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Abstract 

We introduce a spatial autoregressive (SAR) model for an origin-destination flow with 

the maximum likelihood (ML) estimation method. Each flow 𝑦𝑛,𝑖𝑗 shows a signal from 

an origin 𝑗 to a destination 𝑖. A linear SAR model for flows quantifies three channels of 

spatial influences on 𝑦𝑛,𝑖𝑗: (1) effect from 𝑗 to a third-party unit, (2) that from a third-

party unit to 𝑖, and (3) that among third-party units. Motivated by a panel data model, 

we accommodate two-way fixed effects for innate characteristics of origin and 

destination. For a frequent data environment of flows, we also design a SAR Tobit model 

for flows. The ML estimator’s asymptotic properties for the SAR Tobit model are 

investigated by the spatial near-epoch dependence (NED) concept. Using our models, we 

capture the significant three channels of spatial influences among the U.S. states’ 

migration flows. 

Keywords: Origin-destination flow, Spatial dependence, Tobit model, Maximum 

likelihood estimation, U.S. migration flow 
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1. Introduction 
 

This paper develops a spatial autoregressive (SAR) model for an origin-destination flow with 

estimation methods. Each flow 𝑦𝑛,𝑖𝑗 can be regarded as a directed outcome generated from origin unit 

𝑗  toward destination unit 𝑖  (hereafter, 𝑗  denotes an origin while 𝑖  represents a destination). A 

famous example of origin-destination flows is the U.S. states’ migration flows. A traditional SAR model 

(e.g., Cliff and Ord, 1973; Ord, 1975; Anselin, 1988; Kelejian and Prucha, 2001; and Lee, 2004, 2007;) 

captures the spatial dependence among elements in a univariate variable. As an extension of a univariate 

SAR model, a corresponding research question is how to measure the spatial dependence among flows. 

A flow variable contains more information relative to a univariate variable in two aspects. First, two 

units’ (or more) characteristics might affect a flow 𝑦𝑛,𝑖𝑗. Second, a flow 𝑦𝑛,𝑖𝑗 contains a direction of 

influence. Hence, a model specification for a flow variable should be more complex than that for a 

univariate variable. Relevant works can be found in LeSage and Pace (2008), Fischer and LeSage (2020), 

and Lee and Yu (2020). 

 
1 We would like to thank Professors Taehyun Ahn, Jason Blevins, Meta Brown, Chi-Young Choi, Robert de Jong, Suyong Song, 
Hankyoung Sung, and Bruce Weinberg for their valuable comments and suggestions. Hanbat thanks his colleague Gabi Jiang, 
and seminar participants at Korean American Economic Association Microeconometrics seminar, Sogang University and 
University of Seoul and the audience from the 2021 China Meeting in ShanghaiTech University, Shanghai, China, the 91st 
Annual Meeting of Southern Economic Association (sponsored by Korean-American Economic Association), Houston, U.S., 
for comments. 
2 Corresponding author: Department of Economics, The Ohio State University, 1945 N. High Street, Columbus, Ohio. Email: 
jeong.181@osu.edu.  
3 Department of Economics, The Ohio State University, 1945 N. High Street, Columbus, Ohio. Email: lin.3019@osu.edu. 
4 Department of Economics, The Ohio State University, 1945 N. High Street, Columbus, Ohio. Email: lee.1777@osu.edu. 
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  Compared to the existing literature, our model has three advances. First, we clarify channels of spatial 

influences among flows by specifying a role of each cross-section unit and its position in spatial 

networks. Since a flow 𝑦𝑛,𝑖𝑗 contains directional information (from 𝑗 to 𝑖), our model needs to show 

how spatial effects are generated from 𝑗 toward 𝑖 through third-party units with spatial network links. 

The main issue here is to characterize roles of third-party units in generating spatial spillovers. By 

introducing a relevant economic model, those channels will be justified. Second, we develop our SARF 

model for a censored flow variable. When a connection between two units is weak, a flow between them 

is frequently zero. Also, note that an origin-destination flow 𝑦𝑛,𝑖𝑗  belongs to a gross flow, which is 

necessarily nonnegative. They motivate us to build a SARF model with the Tobit structure (hereafter, 

SARF Tobit model). Relevant asymptotic inferences for the SARF Tobit model will be considered. Third, 

for an extension of SAR models for flows (hereafter, SARF model), we suggest estimation methods, 

which robustly control unobserved heterogeneities. Motivated by a traditional panel data model, we 

accommodate a fixed-effect specification for unobserved characteristics of an origin and a destination.5 

The asymptotic properties of the MLE for the linear SARF and the SARF Tobit models are studied when 

there exist two-way fixed effects. 

 

  For the first contribution, we develop a SARF model and its economic foundation. When there exist 

𝑛 cross-section units in a sample, a set of origin-destination flows can be characterized by an 𝑛 × 𝑛 

matrix 𝑌𝑁 = [𝑦𝑛,𝑖𝑗] and an 𝑁 × 𝑁 link (network) matrix specifies their relations, where 𝑁 = 𝑛
2. We 

consider directed forces among multiple units: a flow from 𝑗 to 𝑖 can be affected by flows involving 

third-party units 𝑔, ℎ, 𝑝, and 𝑞 (i.e., a flow from 𝑗 to 𝑔, a flow from ℎ to 𝑝, or a flow from 𝑞 to 𝑖). 

Relative to the existing literature (e.g., LeSage and Pace (2008)), we have a general model specification 

by allowing two 𝑛 × 𝑛 spatial weighting matrices 𝑊𝑛 = [𝑤𝑛,𝑖𝑗] and 𝑀𝑛 = [𝑚𝑛,𝑖𝑗], which characterize 

network relationships among 𝑛  cross-section units. 6  Each element of the 𝑖 th row of 𝑊𝑛 

characterizes a relative spatial influence describing an influx into a destination 𝑖 while an entry of the 

𝑗th column of 𝑀𝑛 shows a directed influence for an outflow from an origin 𝑗. In the aspect of agents’ 

decision-making, 𝑊𝑛  gives weights for agent 𝑗 ’s decisions 𝑦𝑛,1𝑗 , ⋯ , 𝑦𝑛,𝑛𝑗  for 𝑗 = 1,⋯𝑛  while 𝑀𝑛 

contains weights for agents’ decisions toward 𝑖  ( 𝑦𝑛,𝑖1,⋯ , 𝑦𝑛,𝑖𝑛 ) for 𝑖 = 1,⋯ , 𝑛 . We will give a 

specification example for 𝑊𝑛 and 𝑀𝑛 in the empirical application. 

 

  In consequence, 𝑊𝑛  and 𝑀𝑛  can generate three-type spatial influences among 𝑦𝑛,𝑖𝑗 s via 𝑁 × 𝑁 

matrices: (1) 𝐼𝑛⊗𝑊𝑛 , (2) 𝑀𝑛
′ ⊗ 𝐼𝑛 , and (3) 𝑀𝑛

′ ⊗𝑊𝑛 . First, an 𝑁 × 𝑁  matrix 𝐼𝑛⊗𝑊𝑛 

characterizes the spatial effect from an origin: a flow from an origin 𝑗 to a third-party unit 𝑔. Second, 

𝑀𝑛
′ ⊗ 𝐼𝑛 specifies the spatial influence towards a destination: that from other unit 𝑞 to a destination 

𝑖 . Last, 𝑀𝑛
′ ⊗𝑊𝑛  characterizes the effect among third-party units. Also, univariate exogenous 

characteristics of 𝑖 and 𝑗 (𝑥𝑛,𝑖 and 𝑥𝑛,𝑗) and exogenous distance or flow variables (𝑧𝑛,𝑖𝑗,1,⋯ , 𝑧𝑛,𝑖𝑗,𝐿) 

can affect 𝑦𝑛,𝑖𝑗. Our resulting model specification can nest the main equation of LeSage and Pace (2008) 

(equation (20) in LeSage and Pace (2008)), but we clarify channels of spatial influences via directed 

 
5 Note that a panel data set involves two indexes: (1) cross-section unit 𝑖 and (2) time-series unit 𝑡. This data structure 
leads to having individual and time fixed effects.  
6 As a special case, we allow 𝑀𝑛 = 𝑊𝑛 . This case can represent the channels (directions) of spatial influences when 𝑊𝑛 is 
a directed network. Another case is the LeSage and Pace’s (2008) specification, i.e., 𝑀𝑛 = 𝑊𝑛

′ with a row-normalized 𝑊𝑛 . 
Their specification focuses on having weighted averages of flows instead of considering directional spatial influences. 
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spatial network links. The first spatial effect arises via 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗. It shows the effect from the flow from 

𝑗  to a third-party unit 𝑔  through a network link 𝑤𝑛,𝑖𝑔 . A chain 𝑗 ↦ 𝑔 ↦ 𝑖  can represent the first 

channel. The second-type spatial influence is represented by 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗 , and a chain 𝑗 ↦ ℎ ↦ 𝑖 

describes this channel. The third spatial effect 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗 characterizes the influence from 𝑦𝑛,𝑔ℎ 

via directed network links 𝑤𝑛,𝑖𝑔 and 𝑚𝑛,ℎ𝑗. This effect arises when there exist connections (1) from an 

origin 𝑗 to ℎ, and (2) from 𝑔 to a destination 𝑖. It can be represented by a chain: 

𝑗 (origin) ↦⏟
𝑚𝑛,ℎ𝑗

ℎ (3rd party I) ↦ 𝑔 (3rd party II)⏟                      
=𝑓𝑙𝑜𝑤 𝑦𝑛,𝑔ℎ

↦⏟
𝑤𝑛,𝑖𝑔

𝑖 (destination). 

Note that 𝑦𝑛,𝑖𝑗 would not have self-influence as the diagonal elements of 𝑊𝑛 and 𝑀𝑛 are zeros (i.e., 

𝑤𝑛,𝑖𝑖𝑦𝑛,𝑖𝑗 = 𝑦𝑛,𝑖𝑗𝑚𝑛,𝑗𝑗 = 𝑤𝑛,𝑖𝑖𝑦𝑛,𝑖𝑗𝑚𝑛,𝑗𝑗 = 0).7 

 

  The designed model can be related to an extended gravity equation and a weighted network 

formation model. When there exist 𝑛 local representative agents, each flow 𝑦𝑛,𝑖𝑗 can be considered as 

an agent 𝑗’s decision on signal’s intensity toward agent 𝑖. If there is no spatial spillover effect, the agent 

𝑗’s optimal decision toward 𝑖 can be represented by the conventional gravity model, which is a function 

of characteristics of 𝑖  and 𝑗 . On the other hand, our model allows that third-party regions' 

characteristics can affect 𝑦𝑛,𝑖𝑗 when there is a significant spatial interaction effect. Due to the existence 

of spatial spillovers, the impacts of characteristics of 𝑖 and 𝑗 can be amplified (i.e., multiplier effect). 

By identifying the model’s parameters, the multiplier effects can be quantified as subsequent sections 

have shown.  

 

  Second, in addition to the linear SARF model, we consider the SARF model with a Tobit structure. It 

is motivated by a specific data environment for flow variables. In some empirical applications, we 

frequently detect zero observations in flows. It is likely to have a zero value for 𝑦𝑛,𝑖𝑗 even if there is a 

connection between units 𝑖 and 𝑗. We can observe many zero values when a level of cross-section units 

is small (e.g., commuting flows among U.S. counties/cities). This is because a flow outcome between two 

small units can less occur due to some budgetary reasons: for example, a flow of two counties is more 

likely to be zero compared to that of two states or two countries. Hence, we consider a case that the 

range of a flow 𝑦𝑛,𝑖𝑗 is constrained in some way with a modification of the Tobit model, which is a tool 

for censored or truncated data. The resulting model is an extension of Qu and Lee (2012), Xu and Lee 

(2015b), which concern about outcomes of states but not for flow variables with more complex network 

structures. Thomas-Agnan and LeSage (2014) address this issue for flow variables with focusing on 

Bayesian estimation procedures (see Section 83.4 in Handbook of Regional Science (2014)). 

 

Third, we suggest methods and their statistical properties for robustly controlling unobserved 

characteristics in estimating the SARF model. Instead of identifying the effects of univariate 

characteristics (𝑥𝑛,𝑖 and 𝑥𝑛,𝑗) on 𝑦𝑛,𝑖𝑗, we specify the effects of origin’s characteristics and those of 

destination’s characteristics as fixed effects (i.e., two-way fixed-effect specification). The two-way fixed 

effects are specified by 2𝑛  individual parameters (𝑛  parameters for origins and 𝑛  parameters for 

destinations). We can directly estimate the main parameters and fixed effects for both linear SARF and 

SARF Tobit specifications. With the linear SARF specification, a concentrated log-likelihood for the main 

 
7 We note that this assumption would exclude trade problems as internal trade is usually allowed in a trading issue. To apply 
our model to a trade issue, we then need to allow nonzero diagonal elements of 𝑊𝑛 and 𝑀𝑛. In this case, the three-type 
spatial influences explained above are not able to be separated. 
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parameters can be established by using linear parameter properties of fixed effects.  

 

  For the two cases, we derive the log-likelihood functions. And then, asymptotic properties of the 

maximum likelihood (ML) estimators are studied. For the spatial Tobit flow model, due to its nonlinear 

structure, we build a topological structure for asymptotic analysis. On a geographic space, there exist 𝑁 

pairs of flows. A spatial unit is then a pair (𝑖, 𝑗) instead of a single cross-section unit 𝑖. Each statistic 

𝑞𝑛,𝑖𝑗 is originated from a location of flow (𝑖, 𝑗), which is generated by two units 𝑖 and 𝑗. Hence, {𝑞𝑛,𝑖𝑗} 

will construct a random field on a product space of cross-section units. The spatial near-epoch 

dependence (NED) concept (Jenish and Prucha, 2012) is employed to derive the MLE’s asymptotic 

properties when the SARF Tobit model is considered.8 Using this device, the law of large numbers (LLN) 

and the central limit theorem (CLT) are applied to the main statistics.  

 

  We also examine the asymptotic distributions of the MLE for the linear SARF and SARF Tobit models 

if there exist the two-way fixed effects. The existence of fixed effects leads to the incidental parameters 

(Neyman and Scott, 1948).9 For both models, we provide the analytical bias corrections. In the linear 

SARF model, we apply the same strategy of deriving the asymptotic distribution of the MLE and its bias 

correction as those introduced by Lee and Yu (2010). To derive the MLE’s asymptotic distribution for 

the SARF Tobit model, we employ the idea of Fernandez-Val and Weidner (2016): the second-order 

Taylor expansion of the concentrated log-likelihood evaluated at the true finite-dimensional parameters. 

The source of the asymptotic bias is the usage of estimated fixed effects, whose components have slower 

convergence rates than those of the main parameters’ estimates. 

 

By Monte Carlo simulations, we study performance of the MLE and the bias corrected MLE (if we 

consider the two-way fixed effects). When one disregards a censoring feature of flows, our simulation 

experiments indicate that (1) estimates of the main spatial interaction parameters are biased and (2) 

their coverage probabilities are distorted. Under the presence of fixed effects, downward biases in the 

MLEs of the spatial interaction parameters and the variance parameter are detected. The analytic bias 

correction procedures for the linear SARF and the SARF Tobit models significantly reduce the 

magnitudes of downward biases. In selecting a proper specification of spatial weighting matrices 

(𝑊𝑛, 𝑀𝑛) , our simulations indicate that the Akaike weight based on candidate models’ sample log-

likelihoods is a reasonable measure. 

 

This paper provides an empirical application: migration flows of the U.S. states in the year 2010. We 

consider (𝑊𝑛, 𝑀𝑛) = (𝑊𝑛
𝐼 , 𝑀𝑛

𝑂) , where 𝑊𝑛
𝐼  contains the shares of historical migrations toward 

destinations (forces to destinations) and 𝑀𝑛
𝑂 consists of those from origins (forces from origins). 𝑊𝑛

𝐼 

and 𝑀𝑛
𝑂 are directed networks and can show different roles of origins and destinations in propagating 

spatial spillover effects. By the Akaike weights, the chosen specification provides a better fit than other 

 
8 In the event, there were no censoring, for the asymptotic properties of QMLE for the SARF model, we can apply an extension 
of the martingale difference central limit theorem (CLT) for a linear quadratic form (Kelejian and Prucha, 2001). And then, 
consistency and asymptotic normality of the QMLE will be provided. For a linear SAR model, the scenario of spatial unit 
allocation would not be needed but for the proper rate of convergence of estimator, expanded regions asymptotic is used. It 
is for nonlinear spatial models under the spatial mixing or spatial NED frameworks, the location setting is needed as in Jenish 
and Prucha (2009, 2012), so expanded regions asymptotic will be used. 
9  In a panel data setting with large cross-section and time-series observations, the asymptotic bias exists and can be 
corrected. Our setting is similar with the large panel data setting since there exist 𝑛  origin units and 𝑛  units for 
destinations. 
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specifications including that of LeSage and Pace (2008), i.e., (𝑊𝑛, 𝑀𝑛) = (𝑊𝑅,𝑛
𝑎 ,𝑊𝑅,𝑛

𝑎′ ), where 𝑊𝑅,𝑛
𝑎  is 

the row-normalized states’ adjacency matrix. We observe significant spatial influences by the three 

channels. The estimated average multiplier effect from the linear SARF model is 1.0607, which means 

the effects of 𝑖 and 𝑗’s characteristics are amplified by 106.07% in the equilibrium (from the SARF 

Tobit model, it is 1.0817). When we control unobservables via fixed effects, the estimates of the spatial 

interaction parameters from both linear SARF and SARF Tobit specifications are also significant. 

