity in either δ or η only modestly increases the

estimated mean η as compared to our baseline estimates.

In columns 3 and 4 we report our estimates using the deconvolution estimator, allowing

for an arbitrary distribution for η, along with a lognormal conditional distribution for δ. As

in columns 1 and 2, we consider the case where E(δ|δ > 0) = 0.01 or 0.05, but now allow the

standard deviation σδ to vary. In column 3 we take the case where δ is fairly concentrated

around the mean with σδ = 0.1. Here the estimated E(η) is equal to 1.323, which is close to
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the estimates in columns 1 and 2 (1.143 and 1.175) allowing for an arbitrary distributions

for δ and η, respectively. In column 4, we allow δ to be much more dispersed, with σδ = 1.

In this case the estimated E(η) rises somewhat to 1.590. While the point estimate for this

case is larger than the baseline estimate of 0.846 (column 1, Table 3), the 90% confidence

interval contains the baseline estimate. Moreover, even in this case, the 95% confidence

interval rules out η′s larger than 4.6, suggesting substantial monopsony power. With

E(δ|δ > 0) = 0.05, we get E[η] = 3.431 and 4.029 under σδ = 0.1 and σδ = 1,respectively.

Encouragingly, for a given mean value of optimization friction, E[δ|δ > 0], allowing for

heterogeneity in δ and η together only modestly affects the estimated mean η as compared

to our baseline estimates. Our conclusion from this investigation is that our qualitative

finding of monopsony power remains robust to a wide range of assumptions made about

the distribution of δ and η.

5.2 Heterogeneous effects by groups

In Table 6 we estimate the implied η for different δ∗under our baseline 2-point model

across subgroups of the measurement corrected CPS data, as we do not have worker-level

covariates for the administrative data. We examine young and old workers, as well as

male and female separately. Consistent with other work suggesting that women are less

mobile than men (Manning 2011), the estimated η for women is somewhat lower than that

for men. We do not find any differences between older and younger workers. However,

the extent of bunching is substantially larger for new hires consistent with bunching being

a feature of initial wages posted, while workers with some degree of tenure are likelier

to have heterogeneous raises that reduce the likelihood of being paid a round number.

We find that among new hires the estimated η is somewhat higher than non-new hires.

However, even for new hires—who arguably correspond most closely to the wage posting

model—the implied η is only 1.014 if employers who are bunching are assumed to be

losing 1% of profits from doing so, increasing to 2.7 when firms are allowed to lose up to
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5\% in profits.

6 Experimental evidence on nominal wage labor supply

elasticity and left-digit bias

Observational data has the advantage that it relates to the labor market as a whole but the

disadvantage that it does not offer direct estimates of the economic parameters of interest.

This section reports an analysis of an online labor market which offers the advantage of

being able to estimate parameters of interest directly, though the disadvantage that one

is inevitably unsure about the external validity of the estimates. For example, one might

expect that these “gig economy" labor markets are very competitive because they are

lightly regulated and there are large numbers of workers and employers with little long-

term contracting. However, we show that a standard measure of monopsony, the inverse

labor supply elasticity facing the firm, is quite high, implying considerable inefficiencies

in these types of “crowdsourcing” labor markets, which are finding increased use by

large employers (for example Google, AOL, Netflix, and Unilever all subcontract with

crowdsourcing platforms akin to MTurk) around the world (Kingsley et al. 2015).

The use of Amazon Turk by researchers in computer science (particularly the subfield of

human computation), psychology, political science and economics has increased in recent

years. However, little of this research has considered the market structure of Amazon Turk

(although see Kingsley et al. 2015 for complementary evidence of requester market power

on MTurk) or indeed any online labor market. Indeed, in their original paper on labor

economics on Amazon Turk, Horton et al. (2011) implement a variant of the experiment

we conduct below, making take it or leave it offers to workers with random wages in order

to trace out the labor supply curve. However, while they label this an estimate of labor

supply to the market, it is in fact a labor supply to the requester that they are tracing out,

as the MTurk worker has the full list of alternative MTurk jobs to choose from. While
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the previous section provided indirect evidence on left-digit bias as an explanation for

observed bunching, we can take advantage of the Amazon MTurk labor market to run

experiments.16 We designed an experiment to test our model.17 We randomize wages

for a census image classification task to estimate discontinuous labor supply elasticities

at round numbers ( in particular at 10 cents, to test for left-digit bias). We choose 10

cents because it is the lowest round number, allowing us to maximize the power of the

experiment to detect left-digit bias. We also aim to replicate the upward sloping labor

supply functions to a given task estimated in Horton et al. (2011). We posted a total of

5,500 unique HITS on MTurk tasks for $0.10 that includes a brief survey and a screening

task, where respondents view a digital image of a historical slave census schedule from

1850 or 1860, and answer whether they see markings in the “fugitives”column (for details

on the 1850 slave census, see Dittmar and Naidu (2016)). This is close to the maximum

number of unique respondents obtainable on MTurk within a month-long experiment.

Respondents are offered a choice of completing an additional set of classification tasks for

a specific wage. Figure 13 shows the screens as seen by participants with (1) the consent

form, (2) the initial screening questions and demographic information sheet, (3) the coding

task content.

We refer to the initial screening part as stage-1. Those who complete stage-1 and indicate

that the primary reason for participation is "money" or "skills" (as opposed to "fun") are

then offered an additional task of completing either 6 or 12 such image classifications

(chosen randomly) for a specific (randomized) wage, w, which we refer to as stage-2 offer.

If they accept the stage-2 offer, they are provided either 6 images (task type A) or 12 images

(task type B) to classify, and are paid the wage w. These 5,500 HITs will remain posted

until completed, or for 3 months, which ever is shorter. Any single individual on MTurk

16In a companion paper, Dube et al. (2017) compile labor supply elasticities implicit in the results from 9
previous crowdsourcing compensation experiments on MTurk and find they are uniformly small, generally
below 1, and show a similarly low non-experimental labor supply elasticity ( 0.15) estimated using a double
ML procedure on the scraped MTurk data.

17Pre-registered as AEA RCT ID AEARCTR-0001349
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(identified by their MTurk ID) will be allowed to only do one of the HITs. We aim to assess

the left-digit bias in wage perceptions experimentally by randomizing the offered wages

for HITs on MTurk by randomizing a wage offer for a HIT to vary between $0.05 and $0.15,

and assessing whether there is a jump in the acceptance probability between $0.09 and

$0.10 as would be predicted by a left-digit bias.18

6.1 Specifications

While our model entails a sharp discontinuity in the level of labor supplied at a round

number (a “notch”) we do not impose this in all our specifications, and allow for either

a kink or a notch, and also control for the overall shape of the labor supply curve in a

variety of ways. We estimate the following 3 specifications, all of which were included in

the pre-analysis plan. We deviate slightly from our pre-analysis plan by including controls

and using logit rather than linear probability to better match our model. We show the

exact specifications from the pre-analysis plan in the Appendix.

First, we estimate a logit regression of an indicator for accepting a task on log wages,

essentially following the specification entailed by our model:

Pr(Accepti) = β0 + η1log(wi) + β1Ti + β2Xi + εi (20)

Here T is a dummy indicating the size of the task. We add individual covariates Xi

for precision; point estimates remain unchanged when controls are excluded (shown in

18There are a few anomalies in the data relative to our design. The first was that a small number (17) of
individuals were able to get around our javascript mechanism for preventing the same person from doing
multiple HITs. In the worst cases, one worker was able to do 118 HITs, while 3 others were able to do more
than 10. The second is that 9 individuals were entering responses to images they had not been assigned. We
drop these HITs from the sample, which costs us 316 observations. None of the substantive results change,
although the nominal labor supply effect is slightly more precise when those observations are included.
We also drop 3 observations where participants were below the age of 16 or did not give the number of
hours they spent on MTurk. Finally, we underestimated the time it would take for all of our HITs to be
completed, and thus some (roughly 11%) of our observations occur after the Pre-registration plan specified
data collection would be complete. We construct an indicator variable for these observations and include it
in all specifications discussed in the text (the Appendix specifications omit this variable).
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Appendix). Our main test from this specification is that the slope (semi-elasticity) η1 > 0:

labor supply curves (to the requester) are upward sloping. We will also report the elasticity

η = η1
E[Accept] in every specification where we estimate it.

