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Abstract

We design a choice experiment where the objects are valued according to only a single
attribute and we can observe the true preferences of the subject. Subjects are given a choice
set involving several lines of various lengths and are told to select one of them. Subjects
are instructed to select the longest line because they are paid an amount that is increasing
in the length of their selection. Subjects also make their choices while they are required to
remember either a 6-digit number (high cognitive load) or a 1-digit number (low cognitive
load). We find that subjects in the high load treatment make inferior line selections: the
longest line is less likely to be selected and the difference between the length of the selected
line and length of the longest line is larger in the high load treatment. We also find that
subjects in the high load treatment conduct worse searches in that they have fewer unique
line views, fewer overall line views, and they spend less time viewing the longest line.
Our results suggest that cognition affects choice, even in our idealized choice setting. We
also find evidence of choice overload even when the choice set is small and the objects are
simple. Further, our experimental design permits a multinomial discrete choice analysis on
choice among single-attribute objects with an objective value. The results of our analysis
suggest that the errors in our data are have a Gumbel, and not a normal, distribution.
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1 Introduction

Consider a subject making a binary choice between a bag of potato chips and a can of soda.

The choice from this relatively unhealthy set would allow the experimenter to conduct an

inference of the preferences of the subject. However, this inference is noisy and it is not

straightforward to detect a suboptimal choice.

If preferences are additionally elicited by a supplementary method (for example, eliciting

either willingness to pay or a ranking of the objects) the experimenter could compare the choice

with this alternate measure. However, both the choice and the supplementary elicitation are

noisy. In the case that preferences are not elicited by a different method the experimenter

would only be able to infer that a suboptimal action was taken if an intransitive choice was

made. In contrast to these two cases, we design an experiment where we have a perfect measure

of the preferences of subjects and we can therefore able to determine-without noise-whether

subjects selected a suboptimal action.

Next suppose that the subject is to make another choice from a different set and the subject

will only be given one of their two choices. This second choice is between a can of orange

soda and a glass of orange juice. Given an isolated choice between these objects, the subject

would prefer the orange soda. However, after the unhealthy first choice, the subject selects the

orange juice. More generally, due to the repeated nature of a choice experiment, the attributes

of items in the decision sets from previous decisions might interact with subsequent decisions

in an idiosyncratic manner that is not discernible to the observer.

We design a choice experiment where the objects are valued according to only a single

attribute and we can observe the true preferences of the subject. Further, since the objects

only have one objective value according to a single dimension, there will not be an unde-

tected relationship between one of several attributes from a previous choice and one of several

attributes of a subsequent choice.

The objects of choice are lines that vary in length. Subjects attempt to select the longest

line because they are paid an amount that is increasing in the length of their selection. While

we are able to observe the true objective length of each line, it is well-known that subjects
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have imperfect perception of objectively measurable physical quantities (Fechner, 1860; Thur-

stone, 1927a,b). In other words, even where objects have objectively measurable properties,

perception of them is imperfect.

Further, this imperfect perception of objective quantities have served as a justification

for random choice or random utility models. For instance, Bradley and Terry (1952), Luce

(1959a,b), Becker, DeGroot, and Marschak (1963), McFadden (1974, 1976, 1981, 2001), Yellott

(1977), and Falmagne (1978) each make explicit reference to either Fechner or Thurstone.1

However, despite this known connection between imperfect perception of objective properties

and stochastic choice, to our knowledge, we are the first to conduct an experiment where

suboptimal choices are perfectly observable because utility is represented by a cardinal physical

quantity.

Subjects are given a choice set involving several lines of various lengths and are directed

to select one of them. Subjects can only view one line at a time. This design simulates

the feature that deliberation about the desirability of an object compared to another object

crucially involves the memory of the assessment of the objects. This design also allows us to

observe the search history of subjects.

Subjects make their choice while under a cognitive load. Some choices are made when

required to remember a 6-digit number (high cognitive load) and others when required to

remember a 1-digit number (low cognitive load). We have observations about the searches

and the choices of subjects in both cognitive load treatments.

We find that subjects in the high load treatment make inferior line selections. In particular,

the longest line is less likely to be selected and the difference between the length of the selected

line and length of the longest line is larger in the high load treatment. We also find that

subjects in the high load treatment conduct worse searches in that they have fewer unique line

views, fewer overall line views, and they spend less time viewing the longest line. Our results

suggest that, even in our idealized setting, choice is affected by the availability of cognitive

resources. We also find choice overload in a setting without complicated objects (our objects

1More recent papers that cite these authors include Luce (1994, 2005), Butler (2000), Rieskamp (2008),
Fudenberg, Iijima, and Strzalecki (2015), Agranov and Ortoleva (2017), Navarro-Martinez, Loomes, Isoni,
Butler, and Alaoui (2017).
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are simply line lengths) or without many objects (our largest choice set is 6). Further, our

design permits a multinomial discrete choice analysis (McFadden, 1974) on choice among

single-attribute objects with an objective value. The results of our analysis suggest that the

errors in our data are have a Gumbel, and not a normal, distribution.

2 Related Literature

In order to make sense of choice data, researchers have advanced random utility or random

choice models. The classic efforts include Bradley and Terry (1952), Luce (1959a,b), and

Becker, DeGroot, and Marschak (1963). Numerous other random utility or random choice

experimental and theoretical papers have emerged in an effort to better understand choice.2 ,3

The conceptualization that utility is random has also lead to significant advances in econo-

metrics (McFadden, 1974, 1976, 1981, 2001). Recent attempts to model random choice have

included models where the decision maker does not consider the entire set of objects and this

is not necessarily observable to the experimenter.4 It is our position that, while there are likely

consideration set effects, the imperfect perception about one’s preferences is a key component

to stochastic choice.