However, their magnitudes become smaller in absolute values (1.0024 from the linear SARF model and 

1.0164 from the SARF Tobit model).  

 

2. Model equations 
 

Assume that there exist 𝑛 cross-section units (e.g., regions) in a sample. That is, one has 𝑁 = 𝑛2 

observations in an origin-destination flow variable. Let 𝑌𝑁 = [𝑦𝑛,𝑖𝑗] be an 𝑛 × 𝑛 matrix of flows, and 

𝑊𝑛 = [𝑤𝑛,𝑖𝑗]  and 𝑀𝑛 = [𝑚𝑛,𝑖𝑗]  be 𝑛 × 𝑛  spatial weighting matrices characterizing relations among 

cross-section units 𝑖 = 1,⋯ , 𝑛. As a traditional spatial econometric model, we assume that every spatial 

network link is nonnegative; and each diagonal element is zero. Each 𝑦𝑛,𝑖𝑗  can be considered as a 

directed outcome from 𝑗  (origin) to 𝑖  (destination). For example, on migration data, 𝑦𝑛,𝑖𝑗  is a 

migration flow from state 𝑗  to state 𝑖 . To explain 𝑌𝑁 , one can employ 𝐾  univariate exogenous 

variables 𝑋𝑛 = [𝑋𝑛,1, ⋯ , 𝑋𝑛,𝐾] = [𝑥𝑛,1, ⋯ , 𝑥𝑛,𝑛]′  with 𝑋𝑛,𝑘 = (𝑥𝑛,1,𝑘, ⋯ , 𝑥𝑛,𝑛,𝑘)
′
  for 𝑘 = 1,⋯ ,𝐾  and 

𝑥𝑛,𝑖 = (𝑥𝑛,𝑖,1, ⋯ , 𝑥𝑛,𝑖,𝐾)′  for 𝑖 = 1,⋯ , 𝑛 ; and 𝐿  exogenous distance or flow variables 𝑧𝑛,𝑖𝑗,𝑙  for 𝑙 =

1,⋯ , 𝐿.  

 

Two spatial networks 𝑊𝑛 and 𝑀𝑛 allow us to have different sources of spatial influences. The first 

network matrix 𝑊𝑛 characterizes directed spatial influences describing influxes into destinations in 

terms of columns while the second network 𝑀𝑛 specifies directed influences for outflows from origin 

units in terms of rows. An advantage of this specification is that one can clarify the directions of spatial 

influences. A SAR model with a flow variable (hereafter, SARF) can be specified as 

 

𝑦𝑛,𝑖𝑗 = 𝛼0 + 𝜆0∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗
𝑛
𝑔=1 + 𝛾0∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 + 𝜌0∑ ∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1

𝑛
𝑔=1 + ∑ 𝛽𝑙,0𝑧𝑛,𝑖𝑗,𝑙

𝐿
𝑙=1   

      +∑ (𝑏𝑘,0𝑥𝑛,𝑖,𝑘 + 𝑐𝑘,0𝑥𝑛,𝑗,𝑘)
𝐾
𝑘=1 + 𝜖𝑛,𝑖𝑗.                                              (1) 

 

The specification of explanatory variables is similar to that of LeSage and Pace (2008). They will be 

introduced later. By aggregation, equation (1) can be consistent with a traditional SAR model for a 

univariate variable in some special cases.10 The orders of 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗, 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗, and 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗 

in (1) are introduced to highlight the directions of spatial effects. The three-type spatial effects 

characterize the different roles of third-party units on a flow 𝑦𝑛,𝑖𝑗 . The figure below illustrates an 

example of four regions. 

 
10 For example, if 𝛾0 = 𝜌0 = 0, equation (1) can be represented by 

𝑦𝑛,𝑖. = 𝛼0 + ∑ 𝑐𝑘.0�̅�𝑛,𝑘
𝐾
𝑘=1 + 𝜆0∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔.

𝑛
𝑔=1 + ∑ 𝛽𝑙,0𝑧𝑛,𝑖.,𝑙

𝐿
𝑙=1 + ∑ 𝑏𝑘,0𝑥𝑛,𝑖,𝑘

𝐾
𝑘=1 + 𝜖𝑛,𝑖., 

where 𝑦𝑛,𝑖. =
1

𝑛
∑ 𝑦𝑛,𝑖𝑗
𝑛
𝑗=1  (average inflows toward 𝑖), 𝑧𝑛,𝑖.,𝑙s and 𝜖𝑛,𝑖. can be similarly defined, and �̅�𝑛,𝑘 =

1

𝑛
∑ 𝑥𝑛,𝑗,𝑘
𝑛
𝑗=1 . If 

𝜆0 = 𝜌0 = 0, we have another SAR representation from (1): 
𝑦𝑛,.𝑗 = 𝛼0 + ∑ 𝑏𝑘.0�̅�𝑛,𝑘

𝐾
𝑘=1 + 𝛾0 ∑ 𝑚𝑛,ℎ𝑗𝑦𝑛,.ℎ

𝑛
ℎ=1 + ∑ 𝛽𝑙,0𝑧𝑛,.𝑗,𝑙

𝐿
𝑙=1 + ∑ 𝑐𝑘,0𝑥𝑛,𝑗,𝑘

𝐾
𝑘=1 + 𝜖𝑛,.𝑗, 

where 𝑦𝑛,.𝑗 =
1

𝑛
∑ 𝑦𝑛,𝑖𝑗
𝑛
𝑖=1  (average outflows from 𝑗), 𝑧𝑛,.𝑗,𝑙s and 𝜖𝑛,.𝑗 can be similarly defined. 
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Figure 1. Three spatial effects on a flow 𝑦𝑛,𝑖𝑗 

 
 

  As the first case, we consider 𝑀𝑛 = 𝑊𝑛, which is a directed regional network, i.e., 𝑤𝑛,𝑖𝑗 = 1 if region 

𝑗  has an influence in region 𝑖 ’s economy; and 𝑤𝑛,𝑖𝑗 = 0  otherwise. For the first spatial effect, 

𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗 shows the influences by a flow from 𝑗 to a third-party 𝑔 if there exists a connection from 

𝑔 to 𝑖 (i.e., an influx into 𝑖). Then, this effect can be represented by a chain 𝑗 ↦ 𝑔 ↦ 𝑖. Second, if a 

region ℎ (third-party) and 𝑗 are linked (i.e., an outflow from 𝑗) and 𝛾0 ≠ 0, the second spatial effect 

channel exists (i.e., the effect of a flow from ℎ to 𝑖). Then, a chain 𝑗 ↦ ℎ ↦ 𝑖 can illustrate the second 

spatial effect. Similarly, 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑤𝑛,ℎ𝑗  shows the effect of flows among third-party units when there 

exist geographic connections (1) between 𝑗 and a third-party ℎ and (2) between a third-party 𝑔 and 

𝑖. A chain 𝑗 ↦ ℎ ↦ 𝑔 ↦ 𝑖 can show the third spatial influence.11 Note that this effect is distinguished 

from the first two effects since 𝑤𝑛,𝑖𝑖 = 𝑤𝑛,𝑗𝑗 = 0.  

 

  As a general case, one can specify a different 𝑀𝑛 from 𝑊𝑛 to present different sources of spatial 

effects for economic reasonings. Observe that 𝑊𝑛  characterizes the effect from column sums of 𝑌𝑁 

while 𝑀𝑛 is for the effect from row sums of 𝑌𝑁. Suppose that 𝑦𝑛,𝑖𝑗 is a decision of agent 𝑗 toward 𝑖 

(i.e., a signal). Note that 𝑊𝑛  provides weights for agent 𝑗 ’s decisions 𝑦𝑛,1𝑗, ⋯ , 𝑦𝑛,𝑛𝑗   for 𝑗 = 1,⋯ , 𝑛 . 

Then, the weighted column sum ∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗
𝑛
𝑔=1  can represent the aggregated signals from 𝑗 to 𝑖. On 

the other hand, 𝑀𝑛  gives weights for agents’ decisions toward 𝑖 , i.e., 𝑦𝑛,𝑖1, ⋯ , 𝑦𝑛,𝑖𝑛  for 𝑖 = 1,⋯ , 𝑛 . 

The weighted row sum ∑ 𝑚𝑛,ℎ𝑗𝑦𝑛,𝑖ℎ
𝑛
ℎ=1  of the 𝑖th row of 𝑌𝑁 shows the aggregated signals toward 𝑖 

via the connections of 𝑗. Since 𝑊𝑛 and 𝑀𝑛 can play different roles in weighting agents’ decisions, a 

practitioner can specify proper settings of 𝑊𝑛 and 𝑀𝑛, which are consistent with his/her purpose. We 

will introduce a theoretical model framework for this setting in Section 2.1, and empirical examples for 

𝑊𝑛 and 𝑀𝑛 in Section 6. 

 

  By allowing two spatial weighting matrices (𝑊𝑛, 𝑀𝑛), our framework also generalizes the LeSage and 

Pace’s (2008) specification. The LeSage and Pace’s (2008) specification can be written with a scalar 

notation: 

 

𝑦𝑛,𝑖𝑗 = 𝛼0 + 𝜆0∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗
𝑛
𝑔=1 + 𝛾0∑ 𝑤𝑛,𝑗ℎ𝑦𝑛,𝑖ℎ

𝑛
ℎ=1 + 𝜌0∑ ∑ 𝑤𝑛,𝑖𝑔𝑤𝑛,𝑗ℎ𝑦𝑛,𝑔ℎ

𝑛
ℎ=1

𝑛
𝑔=1 + ∑ 𝛽𝑙,0𝑧𝑛,𝑖𝑗,𝑙

𝐿
𝑙=1      

        +∑ (𝑏𝑘,0𝑥𝑛,𝑖,𝑘 + 𝑐𝑘,0𝑥𝑛,𝑗,𝑘)
𝐾
𝑘=1 + 𝜖𝑛,𝑖𝑗.                     

 

The LeSage and Pace’s (2008) specification implies 𝑀𝑛 = 𝑊𝑛
′ with a row-normalized 𝑊𝑛. Under this 

 
11 Then, ∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗

𝑛
𝑔=1 , ∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 , and ∑ ∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1

𝑛
𝑔=1  are local aggregates with specifying directions of 

influences. In contrast to a univariate SAR model, there is no good rationale of considering a row-normalized 𝑊𝑛 when 
𝑀𝑛 = 𝑊𝑛 . This is because the first and third channels of spatial effects involve the column sums of 𝑊𝑛 . 
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specification, a flow 𝑦𝑛,𝑖𝑗  is a weighted average of other flows (i.e., local averages). Moreover, each 

spatial network link might not contain directional information of a network.  

 

  Figure 2 shows potential channels that flow/univariate characteristics affect a flow 𝑦𝑛,𝑖𝑗. There exist 

two effects from univariate characteristics 𝑋𝑛 . Since a flow 𝑦𝑛,𝑖𝑗  involves two units 𝑖  and 𝑗 , 

characteristics of both 𝑖 and 𝑗 can affect 𝑦𝑛,𝑖𝑗 with different sensitivities. When 𝑦𝑛,𝑖𝑗 is a migration 

flow from state 𝑗  to state 𝑖 , population levels and personal incomes of states 𝑖  and 𝑗  can be 

considered as components of 𝑋𝑛 . The coefficient 𝑏𝑘,0  captures the effect of a destination’s 

characteristic 𝑥𝑛,𝑖,𝑘 on 𝑦𝑛,𝑖𝑗, while 𝑐𝑘,0 measures the influence of an origin’s characteristic 𝑥𝑛,𝑗,𝑘 on 

𝑦𝑛,𝑖𝑗. 

 

Figure 2. Potential characteristics affecting a flow 𝑦𝑖𝑗  

 
 

One can test the homogenous effect hypothesis, i.e., 𝑏𝑘,0 = 𝑐𝑘,0  for some 𝑘 . Under the hypothesis 

𝑏𝑘,0 = 𝑐𝑘,0  for all 𝑘 = 1,⋯ ,𝐾 , for example, each regressor becomes 𝑥𝑛,𝑖,𝑘 + 𝑥𝑛,𝑗,𝑘 . In this case, the 

explanatory variable part of our model can be simplified to ∑ 𝛽𝑙,0𝑧𝑛,𝑖𝑗,𝑙
𝐿+𝐾
𝑙=1 , where 𝑧𝑛,𝑖𝑗,𝐿+𝑘 = 𝑥𝑛,𝑖,𝑘 +

𝑥𝑛,𝑗,𝑘 and 𝛽𝐿+𝑘,0 = 𝑏𝑘,0 for 𝑘 = 1,⋯ ,𝐾. As the second-type explanatory variables, additional flows or 

distance variables 𝑧𝑛,𝑖𝑗,1, ⋯ , 𝑧𝑛,𝑖𝑗,𝐿  can be employed, and the parameters 𝛽1,0, ⋯ , 𝛽𝐿,0  capture the 

linear effects of them. For example, one can utilize geographic distances {𝑑𝑖𝑗}. 

 

  Using a specific data environment of our model, extra exogenous variations explaining 𝑦𝑛,𝑖𝑗 can be 

made. First, one can generate a z-variable using a univariate characteristic {𝑥𝑛,𝑖} . For example, an 

economic distance can be generated by |𝑖𝑛𝑐𝑜𝑚𝑒𝑖 − 𝑖𝑛𝑐𝑜𝑚𝑒𝑗|  (or an economic proximity 
1

|𝑖𝑛𝑐𝑜𝑚𝑒𝑖−𝑖𝑛𝑐𝑜𝑚𝑒𝑗|
) where 𝑖𝑛𝑐𝑜𝑚𝑒𝑖 denotes the region 𝑖’s personal income level. Another example is an 

income ratio 
𝑖𝑛𝑐𝑜𝑚𝑒𝑗

𝑖𝑛𝑐𝑜𝑚𝑒𝑖
 , which captures a relative volume of regions 𝑖  and 𝑗 . Compared to a distance 

variable, a ratio-type variable can capture a variation in 𝑦𝑛,𝑖𝑗 from asymmetric relations. On the other 

hand, a z-variable can also generate a x-variable by summation. If 𝑊𝑛
𝑎 = [𝑤𝑛,𝑖𝑗

𝑎 ] denotes an adjacency 

network matrix, one can generate degrees 𝑑𝑒𝑔𝑗 = ∑ 𝑤𝑛,𝑗𝑘
𝑎𝑛

𝑘=1   to examine the effect of 𝑗 ’s network 

connectivity on 𝑦𝑛,𝑖𝑗. Other network statistics can also be generated from 𝑊𝑛
𝑎. 

 

  For statistical analysis, a stacked vector notation is useful. In a matrix form with 𝑌𝑁 = [𝑦𝑛,𝑖𝑗] as an 

𝑛 × 𝑛 matrix of flows, 

 

𝑌𝑁 = 𝛼0𝑙𝑛𝑙𝑛
′ + 𝜆0𝑊𝑛𝑌𝑁 + 𝛾0𝑌𝑁𝑀𝑛 + 𝜌0𝑊𝑛𝑌𝑁𝑀𝑛 + ∑ 𝛽𝑙,0𝑍𝑁,𝑙

𝐿
𝑙=1 + ∑ (𝑏𝑘,0𝑋𝑛,𝑘𝑙𝑛

′ + 𝑐𝑘,0𝑙𝑛𝑋𝑛,𝑘
′ )𝐾

𝑘=1 + 𝜖𝑁, (2) 
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where each 𝑍𝑁,𝑙 = [𝑧𝑛,𝑖𝑗,𝑙]  for 𝑙 = 1,⋯ , 𝐿  is an 𝑛 × 𝑛  matrix of an explanatory distance/flow 

variable, and 𝜖𝑁 = [𝜖𝑛,𝑖𝑗]  stands for an 𝑛 × 𝑛  disturbance matrix. A univariate regressor matrix 

should not contain a constant vector 𝑙𝑛 for identification. Then, model (1) can be rewritten as 

 

𝑣𝑒𝑐(𝑌𝑁) = 𝛼0𝑙𝑁 + (𝜆0(𝐼𝑛⊗𝑊𝑛) + 𝛾0(𝑀𝑛
′ ⊗ 𝐼𝑛) + 𝜌0(𝑀𝑛

′ ⊗𝑊𝑛))𝑣𝑒𝑐(𝑌𝑁) +

                                         +∑ 𝛽𝑙,0𝑣𝑒𝑐(𝑍𝑁,𝑙)
𝐿
𝑙=1 + ∑ (𝑏𝑘,0(𝑙𝑛⊗ 𝐼𝑛) + 𝑐𝑘,0(𝐼𝑛⊗ 𝑙𝑛)) 𝑋𝑛,𝑘

𝐾
𝑘=1 + 𝑣𝑒𝑐(𝜖𝑁).   (3) 

 

In consequence, equation (3) represents the spatial influences among flow units. Observe that three 

𝑁 × 𝑁  matrices 𝐼𝑛⊗𝑊𝑛 , 𝑀𝑛
′ ⊗ 𝐼𝑛 , and 𝑀𝑛

′ ⊗𝑊𝑛  characterize network relationships among flows, 

and they correspond to spatial weighting matrices for a univariate SAR model. Let 𝑾𝑁 = 𝐼𝑛⊗𝑊𝑛 , 

𝑴𝑁 = 𝑀𝑛
′ ⊗ 𝐼𝑛 , 𝑹𝑁 = 𝑀𝑛

′ ⊗𝑊𝑛  and 𝑨𝑁 = 𝜆0𝑾𝑁 + 𝛾0𝑴𝑁 + 𝜌0𝑹𝑁 . Observe that 𝑹𝑁 = 𝑾𝑁𝑴𝑁 . For 

each pair (𝑖, 𝑗) for a flow, we can find a unique index 𝑓 = (𝑗 − 1)𝑛 + 𝑖 ∈ {1,⋯ ,𝑁}. Hence, the spatial 

influence between two flows (𝑖, 𝑗) and (𝑔, ℎ) (i.e., the (𝑓, 𝑓′)-element of 𝑨𝑁 , where 𝑓 = (𝑗 − 1)𝑛 +

𝑖 and 𝑓′ = (ℎ − 1)𝑛 + 𝑔) can be characterized by 

 

(𝑒𝑛,𝑗
′ ⊗ 𝑒𝑛,𝑖

′ )𝑨𝑁(𝑒𝑛,ℎ⊗ 𝑒𝑛,𝑔) = 𝜆01(𝑗 = ℎ)𝑤𝑛,𝑖𝑔 + 𝛾01(𝑖 = 𝑔)𝑚𝑛,ℎ𝑗 + 𝜌0𝑤𝑛,𝑖𝑔𝑚𝑛,ℎ𝑗, 

 

where 1(∙)  denotes the indicator function, and 𝑒𝑛,𝑗 = (0,⋯ ,1,⋯ ,0)′  with only the 𝑗  component 

being one and other entries being zero (which is an 𝑛-dimensional unit vector). The below provides a 

discussion on the three network structures 𝑾𝑁 , 𝑴𝑁 , and 𝑹𝑁. 