Our first specification testing left-digit bias fits logit regressions allows for a jump in

the labor supply at $0.10, but constrains the slope to the the same on both sides:

Pr(Accepti) = β0A + η1Alog(wi) + γ1A1 {wi ≥ 0.1}i + β1ATi + β2Xi + εi (21)

Here left-digit bias is rejected if γA2 = 0. This specification corresponds closely to

the theoretical model with constant labor supply semi-elasticity η1A, and with γ = eγ1A

measuring the extent of left-digit bias.

Our second specification allows for heterogeneous slopes in labor supply above and

below $0.10 using a knotted spline, where the knots are at $0.09 and $0.10:

Pr(Accepti) = β0B + η1Blog(wi) + γ2B × (log(wi)− log(0.09))× 1 {wi ≥ 0.09}i

+γ3B × (log(wi)− log(0.10))× 1 {wi ≥ 0.1}i + β2BTi + β2Xi + εi (22)

Our main test here is that the slope between $0.09 and $0.10 (i.e., η1B + γ2B) is greater

than the average of the slopes below $0.09 and above $0.10,
(

1
2 × η1B + 1

2 × (η1B + γ2B + γ3B)
)

;

or equivalently to test: γ2B > γ3B.

Finally, our most flexible specification estimates:

Pr(Accepti) = ∑
k∈S

δk1 {wi = k}i + γβ3BT + β2Xi + εi (23)

And then calculate the following statistics:

δjump = (δ0.1 − δ0.09)
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βlocal = (δ0.1 − δ0.09)−

(
∑.12

k=.08,w 6=.1, δk − δk−0.01

)
4

βglobal = (δ0.1 − δ0.09)− 1
10

(δ0.15 − δ0.05)

The βlocal estimate provides us with a comparison of the jump between $0.09 and $0.10

to other localized changes in acceptance probability from $0.01 increases. In contrast, βglobal

provides us with a comparison of the jump with the full global (linear) average labor supply

response from varying the wage between $0.05 and $0.15. The object 1
10 (β0.15 − β0.05) will

also be used to estimate the overall labor supply response and elasticity facing the person

posting a task on MTurk.

A left-digit bias might not only affect willingness to accept a task, but also may affect

a worker’s performance. For example, if workers are driven by reputational concerns

or exhibit reciprocity, and they perceive $0.10 to be discontinuously more attractive than

$0.09, we may expect a jump in performance at that threshold. To assess this, we will also

estimate the same statistics, but with the error rate for the two known images (i.e., equal to

0, 0.5, or 1) as the outcome instead of Accepti.

6.2 Experimental results

Our distribution of wages was chosen to generate power for detecting a discontinuity at

10 cents, as can be seen in the wage distribution in figure 14. The binned scatterplot in

figure 14 shows the basic pattern of a shallow slope (in levels) with no discontinuity at 10.

Table 7 below shows the key experimental results from the specifications above, which

uses log wages as the main independent variable. Column 1 reports the estimates using a

log wage term only; the elasticity, η, is 0.083. The elasticity is statistically distinguishable

from zero at the 1 percent level, consistent with an upward sloping labor supply function

facing requesters on MTurk. However, the magnitude is quite small, suggesting a sizable
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amount of monopsony power in online labor markets. When we restrict attention only to

“sophisticated” MTurkers (column 5), the elasticity is only somewhat larger at 0.132, still

surprisingly small.

While we find a considerable degree of wage-setting power in online labor markets, we

do not find any evidence of left-digit bias for workers. Column 2 estimates specification 21

and tests for a jump at $0.10 assuming common slopes above and below $0.10. Column 3

corresponds to equation 22 and allows for slopes to vary on both sides of $0.10. Finally,

column 4, following the flexible specification in equation in 23, estimates coefficients for

each 1-cent dummy in the regression and compares the change between $0.09 and $0.10 to

either local or global changes. In all of these cases, the estimates close to zero in magnitude,

and not statistically significant. We can rule out even small differences in elasticities

between $0.09 and $0.10. When we limit our sample to sophisticated MTurkers, we do not

find any left-digit bias either. None of the estimates for discontinuity in the labor supply

function are statistically significant or sizable in columns 6, 7 or 8.

Column 2 specification corresponds closely to the theoretical model, where we can

recover γ by exponentiating the coefficient on the dummy for greater than or equal to 0.10.

The point estimate for γ is 0.99, while the 95 percent confidence interval of (0.972, 1.029) is

concentrated around zero.

We also estimate parallel logit regressions using task quality as the outcome, which is

defined as the probability of getting at least 1 out of two pre-tagged images correct. In

table 8, we find that no evidence that task performance rises discontinuously at the $0.10

threshold. We also find little impact of the reward on task performance for the range of

rewards offered; the most localized comparison, however, yields estimates very close to

zero. We interpret the evidence as strongly pointing away from any left-digit bias on the

workers’ side. Moreover, it also suggests that locally, there is not very much impact of

rewards on task performance: therefore, the primary cost of providing a slightly higher

reward is occurring through increased labor supply and not through performance.
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Summarizing to this point, while there is considerable bunching at round numbers in

the MTurk reward distribution, including at $0.10, there is no indication of worker-side

left-digit bias in labor supply or in performance quality. This finding is counter to the

analogous explanation for the product market, where a number of experiments have found

that demand for products increases when prices ending in 9 are posted (e.g. Anderson and

Simester (2003)). At the same time, we find considerable amount of wage-setting power in

this online labor market: labor supply is fairly inelastically supplied to online employers,

and an estimated elasticity η generally between 0.1 and 0.2.

In the Appendix, we present complementary evidence from the universe of MTurk

jobs (N greater than 4,500,000). By estimating how long a job stays posted before being

filled, as a function of the reward posted (and controlling for time posted, requester

and task description fixed effects) we can recover another estimate of the labor supply

curve facing an employer. The implied labor-supply elasticity under a constant job-

filling hazard assumption is close to our experimental estimates (roughly .5) as well as

those experimentally estimated in Horton et al. (2011), lending external validity to our

experimental design. We also show that tasks with rewards that end in a round number are

no more likely to be filled faster than those jobs with rewards that end in any other number,

consistent with our experimental findings. Together, the observational and experimental

evidence suggest that, at least on Amazon Turk, there is plenty of monopsony, and little

left-digit bias.

In addition, we show in the Appendix that the round number bunching on Amazon

Turk is not a function of experience: requesters that have posted many tasks or a cumulative

large amount of reward money do not differ in their propensity to post round numbers,

suggesting that the round numbers observed in the MTurk distribution are not driven by

naive or inexperienced requesters.
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6.3 Estimates of online optimization frictions

To quantify the extent of implied optimization frictions for MTurk requesters, we first

estimate the extent of bunching using scraped reward data from MTurk, using the same

methodology as Section 3 with a threshold w0 = $1.00. The results are reported in Table

9. Here we use 1 cent bins, estimating the regression between $0.55 and $1.55. Again, we

find a very clear bunching; the width of the interval for the missing mass is wider here

than in the offline labor market data, with ω = 0.17 and a standard error of 0.06. For the

online MTurk data, β0 is again invariant to K at 0.027, while ω varies between 0.17 and

0.24 depending on K. Figure 15 shows the excess and missing mass along with the latent

reward distribution in the MTurk data.

Since our estimates for γ were highly concentrated around 1, we impose γ = 1 which

implies symmetric bunching, consistent also with our evidence of symmetry of missing

mass above and below $1.00 in Table 9. This implies we can use estimates for the extent

of bunching ω (0.17) and the labor supply elasticity η (0.082) that allows us to recover an

estimate for the optimization friction, δ, using equation 16.

This derivation is represented graphically in Figure 16. The solid and dashed lines

in red show the η − δ loci consistent with the point estimate of ω and the associated 90

percent confidence interval. For a given value of bunching, ω, the locus is defined by

equation 12 with γ = 1, which implies that a higher labor supply elasticity requires more

optimization frictions to rationalize the bunching. Higher values of ω tilt the locus upward:

for a given labor supply elasticity, a higher bunching implies greater optimization frictions.