Matějka and McKay (2015) offer a rational inattention foundation for discrete choice mod-

els. Agents optimally allocate costly attention in order to better understand the true state of

nature.5 Specifically, the agents can reduce the Shannon entropy of the setting by incurring

costs associated with attention. The authors show that this implies a random choice specifi-

2A partial list of these efforts would include Tversky (1969), Yellott (1977), Falmagne (1978), Loomes,
Starmer, and Sugden (1989), Sopher and Gigliotti (1993), Loomes and Sugden (1995), Sopher and Narramore
(2000), Gul and Pesendorfer (2006), Rubinstein and Salant (2006), Tyson (2008), Caplin, Dean, and Martin
(2011), Gul, Natenzon, and Pesendorfer (2014), Loomes and Pogrebna (2014), Caplin and Dean (2015), Caplin
and Martin (2015), Cubitt, Navarro-Martinez, and Starmer (2015), Fudenberg, Iijima, and Strzalecki (2015),
Lu (2016), Apesteguia, Ballester, and Lu (2017), Agranov and Ortoleva (2017), Dean and Neligh (2017),
Navarro-Martinez, Loomes, Isoni, Butler, and Alaoui (2017), Natenzon (2018), Apesteguia and Ballester (2018),
Caplin, Dean, and Leahy (2018), Echenique, Saito, and Tserenjigmid (2018), Koida (2018), and Kovach and
Tserenjigmid (2018).

3For a partial list from the recent psychology literature, see Regenwetter, Dana and Davis-Stober (2011), Re-
genwetter, Dana, Davis-Stober, and Guo (2011), Regenwetter and Davis-Stober (2012), Birnbaum and Schmidt
(2008, 2011), and Birnbaum (2011).

4For instance, see Masatlioglu, Nakajima, and Ozbay (2012), Manzini and Mariotti (2014), Aguiar, Boc-
cardi, and Dean (2016), Cattaneo, Ma, Masatlioglu, and Suleymanov (2017).

5Also see Weibull, Mattsson, and Voorneveld (2007).
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cation similar to Luce (1959a). In our experiment there is a similar process as subjects devote

cognitive effort in order to better judge the line lengths.

In a closely related paper Reutskaja, Nagel, Camerer, and Rangel (2011) report on a choice

experiment that employs eye tracking equipment. The subjects select items under strong time

pressure (3 seconds) from choice sets of 4, 9, and 16 objects. Prior to the choice, the experi-

menters elicit valuations of the objects. This alternate elicitation allows the experimenter to

judge the quality of the choices. The authors find that the quality of choices and the quality

of searches decrease in the size of the choice set. Our experiment has a different design in

that our subjects have 15 seconds to select among 2−6 objects. Most notably though, we can

objectively determine the quality of the choice since we know the exact lengths of the lines.

There is a large literature that employs the cognitive load manipulation in order to affect

the available cognitive resources of subjects. Although much of this research appears in the

psychology literature, the technique is more frequently appearing in the economics literature6

including in strategic settings.7 Most relevant to our purposes, research finds that subjects

in a high cognitive load treatment fail to process available and relevant information (Gilbert,

Pelham, and Krull, 1988; Swann, Hixon, Stein-Seroussi, and Gilbert, 1990). We also note that

cognitive load tends to cause subjects to perform worse on visual judgment tasks (Morey and

Cowan, 2004; Allen, Baddeley, and Hitch, 2006; Cocchi et al., 2011; Morey and Bieler, 2013;

Zokaei, Heider, and Husain, 2014; Allred, Crawford, Duffy, and Smith, 2016).

To our knowledge, there are only two examples of papers that employ the cognitive load

manipulation in a choice setting: Lee, Amir, and Ariely (2009) and Drichoutis and Nayga

(2018).

Lee, Amir, and Ariely (2009) look for intransitive choices among pair-wise decisions, while

their subjects are under a cognitive load. Surprisingly, the authors find that subjects under a

high cognitive load make fewer intransitive choices than subjects under a low cognitive load.

However, these are real world objects that have attributes whose desirability is not observable

6For instance, see Benjamin, Brown, and Shapiro (2013), Schulz, Fischbacher, Thöni, and Utikal (2014),
Deck and Jahedi (2015), and Hauge et al. (2016)

7See Milinski and Wedekind (1998), Roch et al. (2000), Cappelletti, Güth, and Ploner (2011), Carpenter,
Graham, and Wolf (2013), Duffy and Smith (2014), Allred, Duffy, and Smith (2016), Buckert, Oechssler, and
Schwieren (2017), and Duffy, Naddeo, Owens, and Smith (2018)
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to the experimenters. Further, the repeated nature of the experiment makes it diffi cult to

determine if the attributes from previous choices affects subsequent choices (either because

the attributes are regarded as complements or substitutes). By contrast our subjects make

judgments on objects that have a single attribute.

Drichoutis and Nayga (2018) find that a high cognitive load does not increase internal

inconsistency on a GARP budget allocation task. By contrast, we find that the cognitive load

manipulation negatively affects choices and searches.

Our experiment presents subjects with a decision problem with an objectively optimal

solution. However because of imperfections with the subjects, they are not able to attain the

optimal solution with certainty. This feature also appears in Gabaix et al. (2006) and Sanjurjo

(2015, 2017). There subjects are given a multi-attribute search problem where the values are

represented by a number. Since subjects cannot fully process the information, despite that

there is an objectively optimal solution, the optimal solution is not a common occurrence.

Also similar to our setting, subjects must click on the information in order to make it appear.