 

Remark. For interpretations, suppose that 𝑊𝑛  and 𝑀𝑛  are dichotomous networks. Let 𝑐𝑖𝑛𝑑,𝑤,𝑗 =

∑ 𝑤𝑛,𝑖𝑗
𝑛
𝑖=1   and 𝑐𝑖𝑛𝑑,𝑚,𝑗 = ∑ 𝑚𝑛,𝑖𝑗

𝑛
𝑖=1   for each 𝑗  (indegrees); and 𝑐𝑜𝑢𝑡𝑑,𝑤,𝑖 = ∑ 𝑤𝑛,𝑖𝑗

𝑛
𝑗=1   and 

𝑐𝑜𝑢𝑡𝑑,𝑚,𝑖 = ∑ 𝑚𝑛,𝑖𝑗
𝑛
𝑗=1  for each 𝑖 (outdegrees). By the uniform boundedness assumption for row and 

column sum norms of 𝑊𝑛  and 𝑀𝑛 , we have ∑ 𝑐𝑖𝑛𝑑,𝑤,𝑖
𝑛
𝑖=1 = 𝑂(𝑛𝜚𝑤)  and ∑ 𝑐𝑖𝑛𝑑,𝑚,𝑖

𝑛
𝑖=1 = 𝑂(𝑛𝜚𝑚) 

where 0 ≤ min{𝜚𝑤, 𝜚𝑚} ≤ max{𝜚𝑤, 𝜚𝑚}  ≤ 1 . Then, the densities of 𝑊𝑛  and 𝑀𝑛  are respectively 
∑ 𝑐𝑜𝑢𝑡𝑑,𝑤,𝑖
𝑛
𝑖=1

𝑛(𝑛−1)
= 𝑂(𝑛𝜚𝑤−2) and 

∑ 𝑐𝑖𝑛𝑑,𝑚,𝑖
𝑛
𝑖=1

𝑛(𝑛−1)
= 𝑂(𝑛𝜚𝑚−2).12  

  Note that the three networks 𝑾𝑁 , 𝑴𝑁 , and 𝑹𝑁  characterize relations among flows. Then, the 

vectors of row sums of 𝑾𝑁 , 𝑴𝑁 , and 𝑹𝑁  are respectively 𝑙𝑛⊗ (𝑐𝑜𝑢𝑡𝑑,𝑤,1, ⋯ , 𝑐𝑜𝑢𝑡𝑑,𝑤,𝑛)
′
 , 

(𝑐𝑖𝑛𝑑,𝑚,1, ⋯ , 𝑐𝑖𝑛𝑑,𝑚,𝑛)
′
⊗ 𝑙𝑛 , and (𝑐𝑖𝑛𝑑,𝑚,1,⋯ , 𝑐𝑖𝑛𝑑,𝑚,𝑛)

′
⊗ (𝑐𝑜𝑢𝑡𝑑,𝑤,1, ⋯ , 𝑐𝑜𝑢𝑡𝑑,𝑤,𝑛)

′
 ; while their column 

sums are 𝑙𝑛
′ ⊗ (𝑐𝑖𝑛𝑑,𝑤,1, ⋯ , 𝑐𝑖𝑛𝑑,𝑤,𝑛) , (𝑐𝑜𝑢𝑡𝑑,𝑚,1,⋯ , 𝑐𝑜𝑢𝑡𝑑,𝑚,𝑛) ⊗ 𝑙𝑛

′  , (𝑐𝑜𝑢𝑡𝑑,𝑚,1, ⋯ , 𝑐𝑜𝑢𝑡𝑑,𝑚,𝑛) ⊗

(𝑐𝑖𝑛𝑑,𝑤,1, ⋯ , 𝑐𝑖𝑛𝑑,𝑤,𝑛) , respectively. The densities of 𝑾𝑁 , 𝑴𝑁 , and 𝑹𝑁  are respectively 
∑ 𝑐𝑜𝑢𝑡𝑑,𝑤,𝑖
𝑛
𝑖=1

𝑛(𝑛2−1)
=

𝑂(𝑛𝜚𝑤−3) , 
∑ 𝑐𝑖𝑛𝑑,𝑚,𝑖
𝑛
𝑖=1

𝑛(𝑛2−1)
 = 𝑂(𝑛𝜚𝑚−3) , and 

(∑ 𝑐𝑜𝑢𝑡𝑑,𝑤,𝑖
𝑛
𝑖=1 )(∑ 𝑐𝑖𝑛𝑑,𝑚,𝑖

𝑛
𝑖=1 )

𝑛2(𝑛2−1)
= 𝑂(𝑛𝜚𝑤+𝜚𝑚−4) . We observe that the 

three networks for flows are sparser than 𝑊𝑛  and 𝑀𝑛 . For 𝑹𝑁 , moreover, we have ‖𝑹𝑁‖∞ ≤

‖𝑾𝑁‖∞‖𝑴𝑁‖∞ and ‖𝑹𝑁‖1 ≤ ‖𝑾𝑁‖1‖𝑴𝑁‖1 by 𝑹𝑁 = 𝑾𝑁𝑴𝑁 and the submultiplicative property of 

a norm. For asymptotic analysis, the row and column sum norms’ magnitudes of 𝑾𝑁 , 𝑴𝑁 , and 𝑹𝑁 are 

regulated when 𝑊𝑛 and 𝑀𝑛 are regulated. ∎ 

 

  Let 𝑆𝑁 = 𝐼𝑁 − 𝑨𝑁 be the spatial filter matrix. If 𝑆𝑁 is invertible, the unique reduced form of (3) is  

 
12 Note that ∑ 𝑐𝑖𝑛𝑑,𝑚,𝑗

𝑛
𝑗=1 = ∑ 𝑐𝑜𝑢𝑡𝑑,𝑚,𝑖

𝑛
𝑖=1 . 
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𝑣𝑒𝑐(𝑌𝑁) = 𝑆𝑁
−1 [𝛼0𝑙𝑁 + ∑ 𝛽𝑙,0𝑣𝑒𝑐(𝑍𝑁,𝑙)

𝐿
𝑙=1 + ∑ (𝑏𝑘,0(𝑙𝑛⊗ 𝐼𝑛) + 𝑐𝑘,0(𝐼𝑛⊗ 𝑙𝑛))𝑋𝑛,𝑘 + 𝑣𝑒𝑐(𝜖𝑁)

𝐾
𝑘=1 ]. (4) 

 

The model implies that 
𝜕𝑦𝑓

𝜕𝑧𝑓′,𝑙
= 𝛽𝑙,0[𝑆𝑁

−1]𝑓𝑓′  for 𝑙 = 1,⋯ , 𝐿 , and 
𝜕𝑦𝑓

𝜕𝑥𝑗,𝑘
= 𝑒𝑁,𝑓

′ 𝑆𝑁
−1 (𝑏𝑘,0(𝑙𝑛⊗ 𝑒𝑛,𝑗) +

𝑐𝑘,0(𝑒𝑛,𝑗⊗ 𝑙𝑛))  for 𝑗 = 1,⋯ , 𝑛  and 𝑘 = 1,⋯ ,𝐾 , where 𝑒𝑁,𝑓 = (0, . . . ,0,1,0, . . . ,0)
′  denotes the 𝑁 -

dimensional unit vector with the unit at the 𝑓 component and zero elsewhere. Hence, the main part of 

interpreting our model is understanding the structure of 𝑆𝑁
−1. We discuss this issue in Section 2.1. 

 

Note that the spatial filter matrix 𝑆𝑁  not only characterizes the equilibrium effects, but it also 

determines the correlation structure of 𝑣𝑒𝑐(𝑌𝑁) . From (4), the variance matrix of 𝑣𝑒𝑐(𝑌𝑁)  is 

𝑉𝑎𝑟(𝑣𝑒𝑐(𝑌𝑁)) = 𝜎0
2𝑆𝑁

−1𝑆𝑁
′−1 where 𝜎0

2 is the variance of 𝜖𝑛,𝑖𝑗. The variance of 𝑦𝑛,𝑖𝑗 for each pair (𝑖, 𝑗) 

is 𝜎0
2𝑒𝑁,𝑓
′ 𝑆𝑁

−1𝑆𝑁
′−1𝑒𝑁,𝑓 , where 𝑓 = (𝑗 − 1)𝑛 + 𝑖 . As 𝑛  increases, in order for 𝑉𝑎𝑟(𝑣𝑒𝑐(𝑌𝑁))  to be 

bounded, regularity conditions are needed so that 𝑆𝑁
−1 will not be explosive. A sufficient condition of 

spatial stability is ‖𝑨𝑁‖∞ < 1 . If 𝑊𝑛  and 𝑀𝑛  are diagonalizable, an eigenvalue of 𝑨𝑁  is 𝜆0𝜛1𝑛,𝑖 +

𝛾0𝜛2𝑛,𝑗 + 𝜌0𝜛1,𝑛𝑖𝜛2,𝑛𝑗  where 𝜛1,𝑛𝑖  and 𝜛2,𝑛𝑖  are respectively eigenvalues of 𝑊𝑛  and 𝑀𝑛  for 𝑖 =

1,⋯ , 𝑛 . 13  Then, the parameter space of the stable model can be {(𝜆, 𝛾, 𝜌): |𝜆�̅�1𝑛,𝑖 + 𝛾�̅�2𝑛,𝑗 +

𝜌�̅�2𝑛,𝑗�̅�1𝑛,𝑖| < 1, for all 𝑖, 𝑗 = 1,… , 𝑛}. 

 

  The parameter vector of our interest is 휃0 = (𝛼0, 𝜆0, 𝛾0, 𝜌0, 𝛽0
′ , 𝑏0

′ , 𝑐0
′ , 𝜎0

2)′ where 𝛽0 = (𝛽1,0,⋯ , 𝛽𝐿,0)′, 

𝑏0 = (𝑏1,0,⋯ , 𝑏𝐾,0)′, and 𝑐0 = (𝑐1,0, ⋯ , 𝑐𝐾,0)′. To estimate 휃0, we employ the maximum likelihood (ML) 

estimation method. Let 휃 = (𝛼, 𝜆, 𝛾, 𝜌, 𝛽′, 𝑏′, 𝑐′, 𝜎2)′  with 𝛽 = (𝛽1, ⋯ , 𝛽𝐿)′ , 𝑏 = (𝑏1, ⋯ , 𝑏𝐾)′ , and 𝑐 =

(𝑐1,⋯ , 𝑐𝐾)′ , be a parameter vector in a parameter space. If 𝜖𝑛,𝑖𝑗~𝑖. 𝑖. 𝑑. 𝑁(0, 𝜎0
2) , the log-likelihood 

function of the observed continuous dependent variables vector 𝑣𝑒𝑐(𝑌𝑁) is  

 

         ln 𝐿𝑁(휃) = −
𝑁

2
ln 2𝜋 −

𝑁

2
ln 𝜎2 + lndet(𝑆𝑁(𝜆, 𝛾, 𝜌)) −

1

2𝜎2
𝑣𝑒𝑐(𝜖𝑁(휃))

′
𝑣𝑒𝑐(𝜖𝑁(휃)),      (5) 

 

where 𝑆𝑁(𝜆, 𝛾, 𝜌) = 𝐼𝑁 − 𝑨𝑁(𝜆, 𝛾, 𝜌) with 𝑨𝑁(𝜆, 𝛾, 𝜌) = 𝜆𝑾𝑁 + 𝛾𝑴𝑁 + 𝜌𝑹𝑁 , and 

 

𝑣𝑒𝑐(𝜖𝑁(휃)) = 𝑆𝑁(𝜆, 𝛾, 𝜌)𝑣𝑒𝑐(𝑌𝑁) − 𝛼𝑙𝑁 − ∑ 𝛽𝑙𝑣𝑒𝑐(𝑍𝑁,𝑙)
𝐿
𝑙=1 − ∑ (𝑏𝑘(𝑙𝑛⊗ 𝐼𝑛) + 𝑐𝑘(𝐼𝑛⊗ 𝑙𝑛))𝑋𝑛,𝑘

𝐾
𝑘=1 .  

 

The maximum likelihood (ML) estimator 휃̂𝑁 can be obtained by maximizing ln 𝐿𝑁(휃). In computing 

휃̂𝑁 , evaluating ln det(𝑆𝑁(𝜆, 𝛾, 𝜌)) might be demanding when 𝑛 is large. For this issue, we recommend 

an approximation method using Chebyshev polynomials (see Pace and LeSage, 2004).14 When 𝜖𝑛,𝑖𝑗 is 

not normally distributed, the log-likelihood function (5) will be a quasi log-likelihood function. We will 

study the quasi-maximum likelihood (QML) estimator’s asymptotic properties in Section 4. 

 
13 More details on the preceding eigenvalues can be found in Appendix Claim A.1. Due to the Kronecker product structure 
in 𝑨𝑁 , we note that the above eigenvalues of 𝑨𝑁  can be derived even though 𝑊𝑛  and 𝑀𝑛  are not necessarily 
simultaneously diagonalizable. 
14  Compared to a univariate SAR model, 𝑆𝑁(𝜆, 𝛾, 𝜌)  is an 𝑛

2 -dimensional square matrix. Hence, a computation cost for 

ln det(𝑆𝑁(𝜆, 𝛾, 𝜌)) exponentially increases when cross-section observations increase. Also, utilizing Chebyshev polynomials 

is better than considering the Taylor series expansion. Their simulation results have shown that Chebyshev polynomials 

demonstrate robust performance across a range of spatial interaction parameters. 
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  Since 𝛼 , 𝛽 , 𝑏 , and 𝑐  are linear parameters of exogenous regressors and 𝜎2  is the variance 

parameter of disturbances, we can establish the concentrated log-likelihood function solely relying on 

𝜆 , 𝛾 , and 𝜌 . For notational convenience, let 𝛿 = (𝜆, 𝛾, 𝜌)′ , 𝜅 = (𝛼, 𝛽′, 𝑏′, 𝑐′)′ , and 𝐗𝑁 =

[𝑙𝑁, 𝑣𝑒𝑐(𝑍𝑁,1),⋯ , 𝑣𝑒𝑐(𝑍𝑁,𝐿), (𝑙𝑛⊗ 𝐼𝑛)𝑋𝑛, (𝐼𝑛⊗ 𝑙𝑛)𝑋𝑛]. By the first-order conditions, we have �̂�𝑁(𝛿) =

(𝐗𝑁
′ 𝐗𝑁)

−1𝐗𝑁
′ 𝑆𝑁(𝛿)𝑣𝑒𝑐(𝑌𝑁) for each 𝛿. By putting �̂�𝑁(𝛿) back into ln 𝐿𝑁(휃), we obtain 

 

ln 𝐿𝑁(𝛿, 𝜎
2) = −

𝑁

2
ln 2𝜋 −

𝑁

2
ln 𝜎2 + lndet(𝑆𝑁(𝛿)) −

1

2𝜎2
𝑣𝑒𝑐(𝑌𝑁)

′𝑆𝑁
′ (𝛿)𝑀𝐗𝑁𝑆𝑁(𝛿)𝑣𝑒𝑐(𝑌𝑁),  

 

where 𝑀𝐗𝑁 = 𝐼𝑁 − 𝐗𝑁(𝐗𝑁
′ 𝐗𝑁)

−1𝐗𝑁
′ . Using �̂�𝑁

2(𝛿) =
1

𝑁
𝑣𝑒𝑐(𝑌𝑁)

′𝑆𝑁
′ (𝛿)𝑀𝐗𝑁𝑆𝑁(𝛿)𝑣𝑒𝑐(𝑌𝑁), we obtain the 

concentrated log-likelihood function: 

 

ln 𝐿𝑁(𝛿) = −
𝑁

2
(ln 2𝜋 + 1) −

𝑁

2
ln �̂�𝑁

2(𝛿) + ln det(𝑆𝑁(𝛿)),  

 

which can be used for the optimization search on 𝛿 for estimation. 