The black vertical lines represent the estimated labor supply elasticity and the associated

90 percent confidence intervals. The distribution of δ is derived from sampling on each of

these estimates of ω and η. Inverting the point estimate of η = 0.082 produces an estimate

of δ∗ = 0.003, well below the 1% threshold we imposed in the offline labor market analysis

above.

These estimates are also reported in Table 9. Since both there is sampling error of
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estimating ω and η, we use bootstrapping (with 500 replicates) to derive the 90 percent

confidence interval δ∗, which is estimated as (0.000, 0.007). Even though there is extensive

bunching at $1.00 rewards, the small labor supply elasticity implies a small optimization

error.

7 Conclusion

Significantly more U.S. workers are paid exactly round numbers than would be predicted

by a smooth distribution of marginal productivity. This fact is documented in admin-

istrative data, mitigating any issues due to measurement error, and is present even in

Amazon MTurk, an online spot labor market, where there are no regulatory constraints

nor long-term contracts. We integrate imperfect labor market competition with left-digit

bias by workers and a general employer preference for round-number wages to eval-

uate the source of left-digit bias. Using administrative wage data, we reject a role for

worker left-digit bias using the symmetry of the missing mass around round numbers

from observational data. We also reject the left-digit bias hypothesis using a high-powered,

preregistered experiment conducted on MTurk: despite considerable monopsony power

(in a putatively thick market), there is no discontinuity in labor supply or quality of work

at 10 cents relative to 9.

This evidence shows that the extent of round-number bunching can be explained

by a combination of a plausible degree of monopsony together with a small degree of

employer misoptimization. We show that when there is sizable market power, it requires

only modest extent of optimization error to rationalize substantial bunching in wages.

With optimization error less than 5% of profits, the observed degree of bunching in

administrative data can be rationalized with a firm-specific labor supply elasticity less

than 2.5; at 1% of profits lost from round-number bias of employers, the implied labor-

supply elasticity is between .8 and 1.5, depending on the extent and shape of heterogeneity
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assumed.

This research suggests that bunching in the wage distribution may not be merely a

curiosity. Spikes at arbitrary wages suggest a failure of labor-market arbitrage due to

employer mis-optimization and market power. Given the prevalence of round numbers in

the wage distribution, it suggests that market power may be ubiquitous in labor markets

as well as product markets. Moreover, our evidence suggests that when there is market

power, we can expect employers to exhibit a variety of deviations from optimizing behavior,

including adoption of heuristics such as paying round number wages.
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Figure 1: Prevalence of Round Nominal Wages in the CPS
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Notes. The top figure shows the CPS hourly nominal wage distribution, pooled between 2010 and
2016, in 10 cent bins. The middle figure in the middle shows the fraction of hourly wages in the
CPS that end in .00 from 2003 through 2016. The bottom figure shows the fraction of states with
10.00 modal wages in the CPS. We exclude imputed wages.
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Figure 2: Histogram of Hourly Wages In Administrative Payroll Data from MN and
WA, 2003-2007
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Notes. The figure shows a histogram of hourly wages from administrative Unemployment Insurance
payroll records reported to states of Minnesota and Washington. The UI payroll records cover over
95% of all wage and salary civilian employment in the states. Hourly wages are constructed by
dividing quarterly earnings by the total number of hours worked in the quarter. The counts here
exclude NAICS 6241 and 814, home-health and household sectors, which were identified by the
state data administrators are having substantial reporting errors. The histogram reports normalized
counts in $0.10 (nominal) wage bins, averaged over 2003q1 and 2007q4. The counts in each bin are
normalized by dividing by total employment.
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Figure 3: Histogram of Hourly Wages in National CPS data, 2003-2007
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Notes. The figure shows a histogram of hourly wages by $0.10 (nominal) wage bins, averaged
over 2003q1 and 2007q4, using CPS MORG files. Hourly wages are constructed by average weekly
earnings by usual hours worked. The sample is restricted to those without imputed earnings. The
counts here exclude NAICS 6241 and 814, home-health and household sectors. The histogram
reports normalized counts in $0.10 (nominal) wage bins, averaged over 2003q1 and 2007q4. The
counts in each bin are normalized by dividing by total employment.
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Figure 4: Wage Bunching in CPS data, 2003-2007, Corrected for Reporting Error Using
1977 CPS supplement
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Notes. The figure shows a histogram of hourly wages by $0.10 (nominal) wage bins, averaged
over 2003q1 and 2007q4, using CPS MORG files, where individual observations were re-weighted
to correct for overreporting of wages ending in particular two-digit cents using the 1977 CPS
supplement. Hourly wages are constructed by average weekly earnings by usual hours worked.
The sample is restricted to those without imputed earnings. The counts here exclude NAICS 6241
and 814, home-health and household sectors. The histogram reports normalized counts in $0.10
(nominal) wage bins, averaged over 2003q1 and 2007q4. The counts in each bin are normalized by
dividing by total employment.
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Figure 5: Bunching in Task Rewards in Online Labor Markets - MTurk
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Notes. The figure shows a histogram of posted rewards by $0.01 (nominal) bins scraped from
MTurk. The sample represent all posted rewards on MTurk between May 01, 2014 and September
3, 2016.
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Figure 6: Excess Bunching and Missing Mass Around $10.00 Using Administrative Data
on Hourly Wages (MN, WA)
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Notes. The reported estimates of excess bunching at $10.00, and missing mass in the interval around
$10.00 as compared to the smoothed predicted probability density function, using administrative
hourly wage counts from MN and WA, aggregated by $0.10 bins, over the 2003q1-2007q4 period.
The darker shaded blue bar at $10.00 represents the excess mass, while the lighter red shaded
region represents the missing mass. The dotted lines represent the estimated interval from which
the missing mass is drawn. The predicted PDF is estimated using a sixth order polynomial, with
dummies for each $0.10 bin in the interval from which the missing mass is drawn. The width of
the interval is chosen by iteratively expanding the interval until the missing and excess masses are
equal, as described in the text.
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Figure 7: Excess Bunching and Missing Mass Around $10.00 Using Measurement Error
Corrected CPS Data
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Notes. The reported estimates of excess bunching at $10.00, and missing mass in the interval
around $10.00 as compared to the smoothed predicted probability density function, using CPS data
corrected for measurement error using the 1977 administrative supplement. The darker shaded
blue bar at $10.00 represents the excess mass, while the lighter red shaded region represents the
missing mass. The dotted lines represent the estimated interval from which the missing mass is
drawn. The predicted PDF is estimated using a sixth order polynomial, with dummies for each
$0.10 bin in the interval from which the missing mass is drawn. The width of the interval is chosen
by iteratively expanding the interval until the missing and excess masses are equal, as described in
the text.
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Figure 8: Labor Supply Function with Left-digit Bias

Notes. The figure shows a hypothetical labor supply function with left-digit bias, indicated by a discontinuous
jump at $10. Here the elasticity η = 1.5, the constant parameter is C = 50 and the left-digit bias parameter
γ = 2.
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Figure 9: Relationship Between Labor Supply Elasticity (η) and Optimization Frictions
(δ) and Size of Bunching (ω): Administrative Hourly Wage Data from MN and WA
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Notes. The solid, red, upward sloping line shows the locus of the labor supply elasticity η and optimization
frictions δ∗ = E[δ|δ > 0] consistent with the extent of bunching ω estimated using the administrative hourly
wage data from MN and WA between 2003q1-2007q4, as described in equation 16 in the paper. The dashed
lines are the 90 percent confidence intervals estimated using 500 bootstrap replicates.
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Figure 10: Implied Distribution of δ Under Constant η
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Notes. The figure plots the cumulative distributions G(δ) based on equation 17, for alternative values of
E(δ|δ > 0). The elasticity η is assumed to be a constant. The estimates use administrative hourly wage data
from MN and WA.
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Figure 11: Implied Distribution of η with a 2-point Distribution of δ
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Notes. The figure plots the cumulative distributions H(η) based on equation 18, for alternative values of
δ∗ = E(δ|δ > 0). δ is assumed to follow a 2-point distribution with δ = 0 with probability G and δ = δ∗ with
probability 1− G. The estimates use administrative hourly wage data from MN and WA.
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Figure 12: Implied Distribution of η using a Deconvolution Estimator where δ has a
Conditional Lognormal Distribution
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E(η) is 3.414, 8.038, and 11.644 for E(δ|δ>0) = 0.01, E(δ|δ>0) = 0.05, and E(δ|δ>0) = 0.1, respectively
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E(η) is 3.414, 8.038, and 11.644 for E(δ|δ>0) = 0.01, E(δ|δ>0) = 0.05, and E(δ|δ>0) = 0.1, respectively

σlnδ=0.1

Notes. The figure plots the cumulative distributions H(η) using a deconvolution estimator based on equation
19, for alternative values of E(δ|δ > 0). The procedure allows for an arbitrary smooth distribution of η, while
assuming δ is lognormally distributed (conditional on being non-zero) with a standard deviation σδ. The top
panel assumes a relatively concentrated distribution of δ with σδ = 0.1; in contrast, the bottom panel assumes
a rather dispersed distribution with σδ = 1. The estimates use administrative hourly wage data from MN
and WA.