In this way, we can observed the process of deliberation.8

3 Experimental design

3.1 Overview

The experiment was programmed on E-Prime 2.0 software (Psychology Software Tools, Pitts-

burgh, PA). The sessions were performed on standard 23 inch (58.42 cm) Dell Optiplex 9030

AIO monitors. E-Prime imposed a resolution of 1024 pixels by 768 pixels. A total of 92

subjects participated in the experiment.

3.2 Line selection task

In each round, subjects were presented a set of lines that ranged in number between 2 and

6. Each of these numbers of possible lines occurred with probability 0.2 and were drawn with

replacement. Subjects were able to only view one line at a time. The lines were labeled by

8Also see Payne, Braunstein, and Carroll (1978) and Payne, Bettman, and Johnson (1993).
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letters in the obvious manner. Letters A and B always represented the first two options, and

consecutive letters were added as needed. Subjects could view a particular line by clicking on

the letter that corresponds to that particular line. These labels appeared in alphabetical order

at the bottom of the screen. A click on a particular label would reveal the corresponding line.

To view another line, subjects would click on a its corresponding label. This makes the new

line visible and the old line disappear.

The length of the lines in any trial were determined by subtracting various amounts from

the longest line. There were 10 possible longest line lengths in pixels ranging in 16 pixel (0.80

cm) increments from 160 pixels (8.0 cm) to 304 pixels (15.1 cm). The lines each had a height

of 0.38 cm.

There were three line length treatments. In the diffi cult treatment, one line was one pixel

shorter than the longest, and the other differences were drawn from a uniform on {−1, ...,−11}.

In the medium treatment, one line was 12 pixels shorter than the longest and the other

differences were drawn from a uniform on {−12, ...,−39}. In the easy treatment, one line was

40 pixels shorter than the longest, and the other differences were drawn from a uniform on

{−40, ...,−100}. The diffi cult, medium, and easy treatments each occurred with probability
1
3 , in random order, and are drawn with replacement. The subjects were not informed of the

existence of these treatments.

Below each letter label was a box indicating that the subject currently selected that line.

Subjects could change this selection at any time during the allotted 15 seconds. The subjects

could view the time remaining, rounded to the nearest second. See Figure 1 for a screenshot.9

9See https://osf.io/srpzh/ for the full set of screenshots.
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Figure 1: Screenshot where line C is being viewed, line B is currently selected

as the longest, and there are 4 seconds remaining.

Subjects were paid for the line that was selected when the 15 second expired. If the

subjects did not select a line before time expired, it was assumed that the selected line had a

length of 0. Regardless of their actions in the line judgment screen, subjects would advance to

the following screen only when the 15 seconds had expired. Subjects were paid for the length

of their selected line at a rate of $1 per 240 pixels (or $0.4167 per 100 pixels).

Each line appeared within an invisible box of dimensions 400 pixels by 150 pixels. The

lines were randomly offset in the vertical and horizontal direction within these boxes such that

there was a minimum of a 20 pixel cushion between the line and the edge of the box.

8



3.3 Cognitive load treatments

There were 50 trials where the subject was given a 6-digit number to remember, which we

refer to as high load. There are 50 trials where the subject was given a 1-digit number to

remember, which we refer to as low load. These were given in random order. Regardless of the

load, the subjects were given 5 seconds to commit the number to memory.10 Subjects would

proceed to the following screen only when the 5 seconds had expired. Each of the 10 longest

line lengths were presented 5 times in the high load treatment and 5 times in the low load

treatment, also in random order.

3.4 Unincentivized practice

Prior to the incentivized portion of the experiment, the subjects had unincentivized practice

remembering both a 1-digit and a 6-digit number. In contrast to the incentivized portion of

the experiment, here the subjects were told if their response was correct. If the response did

not contain the correct number of digits then the subjects were directed to repeat the practice

memorization task.

Additionally, the subjects had an unincentivized practice on the line selection task. If the

subjects did not view any lines, did not select a line that they viewed, or did not select any

lines, the subjects were informed of this and were directed to repeat the practice line selection

task.

3.5 Payment details

Subjects completed 100 line selection tasks and 100 memorization tasks. Those who correctly

completed all 100 memorization tasks were paid for 30 randomly determined line selections,

those who correctly completed 99 were paid for 29, those who correctly completed 98 were

paid for 28, and so on, until subjects who correctly completed 70 or fewer memorization tasks

were not paid for any of the line selection tasks. In addition to these payments, subjects were

10The subjects could not view the time remaining in this stage, as it could interact with the memorization
number.
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also paid a $5 show-up fee. Subjects were paid in cash and amounts were rounded up to the

nearest $0.25. Subjects earned a mean of $26.00.

3.6 Discussion of the design here?

4 Results

4.1 Cognitive load

A larger fraction of memorization tasks were correctly completed under low load (97.6%, 4490

of 4600) than high load (85.8%, 3947 of 4600) according to a Mann-Whitney test, Z = 20.53,

p < 0.001.

As each of the 92 subjects attempt 50 high load memorization tasks and 50 low load

memorization tasks, Table 1 presents a characterization of the subject-level distribution of the

number of correct memorization tasks by cognitive load treatment and the number pooled

across treatments.

Table 1: Distribution of subjects by number of correct memorization tasks
Restricted to cognitive load treatments

46− 50 41− 45 36− 40 31− 35 26− 30 21− 25 < 21 Total
High load 50 17 11 5 4 3 2 92
Low load 88 4 0 0 0 0 0 92

Pooled across cognitive load treatments
96− 100 91− 95 86− 90 81− 85 76− 80 71− 75 < 71 Total

Pooled 40 24 13 4 5 1 5 92

The upper panel characterizes the subject-level distribution of the number of
correct memorization tasks by cognitive load treatment. The lower panel charac-
terizes the subject-level distribution of the correct memorization tasks across both
cognitive load treatments.