 

2.1. Economic foundation 
 

  The purpose of this section is to provide economic reasonings of model (1). With this point, we will 

investigate the structure of 𝑆𝑁
−1 . An economic foundation of the process (4) can be a set of optimal 

outcomes of representative regional agents. We suppose that there exist 𝑛 representative agents and 

each agent 𝑗  can choose 𝑛  actions, 𝑦𝑛,1𝑗 , ⋯ , 𝑦𝑛,𝑛𝑗  . Since this problem is choosing the signals’ 

intensities from 𝑗, it can be related to weighted network formation. That is, a matrix of flows 𝑌𝑁 can 

be considered as a weighted network. A recent theoretical work on weighted network formation is 

Baumann (2021).15  In the Baumann’s (2021) concept, 𝑦𝑛,𝑗𝑗   is 𝑗 ’s self-investment while 𝑦𝑛,𝑘𝑗  for 

𝑘 ≠ 𝑗 is an amount of investment from 𝑗 to 𝑘. We can relate this signal choice problem to an optimal 

resource flow model. 

 

For illustrative purposes, let 𝑦𝑛,𝑖𝑗  be the logged resource flow from 𝑗  to 𝑖  (denoted by 

ln(𝑟𝑓𝑙𝑜𝑤𝑖𝑗) ), 𝑧𝑛,𝑖𝑗 = ln(1 + 𝑑𝑖𝑗)  and 𝑥𝑛,𝑖 = ln(𝑝𝑜𝑝𝑖) , where 𝑑𝑖𝑗   denotes the geographic distance 

between 𝑖 and 𝑗 and 𝑝𝑜𝑝𝑖 denotes the region 𝑖’s population level (mass). That is, 𝐿 = 1 and 𝐾 =

1 . For interpretations, we consider the log-transformed variables to have the same framework with 

McCallum’s (1995) gravity model: 𝑟𝑓𝑙𝑜𝑤𝑖𝑗 = 𝑟𝑓𝑙𝑜𝑤̅̅ ̅̅ ̅̅ ̅̅ exp(𝜖𝑖𝑗)(1 + 𝑑𝑖𝑗)
𝛽0
𝑝𝑜𝑝𝑖

𝑏0𝑝𝑜𝑝𝑗
𝑐0  , where 𝑟𝑓𝑙𝑜𝑤̅̅ ̅̅ ̅̅ ̅̅  

denotes the baseline of 𝑟𝑓𝑙𝑜𝑤𝑖𝑗. Then, the coefficients 𝛽0, 𝑏0, and 𝑐0 represent elasticities and their 

expected signs are 𝛽0 < 0 , 𝑏0 > 0 , and 𝑐0 > 0 . 16  For the case of 𝑖 = 𝑗 , 𝑟𝑓𝑙𝑜𝑤𝑖𝑖 =

𝑟𝑓𝑙𝑜𝑤̅̅ ̅̅ ̅̅ ̅̅ exp(𝜖𝑖𝑖)𝑝𝑜𝑝𝑖
𝑏0+𝑐0 , which indicates that the 𝑖’s self-investment 𝑟𝑓𝑙𝑜𝑤𝑖𝑖 is only affected by the 𝑖’s 

characteristics. The 𝑝𝑜𝑝𝑖-elasticity of 𝑟𝑓𝑙𝑜𝑤𝑖𝑖 is 𝑏0 + 𝑐0. 

 
15 Baumann (2021) establishes an incentive structure of forming {𝑦𝑛,𝑖𝑗}. Her model has a restriction on the agent’s utility 

function, e.g., 𝑦𝑛,𝑖𝑗 = 0  if and only if 𝑦𝑛,𝑗𝑖 = 0  for 𝑗 ≠ 𝑖 . Even though our model does not rely on her theoretical 

assumptions, her interpretations on a weighted network link can be applied to a flow 𝑦𝑛,𝑖𝑗 . 
16 A similar structure can be found in estimating the Cobb-Douglas production function. Refer to Section 1.3 in Wooldridge 
(2010). 
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Let 𝜼𝑁 = (휂𝑛,11,⋯ , 휂𝑛,𝑛1,⋯ , 휂𝑛,1𝑛, ⋯ , 휂𝑛,𝑛𝑛)
′
  where 휂𝑛,𝑖𝑗 = 𝛽0(𝑧𝑛,𝑖𝑗 − 𝑧�̅�) + 𝑏0(𝑥𝑛,𝑖 − �̅�𝑛) +

𝑐0(𝑥𝑛,𝑗 − �̅�𝑛) + 𝜖𝑛,𝑖𝑗  be a vector of exogenous characteristics. Note that 𝑧�̅�  and �̅�𝑛  denote 

respectively the averages of {𝑧𝑛,𝑖𝑗} and {𝑥𝑛,𝑖}. To justify equation (4), a utility of a representative agent 

for region 𝑗 from his/her relation with that for region 𝑖 is 

 

𝑈𝑗(𝑖) = 𝑒𝑛,𝑖
′ 𝑆𝑖𝑛𝑣.𝑗𝜼𝑁𝑦𝑖𝑗 −

1

2
(𝑦𝑛,𝑖𝑗 − �̅�𝑛𝑒𝑛,𝑖

′ 𝑆𝑖𝑛𝑣.𝑗𝑙𝑁)
2
,  

 

where 𝑆𝑁
−1 = [𝑆𝑖𝑛𝑣.1

′ , 𝑆𝑖𝑛𝑣.2
′ , ⋯ , 𝑆𝑖𝑛𝑣.𝑛

′ ]′  (i.e., 𝑆𝑖𝑛𝑣.𝑗   is an 𝑛 × 𝑁  submatrix of 𝑆𝑁
−1 , so 𝑒𝑛,𝑖

′ 𝑆𝑖𝑛𝑣.𝑗  is the 

(𝑗 − 1)𝑛 + 𝑖-th row of 𝑆𝑁
−1) and �̅�𝑛 denotes the social norm/guideline in selecting 𝑦𝑛,𝑖𝑗. Each 𝑆𝑖𝑛𝑣.𝑗  

shows the externalities from spatial influences; and −
1

2
(𝑦𝑛,𝑖𝑗 − �̅�𝑛𝑒𝑛,𝑖

′ 𝑆𝑖𝑛𝑣.𝑗𝑙𝑁)
2
 represents a quadratic 

cost of sending a signal to 𝑖.  

 

  If 𝜆0 = 𝛾0 = 𝜌0 = 0, there is no spatial influence (no externality). In this case, 𝑈𝑗(𝑖) = 휂𝑛,𝑖𝑗𝑦𝑛,𝑖𝑗 −
1

2
(𝑦𝑛,𝑖𝑗 − �̅�𝑛)

2
 with �̅�𝑛 = 𝛽0𝑧�̅� + (𝑏0 + 𝑐0)�̅�𝑛, which implies that there is no incentive to consider the 

effects of a third-party unit. On the other hand, characteristics of a third-party unit can affect a signal 

𝑦𝑛,𝑖𝑗 if some of 𝜆0, 𝛾0, and 𝜌0 are nonzero. Let 𝑒𝑛,𝑖
′ 𝑆𝑖𝑛𝑣.𝑗 = (𝑠𝑖𝑛𝑣,11

𝑖𝑗
, 𝑠𝑖𝑛𝑣,21
𝑖𝑗

, ⋯ , 𝑠𝑖𝑛𝑣,𝑛𝑛
𝑖𝑗

). Then, as 𝑦𝑛,𝑖𝑗 =

𝑒𝑛,𝑖
′ 𝑆𝑖𝑛𝑣.𝑗(�̅�𝑛𝑙𝑁 + 𝜼𝑁), the optimal resource flow can be characterized by  

 

𝑟𝑓𝑙𝑜𝑤𝑖𝑗 = 𝑟𝑓𝑙𝑜𝑤̅̅ ̅̅ ̅̅ ̅̅ ∑ ∑ 𝑠𝑖𝑛𝑣,𝑔ℎ
𝑖𝑗𝑛

ℎ=1
𝑛
𝑔=1 ∏ ∏ (exp(𝜖𝑔ℎ)(1 + 𝑑𝑔ℎ)

𝛽0
𝑝𝑜𝑝𝑔

𝑏0𝑝𝑜𝑝ℎ
𝑐0)

𝑠𝑖𝑛𝑣,𝑔ℎ
𝑖𝑗

𝑛
ℎ=1

𝑛
𝑔=1 .  

 

Then, the optimal resource flow 𝑟𝑓𝑙𝑜𝑤𝑖𝑗 is also affected by characteristics of third-party units through 

𝑠𝑖𝑛𝑣,𝑔ℎ
𝑖𝑗

. Also, the effects of 𝑖 and 𝑗’s characteristics on 𝑟𝑓𝑙𝑜𝑤𝑖𝑗 (represented by the coefficients 𝛽0, 𝑏0, 

and 𝑐0) are amplified by 𝛽0𝑠𝑖𝑛𝑣,𝑖𝑗
𝑖𝑗

, 𝑏0𝑠𝑖𝑛𝑣,𝑖𝑗
𝑖𝑗

, and 𝑐0𝑠𝑖𝑛𝑣,𝑖𝑗
𝑖𝑗

. The remark below describes the structure of 

𝑠𝑖𝑛𝑣,𝑔ℎ
𝑖𝑗

.  

 

Remark (Structure of 𝑆𝑁
−1). First, consider the case of 𝜌0 = −𝜆0𝛾0 (LeSage and Pace’s (2008) special 

case) to provide intuitive explanations.17  By having separable spatial filters (destination-based and 

origin-based), this case can highlight the roles of the two spatial networks 𝑊𝑛 and 𝑀𝑛. 

  Consider the case of (𝑖, 𝑗) = (𝑔, ℎ) to study the spatial multiplier effect. If 𝜌0 = −𝜆0𝛾0 with spatial 

stability, we have 𝑆𝑁
−1 = (𝐼𝑁 + ∑ 𝜆0

𝑝∞
𝑝=1 (𝐼𝑛⊗𝑊𝑛

𝑝)) (𝐼𝑁 + ∑ 𝛾0
𝑞(𝑀𝑛

′𝑞⊗ 𝐼𝑛)
∞
𝑞=1 ) and 𝑠𝑖𝑛𝑣,𝑖𝑗

𝑖𝑗
 is a diagonal 

element of 𝑆𝑁
−1. Then, the (𝑓, 𝑓)-element of 𝑆𝑁

−1 with 𝑓 = (𝑗 − 1)𝑛 + 𝑖 is  

 

[𝑆𝑁
−1]𝑓𝑓 = (𝑒𝑛,𝑗

′ ⊗ 𝑒𝑛,𝑖
′ ) (𝐼𝑁 + ∑ 𝜆0

𝑝∞
𝑝=1 (𝐼𝑛⊗𝑊𝑛

𝑝)) (𝐼𝑁 + ∑ 𝛾0
𝑞(𝑀𝑛

′𝑞⊗ 𝐼𝑛)
∞
𝑞=1 )(𝑒𝑛,𝑗⊗ 𝑒𝑛,𝑖)  

 
17 A similar parameter restriction can be found in a dynamic spatial panel data model (see Section 12.2.2 in Lee and Yu 
(2015)). In a spatial dynamic panel data model, a similar restriction leads to separable space and time filters. Similarly, the 
parameter restriction 𝜌0 = −𝜆0𝛾0 separates the spatial dependence among flows into (1) origin-based dependence 𝑀𝑛

′ ⊗
𝐼𝑛 and (2) destination-based dependence 𝐼𝑛⊗𝑊𝑛 (see Section pages 952-954 of LeSage and Pace (2008)). Even though 
LeSage and Pace (2008) discuss the special case (𝑀𝑛 = 𝑊𝑛

′ with a row-normalized 𝑊𝑛), the same idea of separable space 
filters can be applied.  
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                               = 1 + ∑ (𝜆0
𝑝[𝑊𝑛

𝑝]
𝑖𝑖
+ 𝛾0

𝑝[𝑀𝑛
𝑝]
𝑗𝑗
)∞

𝑝=2 + ∑ ∑ 𝜆0
𝑝𝛾0

𝑞[𝑊𝑛
𝑝]
𝑖𝑖
[𝑀𝑛

𝑞]
𝑗𝑗

∞
𝑞=2

∞
𝑝=2 ,  

where 𝑤𝑛,𝑖𝑖 = 𝑚𝑛,𝑖𝑖 = 0. 

 

For the above, note that [𝑀𝑛
′𝑞]

𝑗𝑗
= 𝑒𝑛,𝑗

′ 𝑀𝑛
′𝑞𝑒𝑛,𝑗 = 𝑒𝑛,𝑗

′ 𝑀𝑛
𝑞𝑒𝑛,𝑗 = [𝑀𝑛

𝑞]
𝑗𝑗
. Hence, [𝑆𝑁

−1]𝑓𝑓 is a combination 

of the feedback effects (1) from 𝑖 to 𝑖, and (2) from 𝑗 to 𝑗, i.e., 𝑖 ↦ ⋯ ↦ 𝑖⏟      
𝑝𝑡ℎ−𝑜𝑟𝑑𝑒𝑟

 and 𝑗 ↦ ⋯ ↦ 𝑗⏟      
𝑞𝑡ℎ−𝑜𝑟𝑑𝑒𝑟

 for 𝑝, 𝑞 =

1,2,⋯ ,∞. For the feedback effect from 𝑖 to 𝑖, note that the middle links might not include 𝑖 for some 

order 𝑝, even though some might include 𝑖.18 The same logic can be applied to the feedback effect from 

𝑗 to 𝑗. 

  To illustrate the roles of third-party units, we secondly consider the structure of 𝑠𝑖𝑛𝑣,𝑔ℎ
𝑖𝑗

  when 

(𝑖, 𝑗) ≠ (𝑔, ℎ): 

 

∑ (𝜆0
𝑝1(𝑗 = ℎ)[𝑊𝑛

𝑝]
𝑖𝑔
+ 𝛾0

𝑝1(𝑖 = 𝑔)[𝑀𝑛
𝑝]
ℎ𝑗
)∞

𝑝=1 + ∑ ∑ 𝜆0
𝑝𝛾0

𝑞[𝑊𝑛
𝑝]
𝑖𝑔
[𝑀𝑛

𝑞]
ℎ𝑗

∞
𝑞=1

∞
𝑝=1 . 

 

We observe that 𝑠𝑖𝑛𝑣,𝑔ℎ
𝑖𝑗

 consists of (1) chains from third-party 𝑔 to destination 𝑖 (i.e., 𝑔 ↦ ⋯ ↦ 𝑖 

via [𝑊𝑛
𝑝]
𝑖𝑔
 ) and (2) those from origin 𝑗  to third-party ℎ  (i.e., 𝑗 ↦ ⋯ ↦ ℎ  via [𝑀𝑛

𝑝]
ℎ𝑗
 ). From the 

structure of 𝑠𝑖𝑛𝑣,𝑔ℎ
𝑖𝑗

, we verify that the first network matrix 𝑊𝑛 characterizes relative spatial influences 

describing influxes into destination units while the second network 𝑀𝑛 specifies directed influences 

for outflows from origin units. 

Second, if there is no restriction on 𝜆0, 𝛾0, and 𝜌0, 𝑆𝑁
−1 = 𝐼𝑁 + ∑ (𝜆0(𝐼𝑛⊗𝑊𝑛) + 𝛾0(𝑀𝑛

′ ⊗ 𝐼𝑛) +
∞
𝑝=1

𝜌0(𝑀𝑛
′ ⊗𝑊𝑛))

𝑝
. Then, the (𝑓, 𝑓′)-element of 𝑆𝑁

−1 with 𝑓 = (𝑗 − 1)𝑛 + 𝑖 and 𝑓′ = (ℎ − 1)𝑛 + 𝑔 is 

 

∑ ∑
𝑝!