56



Figure 13: Online Labor Supply Experiment on MTurk

Page 1: Consent Form

The instructions are the same on all subsequent pages, but are collapsed (though they can
be revealed by clicking the “Show” link).

Page 2: Demographic Info Sheet

1

Page 3: Image Tagging Task

Page 4: Option to Continue

2

Notes. The figure shows the screen shots for the consent form and tasks associated with the online labor
supply experiment on MTurk.
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Figure 14: Distribution of Randomized Rewards in the MTurk Experiment, and Result-
ing Probability of Task Acceptance
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Notes. The left panel shows the density of randomized rewards in the online experiment on MTurk. The
right panel shows the acceptance probabilities associated with each value of the reward.
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Figure 15: Excess Bunching and Missing Mass Around $10.00 Using Administrative
Data on Rewards from Amazon Mechanical Turk
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Notes. The reported estimates of excess bunching at $1.00, and missing mass in the interval around
$100 as compared to the smoothed predicted probability density function, using the universe of
rewards from Amazon Mechanical Turk. The darker shaded blue bar at $100 represents the excess
mass, while the lighter red shaded region represents the missing mass. The dotted lines represent
the estimated interval from which the missing mass is drawn. The predicted PDF is estimated
using a sixth order polynomial, with dummies for each $0.01 bin in the interval from which the
missing mass is drawn. The width of the interval is chosen by iteratively expanding the interval
until the missing and excess masses are equal, as described in the text.
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Figure 16: Relationship Between Labor Supply Elasticity (η) and Optimization Fric-
tions (δ) and Size of Bunching (ω): MTurk Data
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Notes. The solid, red, upward sloping line shows the locus of the labor supply elasticity η and optimization
frictions δ consistent with the extent of bunching ω estimated using the MTurk data, as described in equation
16 in the paper. The dashed lines are the 90 percent confidence interval estimated using 500 bootstrap
replicates. The vertical line shows the experimentally estimated labor supply elasticity η and the dotted
vertical lines are the 90 percent confidence intervals for η.
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Table 1: Estimates for Excess Bunching, Missing Mass, and Interval around Threshold

(1) (2) (3) (4)
Value of w0 $10.00 $10.00 $10.00 $10.00

Excess mass at w0 0.010 0.032 0.013 0.041
(0.002) (0.007) (0.003) (0.007)

Total missing mass -0.013 -0.044 -0.018 -0.033
(0.005) (0.014) (0.006) (0.017)

Missing mass below -0.006 -0.025 -0.009 -0.019
(0.005) (0.015) (0.007) (0.021)

Missing mass above -0.007 -0.019 -0.009 -0.014
(0.004) (0.015) (0.006) (0.017)

Test of equality of missing
mass below and above w0:

t-statistic 0.030 -0.156 -0.042 -0.159

Bunching = Actual mass
Latent density 2.596 6.229 3.942 8.394

(0.293) (4.386) (1.332) (4.689)

wL $9.20 $9.30 $9.30 $9.30
wH $10.80 $10.70 $10.70 $10.70
ω = (wH–w0)

w0
0.080 0.070 0.070 0.070

(0.023) (0.027) (0.030) (0.029)

Data:
Admin

MN & WA
CPS-Raw

MN & WA
CPS-MEC
MN & WA

CPS-Raw

Notes. The table reports estimates of excess bunching at threshold w0, missing
mass in the interval around w0 as compared to the smoothed predicted proba-
bility density function, and the interval (ωL, ωH) from which the missing mass
is drawn. It also reports the t-statistic for the null hypothesis that the size of
the missing mass to the left of w0 is equal to the size of the missing mass to
the right. The predicted PDF is estimated using a sixth order polynomial, with
dummies for each bin in the interval from which the missing mass is drawn.
The width of the interval is chosen by iteratively expanding the interval until
the missing and excess masses are equal, as described in the text. In columns
1-3, estimates are shown for bunching at $10.00 from pooled MN and WA using
the administrative hourly wage counts, the raw CPS data, and measurement
error corrected CPS (CPS-MEC) over the 2003q1-2007q4 period. In column 4,
estimates are shown for all states using the raw CPS data. Bootstrap standard
errors based on 500 draws are in parentheses.
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Table 2: Robustness of Estimates for Excess Bunching, Missing Mass, and Interval
Around Threshold

Dum. for $0.5
(1)

Dum. for $0.25 & $0.5
(2)

Poly. of degree 2
(3)

Poly. of degree 4
(4)

Fourier, degree 3
(5)

Fourier, degree 6
(6)

Value of w0 $10.00 $10.00 $10.00 $10.00 $10.00 $10.00

Excess mass at w0 0.010 0.010 0.010 0.010 0.010 0.009
(0.002) (0.002) (0.002) (0.001) (0.001) (0.001)

Total missing mass -0.012 -0.012 -0.010 -0.011 -0.008 -0.017
(0.005) (0.005) (0.003) (0.005) (0.004) (0.007)

Missing mass below -0.008 -0.008 -0.005 -0.006 -0.006 -0.009
(0.004) (0.004) (0.003) (0.005) (0.004) (0.005)

Missing mass above -0.004 -0.004 -0.005 -0.006 -0.002 -0.009
(0.004) (0.004) (0.003) (0.004) (0.004) (0.004)

Test of equality of missing
mass below and above w0:

t-statistic -0.657 -0.729 0.150 -0.022 -0.624 0.057

Bunching = Actual mass
Latent density 2.656 2.621 2.693 2.649 2.694 2.254

(0.312) (0.322) (0.258) (0.272) (0.251) (0.326)

wL $9.40 $9.40 $9.20 $9.20 $9.30 $9.40
wH $10.60 $10.60 $10.80 $10.80 $10.70 $10.60
ω = (wH–w0)

w0
0.060 0.060 0.080 0.080 0.070 0.060

(0.021) (0.021) (0.027) (0.024) (0.037) (0.023)

Data:
Admin

MN & WA
Admin

MN & WA
Admin

MN & WA
Admin

MN & WA
Admin

MN & WA
Admin

MN & WA

Notes. The table reports estimates of excess bunching at the threshold w0 as compared to a smoothed predicted probability density function, and
the interval (ωL, ωH) from which the missing mass is drawn. The predicted PDF is estimated using a K − th order polynomial or values of K
between 2 and 6 as indicated, with dummies for each bin in the interval from which the missing mass is drawn. The width of the interval is chosen
by iteratively expanding the interval until the missing and excess masses are equal, as described in the text. Columns 1 and 2 include indicator
variables for wages that are divisible by 50 cents and 25 cents, respectively. Columns 3 and 4 vary the order of the polynomial used to estimate the
latent wage. Columns 5 and 6 represent the latent wage with a 3 and 6 degree Fourier polynomial, respectively. Bootstrap standard errors based on
500 draws are in parentheses.
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Table 3: Bounds for Labor Supply Elasticity in Offline Labor Market