Table ??? shows that 77 of the 92 subjects successfully completed more than 85% of

their memorization tasks correctly. This suggests that the incentives were suffi cient to elicit

cognitive effort on these tasks.
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4.2 Quality of choices

Here we explore the optimality of choices. We define the Selected longest variable to be a 1 if

the choice was the longest available line and a 0 otherwise. Table 2 characterizes the Selected

longest variable in the cognitive load and diffi culty treatments.

Table 2: Selected longest variable by diffi culty treatment
Easy Medium Diffi cult Pooled

High load 94.6% 73.1% 37.0% 68.9%
1497 of 1582 1124 of 1538 548 of 1480 3169 of 4600

Low load 96.8% 76.3% 38.5% 69.6%
1440 of 1487 1140 of 1495 623 of 1618 3203 of 4600

Pooled 95.7% 74.6% 37.8% 69.3%
2937 of 3069 2264 of 3033 1171 of 3089 6372 of 9200

It appears to be the case that the diffi culty treatment was successful in that the longest

line is more likely to be selected in the East treatment. Table 3 characterizes the variable in

the cognitive load and number of lines treatments.

Table 3: Selected longest variable by number of lines treatment
2 Lines 3 Lines 4 Lines 5 Lines 6 Lines

High load 79.0% 74.0% 71.1% 62.3% 57.9%
710 of 899 690 of 932 674 of 948 580 of 931 515 of 890

Low load 78.0% 75.0% 68.0% 66.4% 61.1%
700 of 899 720 of 960 613 of 902 588 of 886 582 of 953

Pooled 78.4% 74.5% 69.6% 64.3% 59.5%
1410 of 1798 1410 of 1892 1287 of 1850 1168 of 1817 1097 of 1843

It also appears that the probability that the longest line is selected is decreasing in the

number of available lines. This appears to be suggestive of choice overload, even with only

a few simple objects of choice. Table 4 characterizes the variable in the cognitive load and

longest line length treatments.

Table 4: Selected longest variable by longest line length treatment
160 176 192 208 224 240 256 272 288 304

High load 71.1% 72.0% 69.1% 70.7% 70.4% 70.4% 66.7% 71.5% 64.4% 62.6%
Low load 71.7% 73.9% 75.0% 69.8% 69.4% 68.5% 66.3% 68.0% 67.6% 66.1%
Pooled 71.4% 72.9% 72.1% 70.2% 69.9% 69.5% 66.5% 69.8% 66.0% 64.3%
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The Pooled values each have 920 observations. The values restricted to a
cognitive load treatment each have 460 observations

This suggests that the quality of choices decreases in the length of the longest line. This

is evidence of Weber’s law. In Table 5 we characterize the variable according to the number

of lines and the letter that contained the longest line.

Table 5: Selected longest variable by number of lines and letter containing the longest
A B C D E F

2 Lines 77.0% 79.9% − − − −
705 of 916 705 of 882

3 Lines 72.5% 72.5% 78.7% − − −
470 of 648 457 of 630 483 of 614

4 Lines 64.8% 62.0% 71.6% 79.3% − −
289 of 446 279 of 450 351 of 490 368 of 464

5 Lines 64.1% 58.0% 62.8% 70.8% 66.0% −
236 of 368 215 of 371 219 of 349 250 of 353 248 of 376

6 Lines 50.8% 52.8% 50.0% 60.2% 64.5% 78.7%
167 of 329 161 of 305 144 of 288 197 of 327 180 of 279 248 of 315

There appear to be differences in accuracy conditional on the letter that contained the

longest line. Tables 2 − 5 suggest that the relevant variables need to be included in the

analysis of the Selected longest line variable.

We now conduct regressions with the Selected longest variable as dependent variable.

Since the dependent variable is binary, we employ a logistic specification. We include the

High load variable, which obtains a 1 in the high load treatment, and a 0 otherwise. Further,

since the Selected longest variable is affected by the diffi culty treatments, the number of

lines treatments, the longest line treatments, and the letter that contained the longest line,

we include these as independent variables. For the diffi culty treatments, we include dummy

variables indicating whether the treatment was Easy or whether the treatment was Diffi cult.

To account for the letter that contained the longest line, we offer specifications where we

estimate a unique dummy variable for each of the 20 combinations of letter-number of lines

as in Table 5. However, in the analysis immediately below we do not explore the effect of the

letter on the quality of the choice. We postpone our discussion of this issue until subsection

4.6. Due to the repeated nature of the observations, we also offer fixed-effects specifications
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where we estimate a dummy variable for each subject. We summarize these regressions in

Table 6.

Table 6 Logistic regressions of the Selected longest line variable
(1) (2) (3) (4)

High load −0.157∗∗ −0.163∗∗ −0.162∗∗ −0.164∗∗
(0.054) (0.055) (0.056) (0.056)

Longest line normalized −0.003∗∗∗ −0.003∗∗∗ −0.003∗∗∗ −0.003∗∗∗
(0.0006) (0.0006) (0.0006) (0.0006)

Number of lines normalized −0.315∗∗∗ − −0.327∗∗∗ −
(0.020) (0.020)

Easy treatment dummy 2.068∗∗∗ 2.126∗∗∗ 2.218∗∗∗ 2.287∗∗∗

(0.099) (0.100) (0.104) (0.106)
Diffi cult treatment dummy −1.662∗∗∗ −1.700∗∗∗ −1.729∗∗∗ −1.767∗∗∗