𝑝1!𝑝2!𝑝3!
𝜆0
𝑝1𝛾0

𝑝2𝜌0
𝑝3 [𝑊𝑛

𝑝1+𝑝3]
𝑖𝑔
[𝑀𝑛

𝑝2+𝑝3]
ℎ𝑗𝑝1+𝑝2+𝑝3=𝑝

∞
𝑝=0   

 

by the trinomial expansion formula. Then, the 𝑝 -th order effect contains (1) the 𝑝1 + 𝑝3 -th order 

effects from 𝑔  to 𝑖  originated from 𝑊𝑛
𝑝1+𝑝3  and (2) the 𝑝2 + 𝑝3 -th order effects from 𝑗  to ℎ  by 

𝑀𝑛
𝑝2+𝑝3 such that 𝑝1 + 𝑝2 + 𝑝3 = 𝑝. ∎ 

 

2.2. Fixed-effect specification for unobserved characteristics of both origin and 

destination 
 

In this subsection, we introduce an alternative linear SARF model specification with a fixed effect for 

each origin unit, and a fixed effect for each destination unit, which can robustly control unobserved 

characteristics. Consider an extension of the linear SARF model: 

 

𝑦𝑛,𝑖𝑗 = 𝜆0∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗
𝑛
𝑔=1 + 𝛾0∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 + 𝜌0∑ ∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1

𝑛
𝑔=1   

 
18  For the second and third order effects (i.e., 𝑝 = 2,3 ), paths are 𝑖 ↦ 𝑘 ↦ 𝑖  for some 𝑘  (when 𝑝 = 2 ) and 𝑖 ↦ 𝑘1 ↦
𝑘2 ↦ 𝑖  for some 𝑘1  and 𝑘2  (when 𝑝 = 3 ). Since we exclude self-influence, note that 𝑘 , 𝑘1 , and 𝑘2  do not contain 𝑖 . 
From the fourth order effect (𝑝 = 4), the middle links can contain 𝑖 since a possible path is 𝑖 ↦ 𝑘1 ↦ 𝑘2 ↦ 𝑘3 ↦ 𝑖 for some 
𝑘1, 𝑘2, and 𝑘3. By the same logic, potential 𝑘1 and 𝑘3 do not include 𝑖. However, 𝑘2 can contain 𝑖 if there exist paths 
𝑘1 ↦ 𝑖 and 𝑖 ↦ 𝑘3. 
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                 +𝒛𝑛,𝑖𝑗𝛽0 + 𝛼𝑖,𝑑,0 + 𝛼𝑗,𝑜,0 + 𝜖𝑖𝑗,                                          (6) 

 

where 𝒛𝑛,𝑖𝑗 = (𝑧𝑛,𝑖𝑗,1, ⋯ , 𝑧𝑛,𝑖𝑗,𝐿)
′
, 𝛼𝑖,𝑑,0 denotes a destination 𝑖’s fixed-effect component, and 𝛼𝑗,𝑜,0 is 

an unobserved fixed-effect component of origin 𝑗 due to the presence of unknown fixed effects.19 Let 

𝜔0 = (𝛿0
′ , 𝛽0

′ , 𝜎0
2)′  be the true parameter vector for model (6) and 𝜔 = (𝛿′, 𝛽′, 𝜎2)′  be a vector of 

possible parameter values. Let 𝜶𝑛,𝑜,0 = (𝛼1,𝑜,0,⋯ , 𝛼𝑛,𝑜,0)
′
  and 𝜶𝑛,𝑑,0 = (𝛼1,𝑑,0, ⋯ , 𝛼𝑛,𝑑,0)

′
  be vectors 

of the true fixed-effect components and 𝜶𝑛,𝑜 = (𝛼1,𝑜, ⋯ , 𝛼𝑛,𝑜)
′
 and 𝜶𝑛,𝑑 = (𝛼1,𝑑, ⋯ , 𝛼𝑛,𝑑)

′
 be possible 

vectors of fixed-effect components. The vector/matrix notation of (6) is 

 

    𝑣𝑒𝑐(𝑌𝑁) = (𝜆0𝑾𝑁 + 𝛾0𝑴𝑁 + 𝜌0𝑹𝑁)𝑣𝑒𝑐(𝑌𝑁) + 𝒁𝑁𝛽0 + 𝜶𝑛,𝑜,0⨂𝑙𝑛 + 𝑙𝑛⨂𝜶𝑛,𝑑,0 + 𝑣𝑒𝑐(𝜖𝑁),     (7) 

 

where 𝒁𝑁 = [𝑣𝑒𝑐(𝑍𝑁,1),⋯ , 𝑣𝑒𝑐(𝑍𝑁,𝐿)]. The reduced form of (7) is 

 

𝑣𝑒𝑐(𝑌𝑁) = 𝑆𝑁
−1 (𝒁𝑁𝛽0 + 𝜶𝑛,𝑜,0⨂𝑙𝑛 + 𝑙𝑛⨂𝜶𝑛,𝑑,0 + 𝑣𝑒𝑐(𝜖𝑁)).  

 

To effectively estimate 𝜔0, we need to remove the incidental parameters 𝜶𝑛,𝑜,0 and 𝜶𝑛,𝑑,0 from the 

log-likelihood function. The log-likelihood function for estimating 𝜔0 is 

 

ln 𝐿𝑁(𝜔, 𝜶𝑛,𝑜 , 𝜶𝑛,𝑑) = −
𝑁

2
ln 2𝜋 −

𝑁

2
ln 𝜎2 + ln det(𝑆𝑁(𝛿))           

                                  −
1

2𝜎2
𝑣𝑒𝑐 (𝜖𝑁

+(𝜔, 𝜶𝑛,𝑜 , 𝜶𝑛,𝑑))
′

𝑣𝑒𝑐 (𝜖𝑁
+(𝜔, 𝜶𝑛,𝑜 , 𝜶𝑛,𝑑)),                                                                      

 

where 𝑣𝑒𝑐 (𝜖𝑁
+(𝜔, 𝜶𝑛,𝑜 , 𝜶𝑛,𝑑)) = 𝑣𝑒𝑐(𝜖𝑁

+(𝜔)) − 𝜶𝑛,𝑜⨂𝑙𝑛 − 𝑙𝑛⨂𝜶𝑛,𝑑 and  

𝑣𝑒𝑐(𝜖𝑁
+(𝜔)) = 𝑆𝑁(𝛿)𝑣𝑒𝑐(𝑌𝑁) − ∑ 𝛽𝑙𝑣𝑒𝑐(𝑍𝑁,𝑙)

𝐿
𝑙=1  . Observe that 𝜶𝑛,𝑜  and 𝜶𝑛,𝑑  are linear parameters. 

By the first-order conditions, we then obtain 

 

�̂�𝑛,𝑜(𝜔, 𝜶𝑛,𝑑) =
1

𝑛
(𝐼𝑛⨂𝑙𝑛

′ )(𝑣𝑒𝑐(𝜖𝑁
+(𝜔)) − 𝑙𝑛⨂𝜶𝑛,𝑑), and 𝐽𝑛�̂�𝑛,𝑑(𝜔) =

1

𝑛
(𝑙𝑛
′⨂𝐽𝑛)𝑣𝑒𝑐(𝜖𝑁

+(𝜔)). 

 

Note that we need to impose a normalization restriction 𝐽𝑛�̂�𝑛,𝑑(𝜔) = �̂�𝑛,𝑑(𝜔)  for identification.20 

Hence, 𝑣𝑒𝑐 (𝜖𝑁
+ (𝜔, �̂�𝑛,𝑜 (𝜔, �̂�𝑛,𝑑(𝜔)) , �̂�𝑛,𝑑(𝜔))) = (𝐽𝑛⨂𝐽𝑛)𝑣𝑒𝑐(𝜖𝑁

+(𝜔)).  Then, the concentrated log-

likelihood function for estimating 𝜔 is 

 

ln 𝐿𝑁(𝜔) = −
𝑁

2
ln 2𝜋 −

𝑁

2
ln 𝜎2 + ln det(𝑆𝑁(𝛿)) −

1

2𝜎2
𝑣𝑒𝑐(𝜖𝑁

+(𝜔))
′
(𝐽𝑛⨂𝐽𝑛)𝑣𝑒𝑐(𝜖𝑁

+(𝜔))  

 

 
19 Also, equation (6) is an extension of the gravity equation with the two-way fixed effects and assuming 𝜆0 = 𝛾0 = 𝜌0 = 0 
(see Chapter 5 of Feenstra (2003)).  
  Under specification (6), identifying the sensitivity effects for 𝑥𝑛,𝑖 and 𝑥𝑛,𝑗 will not be possible via the estimation of (6), 

but however, it can be done by a two-step method (Hausman and Taylor, 1981). We might estimate the coefficients of 𝑥𝑛,𝑖 

by a regression of estimated constant term 𝛼0 on 𝑥𝑛 if 𝑥𝑛 were exogenous, but by an IV approach in the presence of valid 
IVs for 𝑥𝑛 when 𝑥𝑛 is endogenous.  
20 Under the restriction 𝐽𝑛�̂�𝑛,𝑑(𝜔) = �̂�𝑛,𝑑(𝜔), we have  

�̂�𝑛,𝑜 (𝜔, �̂�𝑛,𝑑(𝜔)) =
1

𝑛
(𝐼𝑛⨂𝑙𝑛

′ ) (𝑣𝑒𝑐(𝜖𝑁
+(𝜔)) − 𝑙𝑛⨂�̂�𝑛,𝑑(𝜔)) =

1

𝑛
(𝐼𝑛⨂𝑙𝑛

′ )𝑣𝑒𝑐(𝜖𝑁
+(𝜔)).  
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with �̂�𝑁 = argmax
𝜔∈Θ𝜔

ln 𝐿𝑁(𝜔), where Θ𝜔 denotes a compact parameter space for 𝜔. 

 

  Since 𝐸 (
1

𝑁

𝜕 ln 𝐿𝑁(𝜔0)

𝜕𝜔
) → 𝟎  as 𝑛 → ∞ , we have consistency of �̂�𝑁 . However, the direct estimation 

approach leads to an asymptotic bias of �̂�𝑁  since 𝐸 (
1

√𝑁

𝜕 ln 𝐿𝑁(𝜔0)

𝜕𝜔
) = Λ𝑁 ≠ 𝟎  for some Λ𝑁 = 𝑂(1) . 

Hence, a bias correction for �̂�𝑁 is needed. In Section 4.2.1, we introduce the asymptotic properties of 

�̂�𝑁 and a bias correction method by analytically evaluating the form of Λ𝑁. 

 

3. SARF Tobit models 
 

  In some application, a flow variable matrix 𝑌𝑁  contains many zero values. For example, a flow 

outcome between two regions can less occur due to some budgetary reasons if cross-section units are 

small. Also, an origin-destination flow 𝑦𝑛,𝑖𝑗  is a gross flow, which is necessarily nonnegative. This 

section extends the linear SARF model to a model with the Tobit structure (see Tobin (1958)). 

 

  We consider the simultaneous SAR Tobit model for a flow variable (hereafter, SARF Tobit). Refer to 

Qu and Lee (2012), Xu and Lee (2015b), Xu and Lee (2018) for univariate SAR Tobit models. For an 

𝑁 × 1 real vector 𝒙 = (𝑥1, ⋯ . 𝑥𝑁)′, let 𝐹(𝒙) = (max(0, 𝑥1),⋯ ,max(0, 𝑥𝑁))′.21 Observe that 𝐹(∙) is a 

non-decreasing, convex, and Lipschitz function (since |𝐹(𝑥1) − 𝐹(𝑥2)| ≤ |𝑥1 − 𝑥2| ). The SARF Tobit 

model equation is  

 

𝑣𝑒𝑐(𝑌𝑁) = 𝐹(𝑨𝑁𝑣𝑒𝑐(𝑌𝑁) + 𝐗𝑁𝜅0 + 𝑣𝑒𝑐(𝜖𝑁)), 

 

where 𝐗𝑁 = [𝒙1
′ , ⋯ , 𝒙𝑁

′ ]′  with 𝒙𝑛,𝑖𝑗 = (1, 𝑧𝑛,𝑖𝑗,1, ⋯ , 𝑧𝑛,𝑖𝑗,𝐿 , 𝑥𝑛,𝑖,1, ⋯ , 𝑥𝑛,𝑖,𝐾, 𝑥𝑛,𝑗,1,⋯ , 𝑥𝑛,𝑗,𝐾)  for each 

(𝑖, 𝑗) (i.e., 𝒙𝑛,𝑖𝑗 = 𝒙𝑁,𝑓 with 𝑓 = (𝑗 − 1)𝑛 + 𝑖 is the 𝑓th row of 𝐗𝑁), and 𝜅0 = (𝛼0, 𝛽0
′ , 𝑏0

′ , 𝑐0
′ )′. Using 

a scalar notation, the model can be written as 

 

𝑦𝑛,𝑖𝑗 = 𝐹(𝜆0∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗
𝑛
𝑔=1 + 𝛾0∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 + 𝜌0∑ ∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1

𝑛
𝑔=1 + 𝒙𝑛,𝑖𝑗𝜅0 + 𝜖𝑛,𝑖𝑗).   (8)  

 

Or, 𝑦𝑛,𝑖𝑗 = 0  if 𝑦𝑛,𝑖𝑗
∗ ≤ 0  and 𝑦𝑛,𝑖𝑗 = 𝑦𝑛,𝑖𝑗

∗   if 𝑦𝑛,𝑖𝑗
∗ > 0 , where 𝑦𝑛,𝑖𝑗

∗   is the argument inside the 𝐹(∙) 

above. Let 𝑣𝑒𝑐(𝑌𝑁
∗) be an 𝑁 × 1 vector whose elements are inside of 𝐹(∙) of the right-hand-side of 

(8). Then, the model can be rewritten as 𝑣𝑒𝑐(𝑌𝑁) = 𝐹(𝑣𝑒𝑐(𝑌𝑁
∗)). 

 

  Now we consider conditions for model’s stability and coherency. Recall that a model can generate a 

manageable covariance structure under spatial stability. Since the SARF Tobit model involves a 

nonlinear transformation 𝐹(∙) , a stability condition might be different from that of the linear SARF 

model. The model’s coherency is required to guarantee a unique solution of a nonlinear equation system 

𝑣𝑒𝑐(𝑌𝑁) = 𝐹(𝑣𝑒𝑐(𝑌𝑁
∗)). The below assumption states a sufficient condition for the two issues. 

 

Assumption 3.1. Assume that 𝑆𝑁 = 𝐼𝑁 − 𝑨𝑁  is a strictly dominant diagonal matrix. Let 휁 =

sup𝑛‖𝑨𝑁‖∞, and it is assumed that 휁 < 1. 

 
21 As Xu and Lee (2015b) mentioned (see Section 2 in Xu and Lee (2015b)), this framework can be extended to the case that 
censoring points are known and nonzero. 
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  Assumption 3.1 means that ∑ |[𝑨𝑁]𝑓𝑓′|
𝑁
𝑓′=1 < 1  for all 𝑓 = 1,⋯ ,𝑁  (Note that 𝑨𝑁  has zero 

diagonal elements due to excluding self-influence). Then, ‖𝑨𝑁‖∞ ≤ 휁 < 1 for some 0 ≤ 휁 < 1. Under 

Assumption 3.1, the system has a solution to a contraction mapping. The condition in Assumption 3.1 is 

also employed in asymptotic analysis. The detailed arguments can be found in the Appendix. 

 

  To derive the log-likelihood function, we rearrange a set of observations such that 𝑣𝑒𝑐(𝑌𝑁) = (
𝒚1,𝑁1
𝒚2,𝑁2

), 

where the first 𝑁1 observations in 𝒚1,𝑁 are zeros while the remaining 𝑁2 = 𝑁 − 𝑁1 observations are 

positive. Assume 𝜖𝑛,𝑖𝑗~𝑖. 𝑖. 𝑑. 𝑁(0, 𝜎0
2), so we have 

𝜖𝑛,𝑖𝑗

𝜎0
~𝑖. 𝑖. 𝑑. 𝑁(0,1). For notational convenience, let 

 

𝜖𝑛,𝑖𝑗
∗ (휃) = (𝑦𝑛,𝑖𝑗 − 𝜆∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗

𝑛
𝑔=1 − 𝛾∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 − 𝜌∑ ∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1

𝑛
𝑔=1 − 𝒙𝑛,𝑖𝑗𝜅)/𝜎  

 

be the normalized residual evaluated at 휃. Then, the log-likelihood function for estimation is  

 

       ln 𝐿𝑁
∗ (휃) = ∑ 1(𝑦𝑛,𝑖𝑗 = 0) lnΦ(𝜖𝑛,𝑖𝑗

∗ (휃))𝑛
𝑖,𝑗=1 −

1

2
ln 2𝜋𝜎2 ∑ 1(𝑦𝑛,𝑖𝑗 > 0)

𝑁
𝑖,𝑗=1 + ln det (𝑆𝑁2

∗ (𝛿))  

                −
1

2
∑ 1(𝑦𝑛,𝑖𝑗 > 0)
𝑛
𝑖,𝑗=1 (𝜖𝑛,𝑖𝑗

∗ (휃))
2

,  

 

where 𝑆𝑁2
∗ (𝛿) is the submatrix of 𝑆𝑁(𝛿) corresponding to 𝑦𝑛,𝑖𝑗 > 0. For notational convenience, let 

𝑆𝑁2
∗ (𝛿) = 𝐼𝑁2 − 𝜆𝑾22,𝑁 − 𝛾𝑴22,𝑁 − 𝜌𝑹22,𝑁  where 𝑾22,𝑁 , 𝑴22,𝑁 , and 𝑹22,𝑁  are respectively the 

submatrices of 𝑾𝑁 , 𝑴𝑁 , and 𝑹𝑁 corresponding to positive flows. Note that the number of positive 

flows (i.e., elements of 𝒚2,𝑁2 ) and their positions 𝑾22,𝑁 , 𝑴22,𝑁 , and 𝑹22,𝑁  in the whole spatial 

relations in a sample are stochastic.  

 

The asymptotic properties of 휃̂𝑁 rely on stochastic properties of ln det (𝑆𝑁2
∗ (𝛿)) and its derivatives 

with respect to 𝛿 . Define 𝐺𝑁(𝑌𝑁) = 𝑑𝑖𝑎𝑔𝑓=1
𝑁 1(𝑦𝑛,𝑖𝑗 > 0 with 𝑓 = (𝑗 − 1)𝑛 + 𝑖) , �̃�𝑁 =

𝐺𝑁(𝑌𝑁)𝑾𝑁𝐺𝑁(𝑌𝑁) , �̃�𝑁 = 𝐺𝑁(𝑌𝑁)𝑴𝑁𝐺𝑁(𝑌𝑁) , and �̃�𝑁 = 𝐺𝑁(𝑌𝑁)𝑹𝑁𝐺𝑁(𝑌𝑁) . For 𝑓 = 1,⋯ ,𝑁  and for 

each 𝛿 , let 𝑟𝑁,𝑓,𝜆(𝛿) = [�̃�𝑁�̃�𝑁
−1(𝛿)]

𝑓𝑓
 , 𝑟𝑁,𝑓,𝛾(𝛿) = [�̃�𝑁�̃�𝑁

−1(𝛿)]
𝑓𝑓
 , and 𝑟𝑁,𝑓,𝜌(𝛿) = [�̃�𝑁�̃�𝑁

−1(𝛿)]
𝑓𝑓
 , 

where �̃�𝑁(𝛿) = 𝐼𝑁 −  𝜆�̃�𝑁 − 𝛾�̃�𝑁 − 𝜌�̃�𝑁. Then, we have  

 

     ln det (𝑆𝑁2
∗ (𝛿)) = −∑ (

𝑡𝑟((𝐺𝑁(𝑌𝑁)𝑨𝑁(𝛿)𝐺𝑁(𝑌𝑁))
𝑙
)

𝑙
)∞

𝑙=1 ,  

𝑡𝑟 (𝑾22,𝑁𝑆𝑁2
∗ −1(𝛿)) = 𝑡𝑟 (�̃�𝑁�̃�𝑁

−1(𝛿)) = ∑ 𝑟𝑁,𝑓,𝜆(𝛿)
𝑁
𝑓=1 = ∑ 𝑟𝑛,𝑖𝑗,𝜆(𝛿)

𝑛
𝑖,𝑗=1 ,  

    𝑡𝑟 (𝑴22,𝑁𝑆𝑁2
∗ −1(𝛿)) = 𝑡𝑟 (�̃�𝑁�̃�𝑁

−1(𝛿)) = ∑ 𝑟𝑁,𝑓,𝛾(𝛿)
𝑁
𝑓=1 = ∑ 𝑟𝑛,𝑖𝑗,𝛾(𝛿)

𝑛
𝑖,𝑗=1 , and  

𝑡𝑟 (𝑹22,𝑁𝑆𝑁2
∗ −1(𝛿)) = 𝑡𝑟 (�̃�𝑁�̃�𝑁

−1(𝛿)) = ∑ 𝑟𝑁,𝑓,𝜌(𝛿)
𝑁
𝑓=1 = ∑ 𝑟𝑛,𝑖𝑗,𝜌(𝛿)

𝑛
𝑖,𝑗=1 .  