(1) (2) (3) (4)
A. δ∗ = 0.01
δ 0.001 0.003 0.003 0.002
η 0.846 1.014 1.014 1.014
90% CI [0.472, 2.050] [0.538, 4.525] [0.538, 9.512] [0.503, 4.525]
95% CI [0.417, 2.871] [0.538, 4.525] [0.472, 9.512] [0.417, 4.525]

B. δ∗ = 0.05
δ 0.005 0.015 0.013 0.011
η 2.339 2.733 2.733 2.733
90% CI [1.429, 5.112] [1.593, 10.692] [1.593, 21.866] [1.508, 10.692]
95% CI [1.291, 6.970] [1.593, 10.692] [1.429, 21.866] [1.291, 10.692]

C. δ∗ = 0.1
δ 0.011 0.030 0.025 0.023
η 3.484 4.045 4.045 4.045
90% CI [2.182, 7.421] [2.418, 15.319] [2.418, 31.127] [2.295, 15.319]
95% CI [1.983, 10.053] [2.418, 15.319] [2.182, 31.127] [1.983, 15.319]

G(0)= G 0.894 0.703 0.750 0.772

Data:
Admin

MN & WA
CPS-Raw

MN & WA
CPS-MEC
MN & WA

CPS-Raw

Notes. The table reports point estimate and associated 90 and 95 percent
confidence intervals for labor supply elasticties, η, associated with different
values of optimization friction δ for the offline labor market. The datasets are
administrative hourly wage data ,CPS-MEC, and CPS from MN and WA as
well as national CPS data. In rows A, B and C, we use hypothesized values of δ
of 0.01, 0.05 and 0.1 respectively. The labor supply elasticity, η, is estimated
using the estimated extent of bunching, ω, and the hypothesized δ, using
equation 16 in the paper. The 90 and 95 percent confidence intervals in square
brackets are estimated using 500 boostrap draws.
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Table 4: Bounds for Labor Supply Elasticity in Offline Labor Market — Robustness to
Specifications of Latent Wage

Dum. for $0.5
(1)

Dum. for $0.25 & $0.5
(2)

Poly. of degree 2
(3)

Poly. of degree 4
(4)

Fourier, degree 3
(5)

Fourier, degree 6
(6)

A. E(δ|δ > 0)= 0.01
δ 0.001 0.001 0.001 0.001 0.001 0.002
η 1.240 1.240 0.846 0.846 1.014 1.240
90% CI [0.538, 2.050] [0.472, 2.050] [0.417, 2.050] [0.472, 2.050] [0.300, 2.871] [0.618, 2.871]
95% CI [0.472, 2.050] [0.472, 2.050] [0.372, 2.871] [0.372, 2.050] [0.247, 2.871] [0.472, 4.525]

B. E(δ|δ > 0)= 0.05
δ 0.006 0.007 0.004 0.005 0.005 0.008
η 3.260 3.260 2.339 2.339 2.733 3.260
90% CI [1.593, 5.112] [1.429, 5.112] [1.291, 5.112] [1.429, 5.112] [0.984, 6.970] [1.791, 6.970]
95% CI [1.429, 5.112] [1.429, 5.112] [1.174, 6.970] [1.174, 5.112] [0.839, 6.970] [1.429, 10.692]

G(0)= G 0.871 0.865 0.917 0.907 0.908 0.830

Data:
Admin

MN & WA
Admin

MN & WA
Admin

MN & WA
Admin

MN & WA
Admin

MN & WA
Admin

MN & WA

Notes. The table reports point estimate and associated 90 and 95 percent confidence intervals for labor supply elasticities, η, associated
with hypothesized δ=0.01 and δ=0.05 for the offline labor market. All columns employ the administrative hourly wage data The first two
columns control for bunching at wage levels whose modulus with respect to $1 is $0.5, and $0.5 or $0.25, respectively. Column 3 uses a
quadratic polynomial to estimate the wage distribution, whereas column 4 uses a quartic. In columns 5 and 6, instead of polynomials,
Fourier transformations of degree 3 and 6 are employed. In row A, we hypothesize δ = 0.01; whereas it is δ = 0.05 in row B. The labor
supply elasticity, η, is estimated using the estimated extent of bunching, ω, and the hypothesized δ, using equation 16 in the paper. The 90
and 95 percent confidence intervals in square brackets are estimated using 500 boostrap draws.
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Table 5: Bounds for Labor Supply Elasticity in Offline Labor Market - Heterogeneous δ
and η

Heterogeneous δ Heterogeneous η
Heterogeneous δ & η,

σδ = 0.1
Heterogeneous δ & η,

σδ = 1
Excess mass at w0 0.010 0.010 0.010 0.010

(0.002) (0.002) (0.002) (0.002)
Total missing mass -0.013 -0.013 -0.013 -0.013

(0.005) (0.005) (0.005) (0.005)

Bunching = Actual mass
Latent density 2.596 2.596 2.596 2.596

(0.293) (0.293) (0.293) (0.293)

A. E(δ|δ > 0)= 0.01
δ 0.001 0.001 0.001 0.001
η 1.143 1.175 1.323 1.590
90% CI [0.618, 3.080] [0.604, 3.403] [0.561, 3.026] [0.697, 3.868]
95% CI [0.543, 3.619] [0.526, 3.907] [0.496, 3.494] [0.575, 4.565]

B. E(δ|δ > 0)= 0.05
δ 0.006 0.006 0.006 0.006
η 3.035 3.097 3.431 4.029
90% CI [1.791, 7.443] [1.755, 8.126] [1.648, 7.270] [1.966, 9.186]
95% CI [1.606, 8.655] [1.557, 9.286] [1.486, 8.355] [1.672, 10.733]

G(0)= G 0.875 0.875 0.875 0.875

Data:
Admin

MN & WA
Admin

MN & WA
Admin

MN & WA
Admin

MN & WA

Notes. The table reports point estimate and associated 90 and 95 percent confidence intervals for labor supply
elasticties, η, associated with hypothesized δ=0.01 and δ=0.05 for the offline labor market. All columns employ
the administrative hourly wage data. Heterogeneous δ, and η are allowed in columns 1 and 2, using equations
17 and 18, respectively. Columns 3 and 4 allow heterogeneous δ and η, and assuming a conditional lognormal
distribution of δ, using a deconvolution estimator based on equation 19. The third column assumes a relatively
concentrated distribution of δ (σδ = 0.1); whereas the fourth column assumes a rather dispersed distribution
(σδ = 1). In row A, we hypothesize δ = 0.01; whereas it is δ = 0.05 in row B. The 90 and 95 percent confidence
intervals in square brackets in columns 1 and 2 (3 and 4) are estimated using 500 (1000) boostrap draws.
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Table 6: Bounds for Labor Supply Elasticity in Offline Labor Market — Heterogeneity
by Demographic Groups

Male Female Age<30 Age≥30
Same job

as last month
Different job

from last month
Excess mass at w0 0.018 0.015 0.030 0.012 0.015 0.029

(0.003) (0.004) (0.006) (0.003) (0.003) (0.006)
Total missing mass -0.011 -0.012 -0.042 -0.012 -0.016 -0.024

(0.009) (0.007) (0.013) (0.006) (0.007) (0.013)

Bunching = Actual mass
Latent density 5.906 3.890 4.923 3.907 4.137 6.347

(2.034) (0.989) (1.634) (1.033) (1.122) (2.273)

A. E(δ|δ > 0)= 0.01
δ 0.002 0.001 0.003 0.001 0.002 0.003
η 1.014 0.846 0.846 0.846 0.846 1.014
90% CI [0.538, 4.525] [0.618, 9.512] [0.538, 4.525] [0.618, 9.512] [0.576, 9.512] [0.538, 4.525]
95% CI [0.472, 9.512] [0.538, 9.512] [0.472, 4.525] [0.472, 9.512] [0.472, 9.512] [0.472, 4.525]

B. E(δ|δ > 0)= 0.05
δ 0.009 0.005 0.014 0.007 0.008 0.013
η 2.733 2.339 2.339 2.339 2.339 2.733
90% CI [1.593, 10.692] [1.791, 21.866] [1.593, 10.692] [1.791, 21.866] [1.687, 21.866] [1.593, 10.692]
95% CI [1.429, 21.866] [1.593, 21.866] [1.429, 10.692] [1.429, 21.866] [1.429, 21.866] [1.429, 10.692]