(0.058) (0.059) (0.060) (0.062)
Letter dummies No Y es No Y es
Fixed effects No No Y es Y es
AIC 8337.8 8180.5 8171.7 8014.6

We provide the coeffi cient estimates and the standard errors in parentheses.
We do not provide the estimates of the intercepts, the Letter dummies, or the
subject-specific dummies in the fixed effects regressions. AIC refers to the Akaike
information criterion (Akaike, 1974). Each regression has 9200 observations. ∗∗∗

denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

We find that the accuracy of the choice decreases when there is a larger number of lines

(choice overload effects), decreases when the longest line is longer (Weber’s law), and decreases

in the diffi culty of the decision (standard random choice effects). Further, in every specifi-

cation, we see that the high load coeffi cient is negative. This implies that choices are worse

in the high cognitive load treatment. We see similar results when we conduct the analogous

tobit regressions with the Longest line minus the selected line as dependent variable. See

Table A??? in the appendix. These results imply that the availability of cognitive resources

affects the quality of the choice.

4.3 Quality of searches

The analysis above suggests that the high cognitive load treatment implied worse choices, we

now explore the effect of the cognitive load on the searches. To investigate this, we define
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the View clicks variable as the number of total line view clicks during the search stage. We

conduct an analysis identical to Table 6 with the exception that the dependent variable is

View clicks and the regression is linear, not logistic. Table 7 summarizes this analysis.

Table 7 Regressions of the View clicks variable
(1) (2) (3) (4)

High load −0.339∗∗∗ −0.346∗∗∗ −0.340∗∗∗ −0.348∗∗∗
(0.049) (0.049) (0.040) (0.040)

Longest line normalized −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗
(0.001) (0.001) (0.0004) (0.0004)

Number of lines normalized 1.082∗∗∗ − 1.083∗∗∗ −
(0.017) (0.014)

Easy treatment dummy −1.459∗∗∗ −1.470∗∗∗ −1.421∗∗∗ −1.431∗∗∗
(0.060) (0.060) (0.050) (0.050)

Diffi cult treatment dummy 0.654∗∗∗ 0.639∗∗∗ 0.654∗∗∗ 0.643∗∗∗

(0.060) (0.059) (0.050) (0.050)
Letter dummies No Y es No Y es
Fixed effects No No Y es Y es
AIC 41894.2 41815.7 38318.0 38221.7

We provide the coeffi cient estimates and the standard errors in parentheses.
We do not provide the estimates of the intercepts, the Letter dummies, or the
subject-specific dummies in the fixed effects regressions. AIC refers to the Akaike
information criterion (Akaike, 1974). Each regression has 9200 observations. ∗∗∗

denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

Here we see that view clicks is lower in the high load than in the low load. This suggests

that the cognitive load manipulation is affecting the quality of the searches. We also observe

that view clicks is decreasing in the size of the longest line and is increasing in the number

of available lines. Perhaps more surprisingly, we observe more View clicks in the Diffi cult

treatment and fewer in the Easy treatment. That view clicks are increasing in the diffi culty

of the decision seems to contradict satisficing.

In the appendix we also report on additional analyses that investigate the optimality of

searches. These include analyses similar to Table 7 but with variables that capture the number

of unique line views, the number of times the longest line was viewed, and the average of the

line lengths viewed weighted by their time viewed. In each of these analyses, we find that the
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subjects in the high cognitive load treatment perform worse searches than subjects in the low

cognitive load treatment.

4.4 Relationship between choice and search

We observe that choices are worse in the high cognitive load treatment and that searches are

worse in the high cognitive load treatment. A natural question is whether the worse searches

are causing the worse choices? Manzini and Mariotti (2014) posit that suboptimal choice

occurs because the subject does not consider every object in the choice set, but only a subset.

Further this consideration set is not typically observable to the experimenter. However, we

are able to observe whether the subject viewed the longest line.

Among the 9109 trials where the subject viewed the longest line, there are 6354 observa-

tions where the longest line was not selected. However, among the 91 trials where the subject

did not view the longest line there are 73 observations where the longest line was not selected.

Therefore in our data, 98.86% of the suboptimal choices occurred in trials where the subject

viewed the longest line. This suggests that the bulk of our suboptimal choices can be explained

due to imperfect perception rather than not considering the longest line.

In Table 6 above, we explored whether the subject optimally selects the longest line by

conducing regressions with the Selected longest line variable. Another question to ask is

whether the subject selected the longest line among those lines that were viewed. We define

the Selected longest line viewed variable as a 1 if the longest line among those viewed was

selected, and a 0 otherwise. We conduct an analysis, similar to Table 6 but rather than using

the Selected longest line variable, we employ the Selected longest line viewed variable. We

summarize these regressions in Table 8.

15



Table 8 Logistic regressions of Selected longest line viewed variable
(1) (2) (3) (4)

High load −0.142∗∗ −0.148∗∗ −0.145∗∗ −0.148∗∗
(0.054) (0.055) (0.056) (0.056)

Longest line normalized −0.003∗∗∗ −0.003∗∗∗ −0.003∗∗∗ −0.003∗∗∗
(0.001) (0.001) (0.001) (0.001)

Number of lines normalized −0.304∗∗∗ − −0.314∗∗∗ −
(0.020) (0.020)

Easy treatment dummy 2.122∗∗∗ 2.186∗∗∗ 2.232∗∗∗ 2.307∗∗∗

(0.102) (0.103) (0.105) (0.106)
Diffi cult treatment dummy −1.661∗∗∗ −1.703∗∗∗ −1.726∗∗∗ −1.769∗∗∗

(0.058) (0.059) (0.060) (0.062)
Letter dummies No Y es No Y es
Fixed effects No No Y es Y es
AIC 8304.9 8133.5 8176.0 8003.9

We provide the coeffi cient estimates and the standard errors in parentheses.
We do not provide the estimates of the intercepts, the Letter dummies, or the
subject-specific dummies in the fixed effects regressions. AIC refers to the Akaike
information criterion (Akaike, 1974). Each regression has 9200 observations. ∗∗∗

denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

Even when we restrict attention to the set of viewed lines, we still find evidence that

subjects in the high load treatment make worse choices than subjects in the low load treatment.