 

At 𝛿0, we define 𝑟𝑛,𝑖𝑗,𝜆 = 𝑟𝑛,𝑖𝑗,𝜆(𝛿0), 𝑟𝑛,𝑖𝑗,𝛾 = 𝑟𝑛,𝑖𝑗,𝛾(𝛿0), and 𝑟𝑛,𝑖𝑗,𝜌 = 𝑟𝑛,𝑖𝑗,𝜌(𝛿0) for each (𝑖, 𝑗). 

 

  If one wants to control unobservables via the fixed-effect specification, the following log-likelihood 

function can be utilized:  
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ln 𝐿𝑁
∗ (𝜔, 𝜶𝑛,𝑜, 𝜶𝑛,𝑑) = ∑ 1(𝑦𝑛,𝑖𝑗 = 0) lnΦ(𝜖𝑛,𝑖𝑗

+,∗ (𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑))
𝑛
𝑖,𝑗=1 −

1

2
ln 2𝜋𝜎2 ∑ 1(𝑦𝑛,𝑖𝑗 > 0)

𝑛
𝑖,𝑗=1   

             + ln det (𝑆𝑁2
∗ (𝛿)) −

1

2
∑ 1(𝑦𝑛,𝑖𝑗 > 0)
𝑛
𝑖,𝑗=1 (𝜖𝑛,𝑖𝑗

+,∗ (𝜔, 𝛼𝑗,𝑜, 𝛼𝑖,𝑑))
2

−
𝜇

2
(∑ 𝛼𝑗,𝑜

𝑛
𝑗=1 − ∑ 𝛼𝑖,𝑑

𝑛
𝑖=1 )

2
 , 

 

where 𝜖𝑛,𝑖𝑗
+,∗ (𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑) =

𝑦𝑛,𝑖𝑗−𝜆∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗
𝑛
𝑔=1 −𝛾∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 −𝜌∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
𝑔,ℎ=1 −𝒛𝑛,𝑖𝑗𝛽−𝛼𝑗,𝑜−𝛼𝑖,𝑑

𝜎
  and 

𝜇 is an arbitrary positive constant. The penalty term −
𝜇

2
(∑ 𝛼𝑗,𝑜

𝑛
𝑗=1 − ∑ 𝛼𝑖,𝑑

𝑛
𝑖=1 )

2
 imposes ∑ 𝛼𝑗,𝑜

𝑛
𝑗=1 =

∑ 𝛼𝑖,𝑑
𝑛
𝑖=1   for identification. 22  This setting is consistent with that of nonlinear panel models with 

individual and time fixed effects with the large 𝑛 and 𝑇 setting (Fernandez-Val and Weidner, 2016).23 

Compared to the linear SARF model, the fixed-effect components {𝛼𝑖,𝑜} and {𝛼𝑗,𝑑} are no longer linear 

parameters. We will study the asymptotic properties of the MLE in Subsection 4.3.1. 

 

4. Asymptotic properties 
 

  In this section, we provide consistency and asymptotic normality of the MLE. Based on moment 

properties of {𝜖𝑛,𝑖𝑗}, we study the QMLE’s asymptotic properties for the linear SARF model. But later 

on, for the SARF Tobit model, the distribution of 𝜖𝑛,𝑖𝑗 will be assumed to be normal.24 

 

4.1. Topological specification and regularity conditions 
 

  To establish the asymptotic properties of the MLE (QMLE) 휃̂𝑁 , we provide the topological 

specification for a cross-section unit 𝑖. 

 

Assumption 4.1. In a sample, there exist 𝑛 cross-section units. A cross-section unit 𝑖 is located in a 

space 𝐷𝑛 ⊂ 𝐷 , which is a subset of ℝ
𝑑   (𝑑 ≥ 1 ). We assume lim

𝑛→∞
card(𝐷𝑛) = ∞ , where card(𝐷𝑛)  is 

the cardinality of 𝐷𝑛. Let 𝑑(𝑖, 𝑗) be a distance between 𝑖 and 𝑗. Assume min
𝑖,𝑗
𝑑(𝑖, 𝑗) ≥ 1. 

 

  By Jenish and Prucha (2009, 2012), this setting was introduced to establish the stochastic properties 

of spatial mixing and spatial near-epoch dependent (NED) processes. The set 𝐷 is an irregular lattice 

containing all potential locations of cross-section units {𝑖} .25  Then, we define the location function, 

𝑖 ↦ 𝑙(𝑖) ∈ 𝐷  for any 𝑖 , and 𝑑(𝑖, 𝑗) = ‖𝑙(𝑖) − 𝑙(𝑗)‖∞ . The minimum distance assumption leads to 

avoiding an extreme influence between two cross-section units. Based on Assumption 4.1, the next step 

 
22  Among possible restrictions, we follow the Fernandez-Val and Weidner’s (2016) setting. We solve an unconstrained 
optimization problem with keeping smoothness of the statistical objective function ln 𝐿𝑁

∗ (𝜔,𝜶𝑁) . One can impose an 

alternative restriction on {𝛼𝑖,𝑜} and {𝛼𝑗,𝑑}. In the linear SARF model, for example, recall that we need to impose a restriction 

on 𝜶𝑛,𝑑 for identification, i.e., ∑ 𝛼𝑖,𝑑
𝑛
𝑖=1 = 0. The same restriction on the time fixed effects is imposed in Lee and Yu (2010). 

23 The incidental parameter problem with the large-𝑇 panel data becomes an asymptotic bias problem since the order of 

bias is 𝑂 (
𝑛+𝑇

𝑛𝑇
) = 𝑜(1)  when 𝑛  and 𝑇  are both large. In our case, the same logic is applied, i.e., the order of bias=

𝑂 (
# of incidental parameters=2𝑛

# of observations=𝑛2
) = 𝑂 (

1

𝑛
). Relevant reviews can be found in Arellano and Hahn (2007) and Fernandez-Val and 

Weidner (2018). 
24 For a parametric model, a specific distribution will provide a proper parameter censoring probability. It might be possible 
to use a nonparametric sieve approach without the normality assumption as in Xu and Lee (2018). But we shall leave that 
nonparametric approach in this paper because of its complexity in theory and estimation.  
25 The space 𝐷 can be a combination of geographic/demographic/economic spaces (i.e., characteristic space for a unit 𝑖). 
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is to characterize a distance measure for the two flow outcomes. In contrast to a traditional spatial 

econometric model, a flow outcome 𝑦𝑛,𝑖𝑗 involves the two cross-section units 𝑖 and 𝑗. Then, a flow 

(𝑖, 𝑗) can be located at a product space 𝐷 × 𝐷, which is a subspace of ℝ2𝑑 .  

 

  Using 𝑑(𝑖, 𝑗), we define the distance function for flows (𝑖, 𝑗) and (𝑔, ℎ): 

 

𝑑𝐹((𝑖, 𝑗), (𝑔, ℎ)) = max{𝑑(𝑖, 𝑔), 𝑑(𝑗, ℎ)}. 

 

That is, 𝑑𝐹(∙,∙) takes the maximum value of the distance between origins and that between destinations. 

This metric satisfies the basic properties: (1) identity of indiscernibles, (2) symmetry, and (3) 

subadditivity. By the maximum norm’s property with Assumption 4.1, 𝑑𝐹((𝑖, 𝑗), (𝑔, ℎ)) ≥ 1  when 

(𝑖, 𝑗) ≠ (𝑔, ℎ) . Then, Jenish and Prucha’s (2009) Lemma A.1 implies card({(𝑔, ℎ): 𝑑𝐹((𝑖, 𝑗), (𝑔, ℎ)) ≤

𝑚}) ≤ 𝐶𝑚2𝑑 for some constant 𝐶 > 0, i.e, there exists an upper bound of the number of flow units 

around arbitrary (𝑖, 𝑗) . The purpose of introducing this metric is to generate a device that 

𝐶𝑜𝑣(𝑞𝑛,𝑖𝑗, 𝑞𝑛,𝑔ℎ) → 0 as 𝑑𝐹((𝑖, 𝑗), (𝑔, ℎ)) → ∞, where 𝑞𝑛,𝑖𝑗 and 𝑞𝑛,𝑔ℎ are respectively components of 

a random field originated from pairs (𝑖, 𝑗) and (𝑔, ℎ). This device will be employed if a statistic 𝑞𝑛,𝑖𝑗 

is a nonlinear function of {𝜖𝑛,𝑖𝑗} (SARF Tobit model case).26 The remark below illustrates the idea of 

this metric specification for flows. 

 

Remark. Consider the covariance 𝐶𝑜𝑣(𝑦𝑛,𝑖𝑗, 𝑦𝑛,𝑔ℎ)  for (𝑖, 𝑗) , (𝑔, ℎ) ∈ 𝐷 × 𝐷 . The figure below 

illustrates the topological specification for flows when each cross-section unit is located in ℝ. 

 

Figure 3. Topological specification for flows 

 
 

If 𝜌0 = −𝜆0𝛾0 , we have the separable spatial filter, i.e., 𝑆𝑁 = (𝐼𝑁 − 𝜆0(𝐼𝑛⊗𝑊𝑛))(𝐼𝑁 − 𝛾0(𝑀𝑛
′ ⊗ 𝐼𝑛)) . 

As we mentioned, this case can highlight the roles of 𝑊𝑛 and 𝑀𝑛 with intuitive manners. Under spatial 

stability, we have 

 

     𝐶𝑜𝑣(𝑦𝑛,𝑖𝑗, 𝑦𝑛,𝑔ℎ) = 𝜎0
2(𝑒𝑛,𝑗

′ ⊗ 𝑒𝑛,𝑖
′ )𝑆𝑁

−1𝑆𝑁
−1′ (𝑒𝑛,ℎ⊗ 𝑒𝑛,𝑔)  

                   = 𝜎0
2 (∑ ∑ 𝜆0

𝑝1+𝑝2[𝑊𝑛
𝑝1𝑊𝑛

𝑝2′]
𝑖𝑔

∞
𝑝2=0

∞
𝑝1=0

)
⏟                      

=𝑠𝑢𝑚 𝐴

(∑ ∑ 𝛾0
𝑞1+𝑞2[𝑀𝑛

𝑞1𝑀𝑛
𝑞2′]

ℎ𝑗
∞
𝑞2=0

∞
𝑞1=0

)
⏟                      

=𝑠𝑢𝑚 𝐵

. 

 

Observe that the two infinite sums are well-defined under the spatial stability condition. Under the NED 

 
26 Refer to Proposition 1 in Xu and Lee (2019). For the linear SARF model case, 𝑞𝑛,𝑖𝑗  takes a linear-quadratic form of {𝜖𝑛,𝑖𝑗}. 

Then, a martingale difference central limit theory can be applied. See the supplement file. 
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framework for a univariate SAR model, the first summation becomes smaller when 𝑑(𝑖, 𝑔) increases. 

It implies that 𝐶𝑜𝑣(𝑦𝑛,𝑖𝑗, 𝑦𝑛,𝑔𝑗) decreases when 𝑑(𝑖, 𝑔) becomes larger. The second summation can 

be also interpreted similarly. By this setting, we then verify that 𝐶𝑜𝑣(𝑦𝑛,𝑖𝑗, 𝑦𝑛,𝑔ℎ)  becomes smaller 

when 𝑑(𝑖, 𝑔) or 𝑑(𝑗, ℎ) increases. ∎ 

 

  Here are additional regularity assumptions for asymptotic analyses.  

 

Assumption 4.2. (i) Denote 𝑐𝑤,𝑐 = sup𝑛‖𝑊𝑛‖1 , 𝑐𝑚,𝑐 = sup𝑛‖𝑀𝑛‖1 , 𝑐𝑤,𝑟 = sup𝑛‖𝑊𝑛‖∞ , and 𝑐𝑚,𝑟 =

sup𝑛‖𝑀𝑛‖∞ . The sequences {𝑊𝑛}  and {𝑀𝑛}  satisfy max{𝑐𝑤,𝑐, 𝑐𝑚,𝑐, 𝑐𝑤,𝑟 , 𝑐𝑚,𝑟} < ∞ , i.e., they are 

uniformly bounded in both row and column sum norms. 

  (ii) Θ𝛿  denotes a compact parameter space for 𝛿. We assume 𝛿0 belongs to the interior of Θ𝛿 . The 

sequence {𝑆𝑁
−1(𝛿)} satisfies max𝛿∈Θ𝛿{sup𝑛‖𝑆𝑁

−1(𝛿)‖∞, sup𝑛‖𝑆𝑁
−1(𝛿)‖1} < ∞.  

  (iii) 𝑤𝑛,𝑖𝑗 and 𝑚𝑛,𝑖𝑗 satisfy one of the two conditions: 

   (iii-1) 𝑤𝑛,𝑖𝑗 > 0 and 𝑚𝑛,𝑖𝑗 > 0 only if 𝑑(𝑖, 𝑗) ≤ �̅� for some �̅� > 1; otherwise 𝑤𝑛,𝑖𝑗 = 0. 

   (iii-2) 𝑤𝑛,𝑖𝑗 ≤
𝐶0

𝑑(𝑖,𝑗)𝑎
  and 𝑚𝑛,𝑖𝑗 ≤

𝐶0

𝑑(𝑖,𝑗)𝑎
  for some 𝐶0 > 0  and 𝑎 > 2𝑑 . In this case, we assume 

|𝜆0|𝑐𝑤,𝑟 + |𝛾0|𝑐𝑚,𝑟 + |𝜌0|𝑐𝑤,𝑟𝑐𝑚,𝑟 ≤ 휁; if 𝑐𝑤,𝑐 > 𝑐𝑤,𝑟, there exist at most 𝐾𝑊 (𝐾𝑊 ≥ 1) columns of 𝑊𝑛 

that the column sum exceeds 𝑐𝑤,𝑟, where 𝐾𝑊 is a constant that does not rely on 𝑛.27 

Assumption 4.3. (i) Elements of 𝐗𝑁 have uniformly bounded constants.  

Or, if one wants to assume that 𝐗𝑁 is stochastic, max
𝑘=1,⋯,2𝐾+𝐿+1

sup𝑛.𝑖𝑗𝐸|𝒙𝑛,𝑖𝑗,𝑘|
4+

< ∞ for some 휂 > 0; 

and, 𝑿𝑁 and 𝜖𝑁 are independent. 

  (ii) lim
𝑛→∞

1

𝑁
𝐗𝑁
′ 𝐗𝑁 or plim

𝑛→∞

1

𝑁
𝐗𝑁
′ 𝐗𝑁 exists and is nonsingular. 

Assumption 4.4. The parameter space Θ of 휃 is compact. The true value 휃0 belongs to the interior of 

Θ. 

 

  Most assumptions are traditional, but the condition in Assumption 4.2 (iii-2) is introduced to 

characterize the maximum column sum (and those of its powers) of 𝑨𝑁 for the SARF Tobit model if 

𝑤𝑛,𝑖𝑗 and 𝑚𝑛,𝑖𝑗 are geometric decaying functions of 𝑑(𝑖, 𝑗). Under this condition, we obtain ‖𝑨𝑁
𝑙 ‖

1
≤

𝑙𝐾Γ휁𝑙−1 for 𝑙 ∈ ℤ+, where 𝐾 is a positive integer that does not depend on 𝑛 (see Lemma C.1).28 It 

implies that ∑ ‖𝑨𝑁
𝑙 ‖

1
∞
𝑙=1 ≤ 𝐾Γ∑ 𝑙휁𝑙−1∞

𝑙=1 < ∞ . Assumption 4.3 gives regularity conditions for 

exogenous variables {𝒙𝑛,𝑖𝑗,𝑘}, which provide guidance of generating a z-variable from an x-variable (or 

generating an x-variable from a z-variable). When a practitioner generates 𝑧𝑛,𝑖𝑗 =
1

|𝑥𝑛,𝑖,𝑘−𝑥𝑛,𝑗,𝑘|
 for some 

𝑘, sufficient cross-section variations of {𝑥𝑛,𝑖,𝑘} are required to avoid extremely large value of 𝑧𝑛,𝑖𝑗. If 

𝑧𝑛,𝑖𝑗 =
𝑥𝑛,𝑗,𝑘

𝑥𝑛,𝑖,𝑘
 for some 𝑘 is defined, {𝑥𝑛,𝑖,𝑘} should be bounded away from zero. On the other hand, if 

one generates an x-variable from a z-variable, it involves summation, i.e., 𝑥𝑛,𝑖,𝑙 = ∑ 𝑧𝑛,𝑖𝑗,𝑙
𝑛
𝑗=1  for some 𝑙. 