G(0)= G 0.820 0.895 0.713 0.863 0.834 0.750

Data: CPS-MEC CPS-MEC CPS-MEC CPS-MEC CPS-MEC CPS-MEC

Notes. The table reports point estimate and associated 90 and 95 percent confidence intervals for labor supply elasticties, η,
associated with hypothesized δ=0.01 and δ=0.05 for the offline labor market. All columns employ the national CPS data. The
first two columns analyze by gender, the third and fourth by age, and the columns 5 and 6 by incumbency.In row A, we
hypothesize δ = 0.01; whereas it is δ = 0.05 in row B. The labor supply elasticity, η, is estimated using the estimated extent of
bunching, ω, and the hypothesized δ, using equation 16 in the paper. The 90 and 95 percent confidence intervals in square
brackets are estimated using 500 boostrap draws.
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Table 7: Task Acceptance Probability by Offered Task Reward on MTurk

(1) (2) (3) (4) (5) (6) (7) (8)
Log Wage 0.068*** 0.081** 0.094** 0.111*** 0.137** 0.194***

(0.025) (0.036) (0.042) (0.040) (0.059) (0.063)

Jump at 10 -0.008 -0.017
(0.016) (0.027)

Spline -0.066 -0.104
(0.157) (0.261)

Local 0.002 0.036
(0.022) (0.044)

Global -0.005 -0.010
(0.015) (0.025)

η 0.083*** 0.098** 0.114** 0.132*** 0.162** 0.230***
(0.030) (0.044) (0.051) (0.048) (0.070) (0.075)

Sample Pooled Pooled Pooled Pooled Sophist. Sophist. Sophist. Sophist.
Sample Size 5017 5017 5017 5017 1618 1618 1618 1618

Notes. The reported estimates are logit regressions of task acceptance probabilties on log wages,
controlling for number of images done in the task (6 or 12), age, gender, weekly hours worked
on MTurk, country (India/US/other), reason for MTurk work, and an indicator for HIT ac-
cepted after pre-registered close date. Column 1 reports specification 1 that estimates the
labor-supply elasticity, without a discontinuity. Column 2 estimates specification 2, which tests
for a jump in the probability of acceptance at 10 cents. Column 3 estimates a knotted spline in
log wages, with a knot at 10 cents, and reports the difference in elasticities above and below 10
cents. Column 4 estimates specification 4, including indicator variables for every wage and
testing whether the different in acceptance probabilities between 10 and 9 cents is different
from the average difference between 12 and 8 (local) or the average difference between 5 and
15 (global). Columns 5-8 repeat 1-4, but restrict the sample to "sophisticates": Turkers who
respond that they work more than 10 hours a week and their primary motivation is money.
Robust standard errors in parentheses.
* p < 0.10, ** p < 0.5, *** p < 0.01
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Table 8: Task quality by offered task reward on MTurk

(1) (2) (3) (4) (5) (6) (7) (8)
Log Wage -0.006 -0.002 0.011 0.001 0.011 0.031

(0.012) (0.017) (0.017) (0.022) (0.033) (0.034)

Jump at 10 -0.002 -0.006
(0.007) (0.013)

Spline -0.019 -0.052
(0.067) (0.127)

Local 0.003 0.012
(0.011) (0.022)

Global -0.003 -0.002
(0.006) (0.012)

η -0.006 -0.002 0.011 0.001 0.011 0.032
(0.012) (0.017) (0.017) (0.023) (0.034) (0.035)

Sample Pooled Pooled Pooled Pooled Sophist. Sophist. Sophist. Sophist.
Sample Size 4073 4073 4073 4031 1407 1407 1407 1396

Notes. The reported estimates are logit regressions of getting at least 1 out of 2 images correctly
tagged on log wages (conditional on accepting the task), controlling for number of images done
in the task (6 or 12), age, gender, weekly hours worked on MTurk, country (India/US/other),
reason for MTurk, and an indicator for HIT accepted after pre-registered close date. Column 1
reports specification 1 that estimates the labor-supply elasticity, without a discontinuity. Col-
umn 2 estimates specification 2, which tests for a jump in the probability of acceptance at 10
cents. Column 3 estimates a knotted spline in log wages, with a knot at 10 cents, and reports
the difference in elasticities above and below 10 cents. Column 4 estimates specification 4,
including indicator variables for every wage and testing whether the different in acceptance
probabilities between 10 and 9 cents is different from the average difference between 12 and 8
(local) or the average difference between 5 and 15 (global). Columns 5-8 repeat 1-4, but restrict
the sample to "sophisticates": Turkers who respond that they work more than 10 hours a week
and their primary motivation is money. Robust standard errors in parentheses.
* p < 0.10, ** p < 0.5, *** p < 0.01
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Table 9: Estimates for Round Number Bunching, Labor Supply Elasticity and Optimiza-
tion Frictions: MTurk Data

Value of w0 $1.00

Excess mass at w0 0.027
(0.003)

Total missing mass -0.023
(0.010)

Missing mass below -0.014
(0.013)

Missing mass above -0.009
(0.013)

Test of equality of missing
mass below and above w0:

t-statistic -0.212

Bunching = Actual mass
Latent density 22.104

(16.040)

wL $0.83
wH $1.17
ω = (wH–w0)

w0
0.170

(0.064)

η 0.082
(0.026)

δ∗ 0.003
90% CI for δ∗ [0.000, 0.007]
95% CI for δ∗ [0.000, 0.008]

G(0)= G 0.748

Notes. The table reports estimates of excess bunching at threshold $w_{0}$, missing mass in the interval
around $w_{0}$ as compared to the smoothed predicted probability density function, and the interval
$(w_{L},w_{H})$ from which the missing mass is drawn. It also reports the bunching, and ω, both estimated
using observational MTurk data, along with the experimentally estimated labor supply elasticity, η. Finally,
the extent of optimization frictions is estimated using η and ω using equation 16 in the paper. The 90 and
95 percent confidence intervals in square brackets are estimated using 500 bootstrap replicates. Bootstrap
standard errors based on 500 draws are in parentheses.
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Online Appendix A Observational Results From Amazon

Turk

Online Appendix A.1 Upwards Sloping Job-Specific Labor Supply Curves

in an Online Labor Market.

We define a task as a unique combination of description, reward, time allotted, expiration

date, and requester. In our 856 day population of 4,504,696 posted tasks, we calculate the

duration of the task as the difference between the first time it appears and the last time it

appears, treating those that are present for the whole period as missing values. We convert

the reward into cents, and make 2 estimates of the time of the task. The first, which can

only be calculated for a subset of the data, involves parsing the text in the description

of the task, which will sometimes contain time information like “1 hour 20 minutes 30

seconds”. This is defined for just over 10% of our data. The other, which is much less

precise but exists for the whole dataset is the time allotted by the requester, which will

almost always be an overestimate of the actual time, but hopefully tracks the actual time.

Note that time allotted is also how much time a Turker has to do the task, and if the task is

too long relative to the time allotted, it may expire before the Turker can do the task.

We are interested in the labor supply curve facing a requester. Unfortunately, we

do not see individual Turkers in this data. Instead we calculate the time until the task

disappears from our sample as a function of the wage. Tasks disappear once they are

accepted. Thus we measure the time until the job disappears as duration of the posting.

While tasks may disappear due to requesters canceling them rather than being filled, this

is rare. We thus treat the duration of the task posting as a measure of time until accepted

by a Turker. The elasticity of this duration with respect to the wage will be equivalent to

the elasticity of labor supply when offer arrival rates are constant and reservation wages

have an exponential (constant hazard) distribution. We estimate regressions of the form:

70



log(durationhrdt) =
10

∑
k=0

δk1 {mod(rewardh, 10) = k} + βlog(rewardh)

+γlog(timeallotedh) + δd + δr + δt + εtrdh

Where h indexes hit tasks, d indexes description, r indexes requesters, and t indexes

the first 6 minute interval that the job was posted in.

Online Appendix A.2 Do Experienced Requesters Use Fewer Round

Numbers?