We also conduct an analysis, found in the Appendix, that conducts the analogous analysis

by employing tobit regressions on the variable that is the length of the maximum line viewed

minus the length of the line selected. This is in Table A???? in the Appendix.

4.5 Multinomial discrete choice analysis and the nature of the stochastic

utility

An assumption in multinomial discrete choice analysis is that choice is stochastic because

of an unobserved stochastic component in the utility function.11 A common specification in

these random utility models (RUM) is that there is a non-stochastic component of the utility

function and an additive stochastic component. For example, option j would have utility

Uj = Vj + εj ,

11See McFadden (1974, 1976, 1981, 2001).
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where Vj is the non-stochastic component and εj is the random component. RUMs typically

assume that agents select the item with the largest realized utility. Specifically, a choice of i

from the set K = {1, ..., k} arises when

Vi + εi ≥ Vj + εj for every j ∈ K.

Further, the non-stochastic components to the RUMs are not typically observable. There-

fore the researcher includes a set of observable features possibly relevant to the choice j,

xj = (xj1, ..., xjn). In order to account for the effect of each of these factors, the analyst also

estimates β = (β1, ..., βn). In these settings, Vj = β ∗ xj . However, in our setting, the length

of the line is the only relevant attribute. Therefore the non-stochastic component of option j

simplifies to:

Vj = β ∗ Lengthj ,

where β is a scalar.

We also note that there can be different specifications of the stochastic component. For

instance, εj might be assumed to be normally distributed. On the other hand, the stochastic

component might also be assumed to have the Gumbel distribution, e−e
−ε
. (Confusingly, this is

also referred to as the Type I extreme-value distribution, the double exponential distribution,

and the Weibull distribution.) In our experiment, we can perfectly observe the objective

lengths of the lines and the choices made by the subjects. We can therefore run specifications

that employ either of these assumptions of the error distribution and observe which provides

a better fit of the data.

We run one specification where the stochastic component has the Gumbel distribution

and is identically distributed for every option. As McFadden (1974) and Yellot (1977) show,

this structure implies the Luce (1959a) stochastic choice model, whereby the probability that

option j is selected from set K.

P (j) =
eβ∗Lengthj∑
k∈K

eβ∗Lengthk
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We denote this Conditional Logistic model as specification (1).

We also run a specification where the stochastic component is assumed to be normally

distributed and is independently and identically distributed for every option. Yellot (1977)

shows that this corresponds to Case V of Thurstone (1927a). We refer to this Multinomial

Probit model as "Multi Probit 1" and denote it as specification (2).

Further, we run a specification where the stochastic component is assumed to be Gum-

bel but the options are not identically distributed. Specifically, each option has a stochastic

component distributed e−e
− ε
θi where θi varies by the option. This specification is the Het-

eroschedastic Extreme-Value (HEV) model introduced by Bhat (1995). We note that in our

analysis, the final two options are assumed to be identically distributed with the unit scale:

θk = θk−1 = 1. We denote the HEV model as specification (3).

Finally, we run a specification where the stochastic component is assumed to be normally

but non-identically distributed. This Multinomial Probit specification assumes that the stan-

dard deviations of the options can be different but that they are also independently distributed.

Note that similar to the HEV model, for identification purposes, we assume that the standard

deviation of the final two choices are identical. We refer to this Multinomial Probit model as

"Multi Probit 2" and denote it as specification (4).

Note that we exclude observations where subjects did not specify a choice before time

expired. We report the AIC and the SIC for each model, restricted to a particular number

of lines treatment. We also report the estimate of β for each model in each setting. These

analyses are summarized in Table 9.
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Table 9: Comparisons of different multinomial discrete choice models
Cond Logit Multi Probit 1 HEV Multi Probit 2 Trials

(1) (2) (3) (4)
2 Lines β est. 0.131 0.098 − − 1785

AIC 1417 1432
SIC 1422 1437

3 Lines β est. 0.128 0.086 0.118 0.067 1871
AIC 2088 2140 2078 2145
SIC 2094 2146 2089 2156

4 Lines β est. 0.115 0.076 0.121 0.084 1826
AIC 2718 2801 2709 2820
SIC 2723 2807 2726 2837

5 Lines β est. 0.110 0.108 0.113 0.116 1780
AIC 3181 3383 3186 3282
SIC 3186 3389 3208 3304

6 Lines β est. 0.094 0.062 0.070 0.046 1780
AIC 3775 3808 3613 3684
SIC 3780 3813 3641 3711

We provide the estimates of β, the Akaike Information Criterion (AIC, Akaike,
1974) and the Schwarz Information Criterion (SIC) for the various models re-
stricted to treatments with identical numbers of lines. Each of the estimates for β
are significantly different from 0 with p < 0.001.

For both AIC and SIC, every value for the Conditional Logit model (1) is lower than that

for the Multinomial Probit 1 model (2). Additionally for both measures, every value for the

HEV model (3) is lower than that for the Multinomial Probit 2 model (4). We interpret these

results as suggesting that the models that assume that errors have a Gumbel distribution

provide a better fit for for the data than comparable models that assume that errors have a

normal distribution. However, we note that the estimates of β vary among the models, and

this is perhaps affecting our results. In order to address this possibility, we offer an analysis,

identical to that summarized in Table 9, however we add an additional restriction that β = 0.1.