To satisfy the regularity conditions, for example, one can assume that ∑ 𝑧𝑛,𝑖𝑗,𝑙
𝑛
𝑗=1  is uniformly bounded 

 
27  Recall that ‖𝑨𝑁‖∞ ≤ |𝜆0|𝑐𝑤,𝑟 + |𝛾0|𝑐𝑚,𝑐 + |𝜌0|𝑐𝑤,𝑟𝑐𝑚,𝑐 ≤ 휁 < 1  by Assumption 3.1. Hence, the additional condition 

implies max{|𝜆0|𝑐𝑤,𝑟 + |𝛾0|𝑐𝑚,𝑐 + |𝜌0|𝑐𝑤,𝑟𝑐𝑚,𝑐, |𝜆0|𝑐𝑤,𝑟 + |𝛾0|𝑐𝑚,𝑟 + |𝜌0|𝑐𝑤,𝑟𝑐𝑚,𝑟} ≤ 휁. 
28 To regulate ‖𝑨𝑁

𝑙 ‖
1
 for 𝑙 ∈ ℤ+, it suffices to introduce the column sum restriction on 𝑊𝑛 provided in Assumption 4.2 

(iii-2) since an upper bound of ‖𝑨𝑁
𝑙 ‖

1
 can be characterized by ‖𝑊𝑛

𝑝+𝑟
‖
1
 and ‖𝑀𝑛‖∞

𝑞+𝑟
 where 𝑝 + 𝑞 + 𝑟 = 𝑙. The column 

sum restriction on 𝑊𝑛 is employed to have an upper bound of ‖𝑊𝑛
𝑝+𝑟
‖
1
 (see Lemma C.1). 
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in 𝑖 and 𝑛 (if {𝑧𝑛,𝑖𝑗,𝑙} are non-stochastic). 

 

4.2. Asymptotic properties of the QMLE of the linear SARF model 
 

In this subsection, we study the asymptotic properties of QMLE for the linear SARF model. Detailed 

proofs for this subsection can be found in the supplement file. Let 𝑄𝑁(휃) = 𝐸 (
1

𝑁
ln 𝐿𝑁(휃)) for each 휃 ∈

Θ . For consistency, we establish the uniform convergence of 
1

𝑁
ln 𝐿𝑁(휃) − 𝑄𝑁(휃)  to zero on Θ , and 

uniform equicontinuity of {𝑄𝑁(휃)} on Θ. The two objects can be similarly verified by the traditional 

techniques for linear SAR models (see Theorem 3.1 in Lee (2004)). The assumption below is a regularity 

condition for disturbances {𝜖𝑛,𝑖𝑗}. 

 

Assumption 4.5. 𝜖𝑛,𝑖𝑗~𝑖. 𝑖. 𝑑. (0, 𝜎0
2)  with 𝜎0

2 > 0  across pairs (𝑖, 𝑗) , and sup𝑛𝐸|𝜖𝑛,𝑖𝑗|
4+

< ∞  for 

some 휂 > 0. 

 

The identification uniqueness condition finalizes the argument for consistency. Here are sufficient 

conditions for identification derived by the information inequality. 

 

Assumption 4.6 (Identification for the linear SARF model). At least, one of the two conditions holds: (i) 

𝑆𝑁
−1′𝑆𝑁

′ (𝛿)𝑆𝑁(𝛿)𝑆𝑁
−1 is not proportional to 𝐼𝑁 when 𝛿 ≠ 𝛿0. 

  (ii) Let 𝐆𝜆 = 𝑾𝑁𝑆𝑁
−1, 𝐆𝛾 = 𝑴𝑁𝑆𝑁

−1, and 𝐆𝜌 = 𝑹𝑁𝑆𝑁
−1. Then, 

lim
𝑛→∞

1

𝑁
[𝐆𝜆𝐗𝑁𝜅0, 𝐆𝛾𝐗𝑁𝜅0, 𝐆𝜌𝐗𝑁𝜅0]

′
𝑀𝐗𝑁[𝐆𝜆𝐗𝑁𝜅0, 𝐆𝛾𝐗𝑁𝜅0, 𝐆𝜌𝐗𝑁𝜅0] 

 

exists and is nonsingular. 

 

  The first identification condition comes from the model’s correlation structure. The second 

identification condition guarantees sufficient variations in the generated regressors 

[𝐆𝜆𝐗𝑁𝜅0, 𝐆𝛾𝐗𝑁𝜅0, 𝐆𝜌𝐗𝑁𝜅0, 𝐗𝑁] (see Assumption 8 in Lee (2004)). Then, we have consistency of 휃̂𝑁 . 

 

Theorem 4.1 (Consistency). Under Assumptions 4.1, 4.2 (i), (ii), 4.3 - 4.6, 휃̂𝑁
𝑝
→ 휃0. 

 

  The asymptotic distribution of 휃̂𝑁  can be obtained by the Taylor expansion argument: √𝑁(휃̂𝑁 −

휃0) = (−
1

𝑁

𝜕2 ln 𝐿𝑁(̃𝑁)

𝜕 𝜕 ′
)
−1

1

√𝑁

𝜕 ln𝐿𝑁( 0)

𝜕
, where 휃̃𝑁 lies between 휃̂𝑁 and 휃0. To have well-definedness of 

the asymptotic distribution, we introduce the following assumption. 

 

Assumption 4.7. Σ
0
= lim
𝑛→∞

Σ
0,𝑁 is nonsingular where Σ 0,𝑁 = 𝐸 (−

1

𝑁

𝜕2 ln 𝐿𝑁( 0)

𝜕 𝜕 ′
). 

 

  To finish deriving the asymptotic distribution of 휃̂𝑁 , observe that 
1

√𝑁

𝜕 ln 𝐿𝑁( 0)

𝜕
  is a summation of 

martingale differences of a linear-quadratic form. By extending the Kelejian and Prucha’s (2001) 

framework (see Section 1.2 in the supplement file), we derive 
1

√𝑁

𝜕 ln 𝐿𝑁( 0)

𝜕

𝑑
→𝑁(𝟎, Ω

0
), where Ω

0
=
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lim
𝑛→∞

Ω
0,𝑁 and Ω 0,𝑁 = 𝐸 (

1

𝑁

𝜕 ln 𝐿𝑁( 0)

𝜕

𝜕 ln𝐿𝑁( 0)

𝜕 ′ ). Note that Ω
0
 depends on the 3rd and 4th moments of 

𝜖𝑛,𝑖𝑗 (see the supplement file). When 𝜖𝑛,𝑖𝑗s follow the normal distribution (Assumption 4.3 (ii)), Ω 0
=

Σ
0

−1. By applying the Slutsky’s lemma, we obtain the following result. 

 

Theorem 4.2 (Asymptotic normality). Under Assumptions 4.1, 4.2 (i), (ii), 4.3 - 4.6, and 4.7, we have 

√𝑁(휃̂𝑁 − 휃0)
𝑑
→𝑁(𝟎, Σ

0

−1Ω
0
Σ

0

−1). 

 

4.2.1. Asymptotic distribution of the QMLE for the linear SARF model under the two-way fixed effect 

specification 

 

  In this part, we study the asymptotic properties of �̂�𝑁 if one estimates the model (6). First, observe 

that the first-order conditions at 𝜔0 are 

 

(

 
 
 
 
 
 

𝜕 ln 𝐿𝑁(𝜔0)

𝜕𝜆
𝜕 ln 𝐿𝑁(𝜔0)

𝜕𝛾

𝜕 ln 𝐿𝑁(𝜔0)

𝜕𝜌

𝜕 ln 𝐿𝑁(𝜔0)

𝜕𝛽

𝜕 ln 𝐿𝑁(𝜔0)

𝜕𝜎2 )

 
 
 
 
 
 

=

(

 
 
 
 
 
 

−𝑡𝑟(𝑾𝑁𝑆𝑁
−1) +

1

𝜎0
2 (𝑾𝑁𝑣𝑒𝑐(𝑌𝑁))

′
(𝐽𝑛⨂𝐽𝑛)𝑣𝑒𝑐(𝜖𝑁)

−𝑡𝑟(𝑴𝑁𝑆𝑁
−1) +

1

𝜎0
2 (𝑴𝑁𝑣𝑒𝑐(𝑌𝑁))

′
(𝐽𝑛⨂𝐽𝑛)𝑣𝑒𝑐(𝜖𝑁)

−𝑡𝑟(𝑹𝑁𝑆𝑁
−1) +

1

𝜎0
2 (𝑹𝑁𝑣𝑒𝑐(𝑌𝑁))

′
(𝐽𝑛⨂𝐽𝑛)𝑣𝑒𝑐(𝜖𝑁)

1

𝜎0
2 𝒁𝑁

′ (𝐽𝑛⨂𝐽𝑛)𝑣𝑒𝑐(𝜖𝑁)

−
𝑁

2𝜎0
2 +

1

2𝜎0
4 𝑣𝑒𝑐(𝜖𝑁)′(𝐽𝑛⨂𝐽𝑛)𝑣𝑒𝑐(𝜖𝑁) )

 
 
 
 
 
 

.  

 

Then, a component 
1

√𝑁

𝜕 ln 𝐿𝑁(𝜔0)

𝜕𝜔
 takes a LQ form: for 𝑙 = 𝜆, 𝛾, 𝜌, 𝛽1, ⋯, 𝛽𝐿, and 𝜎

2, 

 
1

√𝑁
𝑣𝑒𝑐(𝐂𝑙)

′(𝐽𝑛⨂𝐽𝑛)𝑣𝑒𝑐(𝜖𝑁) +
1

√𝑁

1

𝜎0
2 (𝑣𝑒𝑐(𝜖𝑁)

′𝐆𝑙
′(𝐽𝑛⨂𝐽𝑛)𝑣𝑒𝑐(𝜖𝑁) − 𝜎0

2𝑡𝑟(𝐆𝑙)),  

 

where 𝐆𝛽𝑘 = 𝟎  for 𝑘 = 1,⋯ , 𝐿 , 𝐆𝜎2 =
1

2𝜎0
2 𝐼𝑁 , 𝑣𝑒𝑐(𝐂𝑙) = 𝐆𝑙(𝒁𝑁𝛽0 + 𝜶𝑛,𝑜,0⨂𝑙𝑛 + 𝑙𝑛⨂𝜸𝑛,𝑑,0)  for 𝑙 =

𝜆 , 𝛾 , and 𝜌 , and 𝑣𝑒𝑐(𝐂𝑙) = 𝒁𝑁,𝑙  for 𝛽1 , ⋯ , 𝛽𝐿 , and 𝑣𝑒𝑐(𝐂𝑙) = 𝟎  for 𝑙 = 𝜎
2 . Observe that 

𝐸 (
1

√𝑁
𝑣𝑒𝑐(𝐂𝑙)

′(𝐽𝑛⨂𝐽𝑛)𝑣𝑒𝑐(𝜖𝑁)) = 0  but 𝐸 (
1

√𝑁

1

𝜎0
2 (𝑣𝑒𝑐(𝜖𝑁)

′𝐆𝑙
′(𝐽𝑛⨂𝐽𝑛)𝑣𝑒𝑐(𝜖𝑁) − 𝜎0

2𝑡𝑟(𝐆𝑙))) =

1

√𝑁
(𝑡𝑟((𝐽𝑛⨂𝐽𝑛)𝐆𝑙) − 𝑡𝑟(𝐆𝑙)) ≠ 0 . We have 

1

√𝑁

𝜕 ln 𝐿𝑁(𝜔0)

𝜕𝜔
=

1

√𝑁

𝜕 ln 𝐿𝑁
(𝑢)(𝜔0)

𝜕𝜔
− Λ𝑁 , where 

1

√𝑁

𝜕 ln 𝐿𝑁
(𝑢)(𝜔0)

𝜕𝜔
 

takes a form of 
1

√𝑁
𝑣𝑒𝑐(𝐂𝑙)

′(𝐽𝑛⨂𝐽𝑛)𝑣𝑒𝑐(𝜖𝑁) +
1

√𝑁

1

𝜎0
2 (𝑣𝑒𝑐(𝜖𝑁)

′𝐆𝑙
′(𝐽𝑛⨂𝐽𝑛)𝑣𝑒𝑐(𝜖𝑁) − 𝜎0

2𝑡𝑟((𝐽𝑛⨂𝐽𝑛)𝐆𝑙)) to be 

𝐸 (
1

√𝑁

𝜕 ln 𝐿𝑁
(𝑢)(𝜔0)

𝜕𝜔
) = 𝟎 and  

Λ𝑁 =
1

√𝑁
(𝑡𝑟 ((𝐼𝑁 − (𝐽𝑛⨂𝐽𝑛))𝐆𝜆) , 𝑡𝑟 ((𝐼𝑁 − (𝐽𝑛⨂𝐽𝑛))𝐆𝛾) , 𝑡𝑟 ((𝐼𝑁 − (𝐽𝑛⨂𝐽𝑛))𝐆𝜌) , 𝟎

′,
2𝑛−1

2𝜎0
2 )

′

.  

Note that Λ𝑁 = 𝑂(1)  because 𝑁 = 𝑛
2 , and 𝑡𝑟 ((𝐼𝑁 − (𝐽𝑛⨂𝐽𝑛))𝐆𝑙) = 𝑂(𝑛)  where 𝑙 = 𝜆 , 𝛾 , and 𝜌 . 

Since 𝐸 (
1

𝑁

𝜕 ln 𝐿𝑁(𝜔0)

𝜕𝜔
) = 𝑂 (

1

𝑛
) → 0 as 𝑛 → ∞, there is no problem in achieving consistency of �̂�𝑁.  

 

The remaining issue is a correction of the asymptotic bias in �̂�𝑁. Let Λ𝑁(𝜔) be the asymptotic bias 

term evaluated at 𝜔 ∈ Θ𝜔. Then, the asymptotic distribution of �̂�𝑁 can be characterized by 
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√𝑁(�̂�𝑁 − 𝜔0) + Σ�̂�𝑁,𝑁
−1 Λ𝑁 = Σ�̂�𝑁,𝑁

−1 1

√𝑁

𝜕 ln 𝐿𝑁
(𝑢)(𝜔0)

𝜕𝜔

𝑑
→𝑁(𝟎, Σ𝜔0

−1Ω𝜔0Σ𝜔0
−1),  

 

where Σ𝜔,𝑁 = 𝐸 (−
1

𝑁

𝜕2 ln 𝐿𝑁(𝜔)

𝜕𝜔𝜕𝜔′
), Σ𝜔0 = lim

𝑛→∞
Σ𝜔0,𝑁, Ω𝜔0 = lim

𝑛→∞
Ω𝜔0,𝑁 and  

Ω𝜔,𝑁 = 𝐸 (
1

𝑁

𝜕 ln 𝐿𝑁(𝜔)

𝜕𝜔

𝜕 ln𝐿𝑁(𝜔)

𝜕𝜔′
). The bias corrected QMLE can then be specified by  

 

�̂�𝑁
𝑐 = �̂�𝑁 +

1

𝑛
Σ�̂�𝑁,𝑁
−1 Λ𝑁(�̂�𝑁),  

 

so we have √𝑁(�̂�𝑁
𝑐 − 𝜔0)

𝑑
→𝑁(𝟎, Σ𝜔0

−1Ω𝜔0Σ𝜔0
−1).  

 
  Using �̂�𝑁, one can obtain �̂�𝑛,𝑑 = �̂�𝑛,𝑑(�̂�𝑁) = 𝐽𝑛�̂�𝑛,𝑑(�̂�𝑁) due to the identification restriction (i.e., 

∑ 𝛼𝑖,𝑑
𝑛
𝑖=1 = 0 ) and �̂�𝑛,𝑜 = �̂�𝑛,𝑜(�̂�𝑁, �̂�𝑛,𝑑) =

1

𝑛
(𝐼𝑛⨂𝑙𝑛

′ )(𝑣𝑒𝑐(𝜖𝑁
+(�̂�𝑁)) − 𝑙𝑛⨂�̂�𝑛,𝑑) . For each 𝑖 , the 

asymptotic distribution of the 𝑖th element of √𝑛(�̂�𝑛,𝑑 − 𝜶𝑛,𝑑,0) is 
1

√𝑛
∑ 𝜖𝑛,𝑖𝑗
𝑛
𝑗=1 + 𝑜𝑝(1)

𝑑
→𝑁(0, 𝜎0

2) as 

𝑛 → ∞ . For 𝑗 = 1,⋯ , 𝑛 , the asymptotic distribution of the 𝑗 th element of √𝑛(�̂�𝑛,𝑜 − 𝜶𝑛,𝑜,0)  is 

1

√𝑛
∑ 𝜖𝑛,𝑖𝑗
𝑛
𝑖=1 + 𝑜𝑝(1)

𝑑
→𝑁(0, 𝜎0

2) as 𝑛 → ∞. Details can be found in the supplement file. 

 

4.3. Asymptotic properties of the MLE of the SARF Tobit model 
 

  Note that the asymptotic analysis for the MLE 휃̂𝑁 will be based on normally distributed 𝜖𝑛,𝑖𝑗s since 

the SARF Tobit model comes from the distributional specification. Since 휃̂𝑁  is a highly nonlinear 

function of {𝜖𝑛,𝑖𝑗}, we will employ the spatial near epoch dependence (NED) concept introduced by 

Jenish and Prucha (2012). Let ‖𝑥‖𝐿𝑝  be the 𝐿𝑝-norm of a random variable 𝑥. 