In this Appendix section, we show that there does not seem to be a decay in the probability

of posting a round number with requester experience. Our primary measure of requester

experience is number of days since first posting a task request on Amazon Turk.We estimate

specifications of the form:

RewardDivisibleby10trdh = βExperiencer + δr + δd + δt + εtrdh (24)

If sophistication explained the lack of bunching, we would expect more experienced

posters to use fewer round numbers. Table A2 suggests that there is little evidence of this:

for any measure of divisibility (by 10,5, or 100) experience has no effect on the divisibility

of rewards posted. This suggests that the bunching on Amazon Turk is not an artifact of

naive or inexperienced requesters.
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Figure A.1: Duration of Task Posting by Log Reward - Scraped Observational Sample
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Notes: The figure shows the a binned scatterplot of log duration (in minutes) of how long a task was posted
on MTurk on log reward (in cents), controlling for requester fixed effects and log time allotted. The scraped
sample constitutes of all HITs posted on MTurk between May 1, 2014 and September 3, 2016.
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Figure A.2: Effects of Reward Last Digit on Duration of Task Posting

-1
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Effect of Reward Last Digit ( Relative to 0) On Log Duration

Notes: The figure shows effects of the last digit of the reward on log duration in minutes (with 0 as the
omitted category) , controlling for log wage in cents, requester fixed effects and log time allotted - for the
scraped observational sample.
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Figure A.3: Density of Experience in Scraped Sample
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Notes: The figure shows the distribution of experience in days in the observational sample.
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Table A.1: Duration of Task Posting by Wage

(1) (2) (3) (4) (5) (6)
Log(Reward) -0.268*** -0.508** -0.507** -0.512** -1.066 -1.223

(0.0502) (0.185) (0.186) (0.185) (0.657) (0.742)
Log(Time Alloted) -0.0304 -0.823*** -0.850*** -0.848***

(0.111) (0.135) (0.128) (0.128)
Ends in 1 -0.204 -0.166 -0.171 -0.153 -0.621* -0.119

(0.194) (0.240) (0.241) (0.248) (0.276) (0.192)
Ends in 2 -0.168 -0.0325 -0.0323 -0.0326 -0.0913 -0.0499

(0.139) (0.162) (0.163) (0.164) (0.133) (0.157)
Ends in 3 -0.291 -0.0782 -0.0840 -0.0787 -0.190 -0.165

(0.194) (0.151) (0.152) (0.151) (0.655) (0.664)
Ends in 4 -0.461** -0.434** -0.426** -0.420* -0.0866 -0.108

(0.166) (0.158) (0.161) (0.164) (0.441) (0.419)
Ends in 5 -0.168 0.129 0.132 0.132 -0.277 -0.262

(0.157) (0.152) (0.152) (0.152) (0.476) (0.476)
Ends in 6 -0.268 -0.0533 -0.0565 -0.0563 -0.274 -0.286

(0.149) (0.154) (0.156) (0.154) (0.464) (0.453)
Ends in 7 0.0241 -0.110 -0.110 -0.107 -0.956 -0.950

(0.192) (0.227) (0.227) (0.224) (0.570) (0.604)
Ends in 8 -0.440** -0.105 -0.0958 -0.0926 0.0620 0.0657

(0.141) (0.133) (0.135) (0.135) (0.258) (0.273)
Ends in 9 -0.0748 0.163 0.165 0.125 0.255 -0.162

(0.165) (0.180) (0.180) (0.158) (0.570) (0.387)
Log(Task Time) 0.0738 -0.267

(1.764) (1.584)
Controls No No No Yes No Yes
N 2795741 2772258 2772138 2771570 374541 374541
Clusters 10418 8645 8535 8477 2202 2202
Requester FE Yes No Yes No Yes No
Description FE No Yes Yes No No No
Req. X Desc. FE No No No Yes No Yes
Time FE Yes Yes Yes Yes Yes Yes
Within R2 0.00276 0.00762 0.00769 0.00920 0.0134 0.0337
R2 0.849 0.902 0.902 0.902 0.969 0.970

Notes. Significance levels are * 0.10, ** 0.05, *** 0.01.
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Table A.2: Divisibility of Reward by Experience of Requester:Scraped Sample

(1) (2) (3) (4) (5) (6) (7) (8) (9)
experience 0.000306 0.00446 0.102 0.000348 0.0182 0.00506 0.000185 0.00887 -0.000163

(0.000195) (0.0197) (0.0829) (0.000208) (0.0194) (0.00298) (0.000111) (0.0119) (0.000272)
N 4504696 4470771 4442166 4504696 4470771 4442166 4504696 4470771 4442166
Clusters 11680 11069 9147 11680 11069 9147 11680 11069 9147
Requester FE No Yes Yes No Yes Yes No Yes Yes
Description FE No No Yes No No Yes No No Yes
Time FE No Yes Yes No Yes Yes No Yes Yes
Within R2 2.86e-08 0.00000904 0.000000712 2.10e-08 0.000000441 2.36e-10
R2 0.0206 0.932 0.984 0.0309 0.948 0.980 0.0208 0.952 0.996

Notes. Columns 1-3 have Divisibility by 10, Columns 4-6 have Divisibility by 5, and Columns 7-9 have Divisibility by 100. Even Columns control
for description and time fixed effects. Standard Errors clustered by requester.
Significance levels are * 0.10, ** 0.05, *** 0.01.
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Online Appendix B Additional Experimental Specifications

Online Appendix B.1 Pre-analysis plan specifications

In Tables B.1 and B.2 we show specifications from our pre-analysis plan that parallel those

in 7 and 8, respectively. These were linear probability specifications in the level of wages

without any controls, instead of the logit specifications with log wages and controls we

show in the main text. We also pool the two different task volumes. The initial focus

of our experiment was to test for a discontinuity at 10 cents, which is unaffected by our

changes in specification. While the elasticity is qualitatively very similar, the logit-log

wage specification shown in the text is closer to our model, a variant of the model specified

by Card et al. (2016), and improves precision on the elasticity estimate.
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Online Appendix C Theoretical extension: An efficiency wage

interpretation where effort depends on wage

In the main paper, we assume that the firm’s ability to set wages comes from monopsony

power. However, it may be recasted in terms of efficiency wages where wage affects

productivity: there, too, the employer will set wages optimally such that the impact of

a small change in wages around the optimum is approximately zero. In this section, we

show a very similar logic applies in an efficiency wage model with identical observational

implications as our monopsony model, with a re-interpretation of the labor supply elastic-

ity η as capturing the rate at which the wage has to increase to ensure that the no-shirking

condition holds when the firm wishes to hire more workers. Indeed, the limited conse-

quence of optimization errors when wages are a choice variable was originally made by

Akerlof and Yellen (1985) in the context of an efficiency wage model.

As in Shapiro and Stiglitz (1984), workers choose whether to work or shirk. Working

entails an additional effort cost e. Shirking is detected by employers with probability D.

Following Rebitzer and Taylor (1995), we allow the detection of shirking to falling in the

amount of employment l(w).19 Workers quit with an exogenous rate q. An unemployed

worker receives benefit b and finds an offer at rate s. All wage offers are assumed to be

worth accepting; once we characterize the wage setting mechanism, this implies a bound

for the lowest productivity firm. Finally, generalizing both Rebitzer and Taylor and Shapiro

and Stiglitz, we allow the wages offered by firms to vary; indeed our model will predict

higher productivity firms will pay higher wages—leading to equilibrium wage dispersion.