This analysis is summarized in Table 10.
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Table 10: Comparisons of different restricted multinomial discrete choice models
Cond Logit Multi Probit 1 HEV Multi Probit 2 Trials

(1) (2) (3) (4)
2 Lines AIC 1435 1430 − − 1785

SIC 1435 1430
3 Lines AIC 2116 2154 2087 2154 1871

SIC 2116 2154 2093 2160
4 Lines AIC 2729 2903 2722 2810 1826

SIC 2729 2903 2733 2821
5 Lines AIC 3186 3317 3190 3241 1780

SIC 3186 3317 3207 3257
6 Lines AIC 3776 4153 3691 4097 1780

SIC 3776 4153 3713 4119

We provide the Akaike Information Criterion (AIC, Akaike, 1974) and the
Schwarz Information Criterion (SIC) for the various models restricted to treat-
ments with identical numbers of lines. We have restricted β = 0.1 in each specifi-
cation

Similar to the analysis summarized in Table 9, with the exception of the 2 Lines treatment,

both the AIC and SIC are lower for the specifications with Gumbel errors than for normal

errors. In 17 of 18 comparisons, the AIC of the Gumbel error specification is lower than that

for the normal error specification. Likewise, in 17 of 18 comparisons, the SIC of the Gumbel

error specification is lower than that for the normal error specification. We interpret these

results as evidence that the assumption that the errors have a Gumbel distribution is better

than the assumption that the errors have a normal distribution.
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5 Appendix

5.1 More analysis on the quality of choices

In order to investigate the optimality of choices, in Table 6 we summarized logistic regressions

of the Selected longest variable. Here we perform the analogous exercise but we analyze the

Longest minus selected variable, defined to be the length of the longest line minus the length

of the selected line. As this variable is bounded below by 0 we perform tobit regressions. The

analysis is otherwise identical to those in Table 6. We summarize these tobit regressions in

Table A???.

Table A???? Tobit regressions of Longest minus selected variable
(1) (2) (3) (4)

High load 6.745∗∗∗ 6.987∗∗∗ 6.641∗∗∗ 6.872∗∗∗

(1.832) (1.835) (1.784) (1.786)
Longest line normalized 0.133∗∗∗ 0.132∗∗∗ 0.131∗∗∗ 0.131∗∗∗

(0.020) (0.020) (0.019) (0.019)
Number of lines normalized 10.007∗∗∗ − 9.915∗∗∗ −

(0.664) (0.649)
Easy treatment dummy −53.686∗∗∗ −53.828∗∗∗ −56.245∗∗∗ −56.505∗∗∗

(2.967) (2.975) (2.987) (2.996)
Diffi cult treatment dummy 34.991∗∗∗ 34.850∗∗∗ 34.379∗∗∗ 34.180∗∗∗

(2.092) (2.096) (2.044) (2.047)
Letter dummies No Y es No Y es
Fixed effects No No Y es Y es
AIC 35721 35674 35445 35398

We provide the coeffi cient estimates and the standard errors in parentheses.
We do not provide the estimates of the intercepts, the Letter dummies, or the
subject-specific dummies in the fixed effects regressions. AIC refers to the Akaike
information criterion (Akaike, 1974). Each regression has 9200 observations. ∗∗∗

denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

Similar to Table 6, the accuracy of the choice decreases when there is a larger number of

lines, decreases when the longest line is longer, and decreases in the diffi culty of the decision.

Further, in every specification, we see that the high load coeffi cient is negative. This implies

that choices are worse in the high cognitive load treatment.
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5.2 More analysis on the quality of searches

In order to investigate the optimality of searches, in Table 7, we summarized the regressions of

the View clicks variable. Here we perform the analogous exercise but we analyze the Unique

lines viewed, defined to be the number of unique lines viewed during a trial. This analysis is

summarized in Table A???.

Table A???? Regressions of Unique lines viewed variable
(1) (2) (3) (4)

High load −0.027∗∗∗ −0.027∗∗∗ −0.027∗∗∗ −0.027∗∗∗
(0.008) (0.008) (0.007) (0.007)

Longest line normalized −0.0002∗ −0.0002∗ −0.0002∗ −0.0002∗
(0.0001) (0.0001) (0.0001) (0.0001)

Number of lines normalized 0.981∗∗∗ − 0.982∗∗∗ −
(0.003) (0.002)

Easy treatment dummy 0.008 0.008 0.014† 0.014
(0.010) (0.010) (0.009) (0.009)

Diffi cult treatment dummy −0.010 −0.010 −0.003 −0.003
(0.010) (0.010) (0.009) (0.009)

Letter dummies No Y es No Y es
Fixed effects No No Y es Y es
AIC 8231.0 8322.5 6483.0 6583.5

We provide the coeffi cient estimates and the standard errors in parentheses.
We do not provide the estimates of the intercepts, the Letter dummies, or the
subject-specific dummies in the fixed effects regressions. AIC refers to the Akaike
information criterion (Akaike, 1974). Each regression has 9200 observations. ∗∗∗

denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

Similar to Table 7, we find evidence of worse searches in the high cognitive load treatment.