19In Shapiro and Stiglitz (1984), the detection probability is exogenously set. This produces some predic-
tions which are rather strong . For example, the model does not predict wages to vary with productivity,
as the no shirking condition that pins down the optimal wage does not depend on firm productivity. The
same is true for the Solow model, where the Solow condition is independent of firm productivity. As a result,
those models cannot readily explain wage dispersion that is independent of skill distribution, which makes
it less attractive to explain bunching. However, if we generalize the Shapiro-Stiglitz model to allow the
detection probability to depend on the size of the workforce as in Rebitzer and Taylor (1995), this produces a
link between productivity, firm size and wages. Going beyond Rebitzer and Taylor, we further generalize the
model to allow for heterogeneity in firm productivity, which produces a non-degenerate equilbrium offer
wage distribution.
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We can write the value of not shirking can be written as:

VN(w) = w− e +
(1− q)VN(w)

1 + r
+

qVA

1 + r

The value of shirking can be written as:

VS(w) = w +
(1− q)(1− D)VS(w)

(1 + r)
+
(1− (1− q)(1− D))VA

(1 + r)

Finally, the value of being unemployed is:

VU = b +
sEVN + (1− s)VU

(1 + r)

The (binding) no shirking condition, NSC, can be written as:

VN(w) = VS(w)

Plugging in the expressions above and simplifying we get the no-shirking condition:

w =
r

1 + r
VU +

e(r + q)
D(l)(1− q)

We can further express VU as a function of the expected value of an offer EVNand the

probability of receiving an offer, s, as well as the unemployment benefit b. However, for

our purposes, the key point is that this value is independent of the wage w and is taken to

be exogenous by the firm in its wage setting. Since detection probability D(l) is falling in l,

we can now write:

D(l) =
e (r + q)(

w− e + 1
1+r VU

)
(1− q)

This generates a relationship between l and w:

l(w) = D−1

 e (r + q)(
w− e + 1

1+r VU
)

(1− q)

 = d


(

w− e + 1
1+r VU

)
(1− q)

e (r + q)


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where d(x) = D−1( 1
x ). Since D′(x) < 0, we have d′(x) > 0. This is analogous to the labor

supply function facing the firm: to attract more workers who will work, one needs to pay

a higher wage because detection is decling in employment, D′(l) < 0. Therefore, we can

write the elasticity of the implicit labor supply function as:

l′(w)w
l(w)

=
d′(.)w

d(.)
× 1− q

e(r + q)

.

If we assume a constant elasticity d(x) function with elasticity ρ then the implicit

“effective labor” supply elasticity is also constant:

η =
l′(w)w

l(w)
= ρ× 1− q

e(r + q)

The elasticity is falling in effort cost e, exogenous quit rate q, as well as the discount

rate, r. It is also rising in the elasticity ρ, since a higher ρ means detection does not fall as

rapidly with employment.

The implicit effective labor supply function is then:

l(w) =
wη

C
=

wρ× 1−q
e(r+q)

C

which is identical to the monopsony case analyzed in the main text. For a firm with

productivity pi, profit maximization implies setting marginal cost of labor to the marginal

revenue product of labor (pi), i.e., wi = η
1+η pi. 20

Finally, we can augment this labor supply function to exhibit left-digit bias. Consider

the case where for wage w ≥ w0 , the perceived wage to equal to w̃ = w + g while under

w0 , it is perceived to be w̃ = w. Now, the labor supply can be written as:

20We can also solve for EVN = (E(w)−e)(1+r)
r−b(1+r) =

(
η

1+η E(p)−e
)

(1+r)

r−b(1+r) . This implies we can write the equi-
librium value of being unemployed as a function of the primitive parameters as follows: VU =

(1 + r)
[

b
r+s −

e
1−b(1+r + ηE(p)

(1+η)(r−b(1+r)

]
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l(w) = D−1
(

e(r+q)
(w−e+ 1

1+r VU)(1−q)

)
= d

(
(w−e+ 1

1+r VU)(1−q)
e(r+q)

)
for w < w0

l(w) = D−1
(

e(r+q)
(w+g−e+ 1

1+r VU)(1−q)

)
= d

(
(w+g−e+ 1

1+r VU)(1−q)
e(r+q)

)
for w ≥ w0

Note that under the condition that d(x) has a constant elasticity, the implicit labor

supply elasticity continues to constant both below and above w0. However, there is a

discontinuous jump up in l(w) function at w0. Therefore, we can always appropriately

choose a γ such that this implicit labor supply function can be written as:

l(wj, γ) =
wη × γ

1wj≥w0

C
=

wρ× 1−q
e(r+q) × γ

1wj≥w0

C

Facing this implicit labor supply condition, firms will optimize:

Π(p, w) = (p− w)l(w, γ) + D(p)1w=w0

With a distribution of productivity, p, higher productivity firms will choose to pay more,

as the marginal cost of labor implied by the implicit labor supply function is equated with

the marginal revenue product of labor at a higher wage. Intuitively, higher productivity

firms want to hire more workers. But since detection of shirking falls with size, this requires

them to pay a higher wage to ensure that the no shirking condition holds. Similarly, all of

the analysis of firm-side optimization frictions go through here as well. A low η due to

(say) high cost of effort now implies a large amount of bunching at w0 can be consistent

with a small amount of optimization frictions, δ.

One consequence of this observational equivalence is that we cannot distinguish be-

tween efficiency wages and monopsony in our observational analysis. However, in our

experimental analysis, we find that the evidence from on-line labor markets is more con-

sistent with a monopsony interpretation than an effort one. At the same time, it is useful

to note that many of the implications from this efficiency wage model are quite similar to a

monopsony one: for instance, both imply that minimum wages may increase employment

in equilibrium, as Rebitzer and Taylor show. Therefore, while understanding the impor-
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tance of specific channels is useful, the practical consequences may be less than what may

appear at first blush.
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Online Appendix D Deconvolution estimator

In this appendix, we describe the deconvolution estimator we use to estimate the distribu-

tions of the the elasticity η and δ. Recall that if we condition on δ > 0,we can take logs of

equation 14 to obtain:

2 ln(ω) = − ln(η(1 + η) + ln(δ) = − ln(η(1 + η)) + E[ln (δ) |δ > 0] + ln(δres)

We make the assumption that δres is lognormally distributed, so that ln(δres) ∼ N(0, σ2
δ ),

and we fix E[ln (δ) |δ > 0] = ln (E(δ|δ > 0)) + 1
2 σ2

δ . We can use the fact that the cumulative

distribution function of 2 ln(ω) is given by 1− φ̂ (exp {2 ln(ω)}) to numerically obtain a

density for 2 ln(ω), where φ̂ is empirically estimated from the shape of the missing mass.

This then becomes a well-known deconvolution problem, as the density of − ln(η(1 + η))

is the deconvolution of the density of 2 ln(ω) by the Normal density we have imposed

on ln(δres). We can then recover the distribution of η,H(η), from the estimated density of

− ln(η(1 + η)).

To see this, consider the general case of when the observed signal (W) is the sum of the

true signal (X) and noise (U). (In our case W = 2 ln(ω)− E[ln (δ) |δ > 0] and U = ln(δres).)

W = X + U

Manipulation of characteristic functions implies that the density of W is fW(x) =

( fX ∗ fU) (x) =
∫

fX(x − y) fU(y)dy where ∗ is the convolution operator. Let Wj be the

observed sample from W.

Taking the Fourier transform (denoted by ∼) , we get that ˜fW =
∫

fW(x)eitxdx =

f̃X × ˜fU. To recover the distribution of X, in principle it is enough to take the inverse

Fourier transform of
˜fW
˜fU

. This produces a “naive” estimator f̂X = 1
2π

∫
e−itx ∑N

j=1
eitWj

N
φ(t) dt, but

unfortunately this is not guaranteed to converge to a well-behaved density function. To
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obtain such a density, some smoothing is needed, suggesting the following deconvolution

estimator:

f̂X =
1

2π

∫
e−itxK(th)

∑N
j=1

eitWj

N

φ(t)
dt

where K is a suitably chosen kernel function (whose Fourier transform is bounded and

compactly supported). The finite sample properties of this estimator depend on the choice

of fU. If ˜fU decays quickly (exponentially) with t (e.g. U is normal), then convergence

occurs much more slowly than if ˜fU decays slowly (i.e. polynomially) with t (e.g. U is

Laplacian). Note that once we recover the density for X = ln(η(1 + η), we can easily recover

the density for η.

For normal U = ln(δres), Delaigle and Gijbels (2004) suggest a kernel of the form:

K(x) = 48
cos(x)
πx4 (1− 15

x2 )− 144
sin(x)
πx5 (1− 5

x2 )

This estimator also requires a choice of bandwidth which is a function of sample size.

Delaigle and Gijbels (2004) also suggest a bootstrap-based bandwidth that minimizes the

mean-integral squared error, which is implemented by Wang and Wang (2011) in the R

package decon, and we use that method here.
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