Also interestingly, we find that the Number of lines coeffi cient is close to, but smaller than,

1. This suggests that adding another line to the choice problem implies that the number of

unique lines are viewed increases by less than 1. Next we investigate the optimality of searches

by performing the analogous analysis but with the View clicks on longest variable, defined to

be the number of times that the longest line was clicked on during a trial. This analysis is

summarized in Table A???.
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Table A???? Regressions of View clicks on longest variable
(1) (2) (3) (4)

High load −0.128∗∗∗ −0.136∗∗∗ −0.128∗∗∗ −0.137∗∗∗
(0.020) (0.020) (0.018) (0.017)

Longest line normalized −0.0003 −0.0004† −0.0003 −0.0004∗
(0.0002) (0.0002) (0.0002) (0.0002)

Number of lines normalized −0.124∗∗∗ − −0.123∗∗∗ −
(0.007) (0.006)

Easy treatment dummy −0.406∗∗∗ −0.413∗∗∗ −0.390∗∗∗ −0.397∗∗∗
(0.025) (0.024) (0.022) (0.021)

Diffi cult treatment dummy −0.099∗∗∗ −0.110∗∗∗ −0.099∗∗∗ −0.109∗∗∗
(0.025) (0.024) (0.022) (0.021)

Letter dummies No Y es No Y es
Fixed effects No No Y es Y es
AIC 25678.8 25304.9 23533.6 23028.9

We provide the coeffi cient estimates and the standard errors in parentheses.
We do not provide the estimates of the intercepts, the Letter dummies, or the
subject-specific dummies in the fixed effects regressions. AIC refers to the Akaike
information criterion (Akaike, 1974). Each regression has 9200 observations. ∗∗∗

denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

We find evidence that subjects in the high cognitive load treatment view the longest line a

smaller number of times than the subjects in the low cognitive load treatment. Again, similar

to Table 7 and A????, we see evidence that high cognitive load negatively affects search.

Interestingly, the estimates for both the Easy treatment dummy and the Diffi cult treatment

dummy variables are negative. Perhaps this is the case because in the Easy treatment, there

is not a need to verify the longest line with an additional click. And perhaps in the Diffi cult

treatment, finding the longest line is excessively diffi cult.

We conduct another analysis of the quality of the searches. We conduct the analysis as

above, but with the variable Line lengths weighted by time, defined to be the average of the

line lengths viewed weighted by the fraction of the trial it was viewed. This is summarized in

Table A???.
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Table A???? Regressions of Line lengths weighted by time variable
(1) (2) (3) (4)

High load −3.536∗∗∗ −3.478∗∗∗ −3.531∗∗∗ −3.465∗∗∗
(0.460) (0.459) (0.404) (0.404)

Longest line normalized 0.869∗∗∗ 0.870∗∗∗ 0.869∗∗∗ 0.870∗∗∗

(0.005) (0.005) (0.004) (0.004)
Number of lines normalized −3.148∗∗∗ − −3.180∗∗∗ −

(0.163) (0.144)
Easy treatment dummy −13.172∗∗∗ −13.190∗∗∗ −12.850∗∗∗ −12.840∗∗∗

(0.564) (0.564) (0.498) (0.498)
Diffi cult treatment dummy 5.496∗∗∗ 5.495∗∗∗ 5.892∗∗∗ 5.907∗∗∗

(0.563) (0.562) (0.498) (0.497)
Letter dummies No Y es No Y es
Fixed effects No No Y es Y es
AIC 83013.3 82913.1 80271.3 80166.6

We provide the coeffi cient estimates and the standard errors in parentheses.
We do not provide the estimates of the intercepts, the Letter dummies, or the
subject-specific dummies in the fixed effects regressions. AIC refers to the Akaike
information criterion (Akaike, 1974). Each regression has 9200 observations. ∗∗∗

denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

The average of the length of the lines viewed, weighted by time, is significantly smaller

than those in the low cognitive load treatment. Again, we find evidence that subjects in the

high cognitive load treatment conduct worse searches.

5.3 More on the relationship between choice and search

In order to investigate the relationship between choice and search, in Table 8 we summarized

logistic regressions of the Selected longest line viewed variable. Here we perform the analogous

exercise but we analyze the Longest viewed minus selected variable, defined to be the length

of the longest line viewed minus the length of the selected line. As this variable is bounded

below by 0 we perform tobit regressions. The analysis is otherwise identical to those in Table

8. We summarize these tobit regressions in Table A???.
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Table A???? Tobit regressions of Longest viewed minus selected variable
(1) (2) (3) (4)

High load 5.539∗∗ 5.765∗∗ 5.473∗∗ 5.694∗∗

(1.791) (1.793) (1.759) (1.761)
Longest line normalized 0.126∗∗∗ 0.125∗∗∗ 0.123∗∗∗ 0.122∗∗∗

(0.019) (0.019) (0.019) (0.019)
Number of lines normalized 9.820∗∗∗ − 9.815∗∗∗ −

(0.649) (0.641)
Easy treatment dummy −56.041∗∗∗ −56.386∗∗∗ −57.441∗∗∗ −57.892∗∗∗

(2.996) (3.010) (3.011) (3.026)
Diffi cult treatment dummy 34.258∗∗∗ 34.087∗∗∗ 34.196∗∗∗ 33.976∗∗∗

(2.034) (2.037) (2.010) (2.013)
Letter dummies No Y es No Y es
Fixed effects No No Y es Y es
AIC 34825 34768 34697 34638

We provide the coeffi cient estimates and the standard errors in parentheses.
We do not provide the estimates of the intercepts, the Letter dummies, or the
subject-specific dummies in the fixed effects regressions. AIC refers to the Akaike
information criterion (Akaike, 1974). Each regression has 9200 observations. ∗∗∗

denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

Similar to Table 8, the accuracy of the choice decreases when there is a larger number of

lines, decreases when the longest line is longer, and decreases in the diffi culty of the decision.

Further, in every specification, we see that the high load coeffi cient is negative. This implies

that choices are worse in the high cognitive load treatment.
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