 

Note that the NED concept relates two random fields. Let 𝑞 = {𝑞𝑛,𝑖𝑗: (𝑖, 𝑗) ∈ 𝐷𝑛 × 𝐷𝑛, 𝑛 ≥ 1} and 𝜖 =

{𝜖𝑛,𝑖𝑗: (𝑖, 𝑗) ∈ 𝐷𝑛 × 𝐷𝑛, 𝑛 ≥ 1}  be two random fields. 29  A random field 𝑞  is 𝐿𝑝 -NED on 𝜖  if 

sup𝑛,𝑖,𝑗‖𝑞𝑛,𝑖𝑗‖𝐿𝑝
< ∞  and ‖𝑞𝑛,𝑖𝑗 − 𝐸 (𝑞𝑛,𝑖𝑗|ℱ𝑛,𝑖𝑗(𝑠))‖

𝐿𝑝
≤ 𝑐𝑛,𝑖𝑗𝜐(𝑠) , where 𝑝 ≥ 1 , ℱ𝑛,𝑖𝑗(𝑠) =

𝜎(𝜖𝑛,𝑔ℎ: 𝑑𝐹((𝑖, 𝑗), (𝑔, ℎ)) ≤ 𝑠), {𝑐𝑛,𝑖𝑗: 𝑛 ≥ 1} is an array of finite positive constants (NED scaling factor), 

and 𝜐(𝑠) is a sequence such that 𝜐(𝑠) ↓ 0 as 𝑠 ↑ ∞ (NED coefficient). Note that 𝑞 is a uniform NED 

random field if sup𝑛sup(𝑖,𝑗)∈𝐷𝑛×𝐷𝑛𝑐𝑛,𝑖𝑗 < ∞ ; and 𝑞  is a geometric random field if 𝜐(𝑠) = 𝑂(𝜏
𝑠)  for 

some 0 < 𝜏 < 1. 

 

  To show the NED properties of {1(𝑦𝑛,𝑖𝑗 = 0)} , the normality assumption is used by showing the 

uniform boundedness of the essential supremum of 𝑦𝑛,𝑖𝑗
∗ ’s densities (see Proposition 2 in Xu and Lee 

(2015b)), where 𝑦𝑛,𝑖𝑗
∗ = 𝜆0∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗

𝑛
𝑔=1 + 𝛾0∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 + 𝜌0∑ ∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1

𝑛
𝑔=1 +

𝒙𝑛,𝑖𝑗𝜅0 + 𝜖𝑛,𝑖𝑗. 

 

Assumption 4.8 (Normal distribution assumption on the disturbances). 𝜖𝑛,𝑖𝑗~𝑖. 𝑖. 𝑑. 𝑁(0, 𝜎0
2)  across 

 
29 If {𝒙𝑛,𝑖𝑗} is stochastic, 𝜖 = {(𝒙𝑛,𝑖𝑗 , 𝜖𝑛,𝑖𝑗): (𝑖, 𝑗) ∈ 𝐷𝑛 × 𝐷𝑛 , 𝑛 ≥ 1}. 
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pairs (𝑖, 𝑗). 

 

The main point of showing 휃̂𝑁
𝑝
→ 휃0  is uniform convergence of the sample average log-likelihood 

function, i.e., sup ∈Θ
1

𝑁
[ln 𝐿𝑁

∗ (휃) − 𝐸(ln 𝐿𝑁
∗ (휃))]

𝑝
→0. Observe that ln 𝐿𝑁

∗ (휃) consists of {𝑦𝑛,𝑖𝑗} and its 

transformations on 𝜖. Propositions C.1 and C.2 show the 𝐿2-NED properties of them. Then, we apply 

the law of large numbers (LLN) for each 휃 ∈ Θ  (Theorem 1 in Jenish and Prucha (2012)) and the 

compact parameter space assumption (Assumption 4.4) finalizes the proof. The conditions below 

provide sufficient conditions of identification uniqueness based on Rothenberg (1971). The derivation 

can be found in the last step of consistency proof. 

 

Assumption 4.9 (Identification for the SARF Tobit model). Assume Assumptions 3.1 and 4.3 (ii) hold.  

  (a) 𝐼𝑛⊗ (𝑊𝑛 +𝑊𝑛
′) , (𝑀𝑛 +𝑀𝑛

′ ) ⊗ 𝐼𝑛 , 𝑀𝑛
′ ⊗𝑊𝑛 +𝑀𝑛⊗𝑊𝑛

′ , 𝑀𝑛⊗𝑊𝑛 +𝑀𝑛⊗𝑊𝑛 , (𝑀𝑛 +

𝑀𝑛
′ ) ⊗𝑊𝑛

′𝑊𝑛, and 𝑀𝑛𝑀𝑛
′ ⊗ (𝑊𝑛 +𝑊𝑛

′) are linearly independent.  

  (b) For all 𝑔 = 1,⋯ ,𝑁, a set of vectors {𝕨𝑔
𝑠 ,𝕞𝑔

𝑠 , 𝕣𝑔
𝑠 } is linearly independent, where 𝕨𝑔

𝑠 , 𝕞𝑔
𝑠 , and 

𝕣𝑔
𝑠   are respectively (𝑁 − 1) × 1  vectors consisting of ∑ ([𝑾𝑁]𝑓𝑔

2 − [𝑾𝑁]𝑓ℎ
2 )𝑁

𝑓=1  , ∑ ([𝑴𝑁]𝑓𝑔
2 −𝑁

𝑓=1

[𝑴𝑁]𝑓ℎ
2 ), and ∑ ([𝑹𝑁]𝑓𝑔

2 − [𝑹𝑁]𝑓ℎ
2 )𝑁

𝑓=1  for ℎ ≠ 𝑔. 

  (c) 𝐗𝑁
′ 𝐗𝑁 is invertible with probability 1. Then, 휃0 is identified. 

 

  Condition (a) is for identifying 𝛿0 , (b) is for 𝜎0
2 , and 𝜅0  can be identified via (c). If needed, this 

identification condition can be replaced by a high-level assumption such as limsup
𝑛→∞

[𝑄𝑁
∗ (휃) − 𝑄𝑁

∗ (휃0)] <

0, where 𝑄𝑁
∗ (휃) =

1

𝑁
 𝐸(ln 𝐿𝑁

∗ (휃)) for each 휃 ≠ 휃0.30 Then, we have consistency. 

 

Theorem 4.3 (Consistency). Under Assumptions 3.1, 4.1 – 4.4, 4.8 and 4.9, 휃̂𝑁
𝑝
→ 휃0. 

 

Next, we consider the asymptotic distribution of 휃̂𝑁 . Note that the asymptotic distribution of 휃̂𝑁 is 

mainly characterized by the score at 휃0 . For each (𝑖, 𝑗)  and each 휃 , where we have 
𝜕 ln 𝐿𝑁

∗ ( )

𝜕
=

∑ ∑ 𝑞𝑛,𝑖𝑗(휃)
𝑛
𝑗=1

𝑛
𝑖=1  with 

 

𝑞𝑛,𝑖𝑗(휃) =

(

 
 
 
 
 
 
 
 
 
 

−1(𝑦𝑛,𝑖𝑗 = 0)𝜎
−1

𝜙(𝜖𝑛,𝑖𝑗
∗ ( ))(∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗

𝑛
𝑔=1 )

Φ(𝜖𝑁,𝑓
∗ ( ))

− 𝑟𝑛,𝑖𝑗,𝜆(𝛿) + 1(𝑦𝑛,𝑖𝑗 > 0)𝜎
−1𝜖𝑛,𝑖𝑗

∗ (휃)(∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗
𝑛
𝑔=1 )

−1(𝑦𝑛,𝑖𝑗 = 0)𝜎
−1

𝜙(𝜖𝑛,𝑖𝑗
∗ ( ))(∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 )

Φ(𝜖𝑛,𝑖𝑗
∗ ( ))

− 𝑟𝑛,𝑖𝑗,𝛾(𝛿) + 1(𝑦𝑛,𝑖𝑗 > 0)𝜎
−1𝜖𝑛,𝑖𝑗

∗ (휃)(∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗
𝑛
ℎ=1 )

−1(𝑦𝑛,𝑖𝑗 = 0)𝜎
−1

𝜙(𝜖𝑛,𝑖𝑗
∗ ( ))(∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
𝑔,ℎ=1 )

Φ(𝜖𝑛,𝑖𝑗
∗ ( ))

− 𝑟𝑛,𝑖𝑗,𝜌(𝛿) + 1(𝑦𝑛,𝑖𝑗 > 0)𝜎
−1𝜖𝑛,𝑖𝑗

∗ (휃)(∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗
𝑛
𝑔,ℎ=1 )

−1(𝑦𝑛,𝑖𝑗 = 0)𝜎
−1

𝜙(𝜖𝑛,𝑖𝑗
∗ ( ))𝒙𝑛,𝑖𝑗

Φ(𝜖𝑛,𝑖𝑗
∗ ( ))

+ 1(𝑦𝑛,𝑖𝑗 > 0)𝜎
−1𝜖𝑛,𝑖𝑗

∗ (휃)𝒙𝑛,𝑖𝑗

−
1

2𝜎2
1(𝑦𝑛,𝑖𝑗 = 0)

𝜙(𝜖𝑛,𝑖𝑗
∗ ( ))𝜖𝑛,𝑖𝑗

∗ ( )

𝛷(𝜖𝑛,𝑖𝑗
∗ ( ))

−
1

2𝜎2
1(𝑦𝑛,𝑖𝑗 > 0) +

1

2𝜎2
1(𝑦𝑛,𝑖𝑗 > 0)𝜖𝑛,𝑖𝑗

∗ (휃)2
)

 
 
 
 
 
 
 
 
 
 

.  

 

The main issue is to check the NED properties of a random field {‖𝑞𝑛,𝑖𝑗(휃0)‖}  to apply the CLT 

 
30  If both 𝑊𝑛  and 𝑀𝑛  are symmetric, 𝑀𝑛

′ ⊗𝑊𝑛 +𝑀𝑛⊗𝑊𝑛
′  and 𝑀𝑛⊗𝑊𝑛 +𝑀𝑛⊗𝑊𝑛  would not be linearly 

independent (Condition (a) in Assumption 4.9 is violated). In this case, we might need to introduce limsup
𝑛→∞

[𝑄𝑁
∗ (휃) −

𝑄𝑁
∗ (휃0)] < 0 for 휃 ≠ 휃0. 
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(Corollary 1 in Jenish and Prucha (2012)). The conditions below are introduced for this issue. 

 

Assumption 4.10.  (i) max
𝑘=1,⋯,2𝐾+𝐿+1

sup𝑖,𝑗,𝑛‖𝒙𝑛,𝑖𝑗,𝑘‖𝐿8+𝜂
< ∞ for some 휂 > 0.  

   (ii) {𝒙𝑛,𝑖𝑗,𝑘}  is an 𝛼 -mixing random field with spatial 𝛼 -mixing coefficients 𝛼(𝑢, 𝑣, 𝑟) ≤ (𝑢 +

𝑣)𝜏�̂�(𝑟)  for some 𝜏 ≥ 0 ; and for some 0 < 휂̃ < 2 +
2
 , �̂�(𝑟)  satisfies ∑ 𝑟2𝑑(𝜏∗+1)−1∞

𝑟=1 �̂�(𝑟)
�̃�

4+2�̃� < ∞ , 

where 𝜏∗ =
̃𝜏

2+̃
. 

Assumption 4.11. Σ
0

∗ = lim
𝑛→∞

Σ
0,𝑁
∗  is nonsingular and positive definite, where Σ

0,𝑁
∗ =

1

𝑁
𝑉𝑎𝑟(∑ ∑ 𝑞𝑛,𝑖𝑗(휃0)

𝑛
𝑗=1

𝑛
𝑖=1 ). 

Assumption 4.12. 𝑎 > 𝑑 ∙ max(14 + 48휂−1, 10 + 64휂−1 + 128휂−2) , where 𝑎  is in (iii-2) of 

Assumption 4.2. 

 

  Assumption 4.10 are the same as Assumption 3 in Jenish and Prucha (2012). Here, the key is to have 

the uniform 𝐿2+̃  -integrability. Assumption 4.11 is for well-definedness of the asymptotic variance. 

Assumption 4.12 is introduced for the specification in Assumption 4.2 (iii-2). To apply the CLT to an 

NED random field, we need to check the summability condition for the NED coefficient of {‖𝑞𝑛,𝑖𝑗(휃0)‖} 

(see Assumption 4(c) in Jenish and Prucha (2012)).31 That is, ∑ 𝑠2𝑑−1𝜐(𝑠) < ∞∞
𝑠=1 . Assumption 4.12 

yields 𝜐(𝑠) = 𝑂(𝑠−𝑏)  where 𝑏 > 2𝑑  satisfying ∑ 𝑠2𝑑−1𝜐(𝑠)∞
𝑠=1 ≤ ∑ 𝑠−1−𝜏∞

𝑠=1 < ∞  where 𝜏 > 0 . 

Details for the CLT can be found in Propositions C.3 and C.4 in the Appendix. 

 

Theorem 4.4 (Asymptotic normality). Suppose Assumptions 3.1, 4.1 – 4.4, 4.8, 4.9 and 4.11 hold. Under 

the specification provided in Assumption 4.2 (iii-2), Assumptions 4.10 and 4.12 are additionally 

required. Then, we have √𝑁(휃̂𝑁 − 휃0)
𝑑
→𝑁(𝟎, Σ

0

∗−1) as 𝑛 → ∞. 

 

4.3.1. Asymptotic distribution of the MLE for the SARF Tobit model under the two-way fixed effect 

specification 

 

  With a direct estimation approach, the MLE under the two-way fixed-effect specification is defined by 
 

(�̂�𝑁, �̂�𝑁) = argmax𝜔∈Θ𝜔,𝜶𝑁 ln 𝐿𝑁
∗ (𝜔, 𝜶𝑁), 

 

where 𝜶𝑁 is a vector containing identifiable elements of 𝜶𝑛,𝑜 and 𝜶𝑛,𝑑. That is, 𝜶𝑁 = (𝜶𝑛,𝑜
′ , 𝜶𝑛,𝑑

′ )
′
. 

Let 𝜶𝑁
0 = (𝜶𝑛,𝑜,0

′ , 𝜶𝑛,𝑑,0
′ )

′
  be the true parameter vector. The main purpose of this subsection is to 

examine the asymptotic properties of �̂�𝑁. For this issue, we define �̂�𝑁(𝜔) = argmax𝜶𝑁 ln 𝐿𝑁
∗ (𝜔, 𝜶𝑁) 

for each 𝜔 . Then, we have �̂�𝑁 = argmax𝜔∈Θ𝜔 ln 𝐿𝑁
∗ (𝜔) , where ln 𝐿𝑁

∗ (𝜔) = ln 𝐿𝑁
∗ (𝜔, �̂�𝑁(𝜔))  denotes 

the concentrated log-likelihood function. For the discussion in this subsection, we will use the notations 

based on double indexes. For example, we denote ln 𝐿𝑁
∗ (𝜔, 𝜶𝑁) = ∑ ∑ ℓ𝑛,𝑖𝑗

∗ (𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)
𝑛
𝑗=1

𝑛
𝑖=1  for each 

(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑), where ℓ𝑛,𝑖𝑗
∗ (𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑) denotes the (𝑖, 𝑗)-component of the log-likelihood.32  

 
31 For the LLN, it suffices to show 𝜐(𝑠) ↓ 0 as 𝑠 ↑ ∞. 
32 Note that  

ℓ𝑛,𝑖𝑗
∗ (𝜔, 𝛼𝑗,𝑜, 𝛼𝑖,𝑑) = 1(𝑦𝑛,𝑖𝑗 = 0) lnΦ (𝜖𝑛,𝑖𝑗

+,∗ (𝜔, 𝛼𝑗,𝑜, 𝛼𝑖,𝑑)) 
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  Our goals are to verify (i) �̂�𝑁
𝑝
→𝜔0  and (ii) √𝑁(�̂�𝑁 − 𝜔0) − Σ𝜔0,𝑁

∗,−1 Λ𝑁
∗

𝑑
→𝑁(𝟎, Σ𝜔0

∗,−1)  as 𝑛 → ∞ , 

where Σ𝜔0
∗   denotes the limiting variance of  √𝑁(�̂�𝑁 − 𝜔0) , Σ𝜔0,𝑁

∗   is a matrix satisfying Σ𝜔0
∗ =

lim
𝑛→∞

Σ𝜔0,𝑁
∗  , and Λ𝑁

∗ (𝜔, 𝜶𝑁)  with Λ𝑁
∗ = Λ𝑁

∗ (𝜔0, 𝜶𝑁
0 )   is an asymptotic bias term originated from the 

existence of fixed effects. We will derive Σ𝜔0,𝑁
∗  , Σ𝜔0

∗  , and Λ𝑁
∗   later. Due to the presence of possible 

asymptotic bias of �̂�𝑁 because of the many individual effects, in a subsequent section, we consider an 
asymptotic bias adjustment procedure and a bias-adjusted estimator for 𝜔0. 
 
  Here, we will provide basic ideas of showing the two objects. Detailed discussions and proofs can be 
found in Appendix D and the supplement file. By Proposition D.2 (ii), the first-order conditions around 
𝜔0 give 
 

𝟎 =
1

√𝑁

𝜕 ln 𝐿𝑁
∗ (�̂�𝑁,�̂�𝑁)

𝜕𝜔
=

1

√𝑁

𝜕 ln𝐿𝑁
∗ (𝜔0,�̂�𝑁(𝜔0))

𝜕𝜔
− Σ𝜔0,𝑁

∗ √𝑁(�̂�𝑁 − 𝜔0) + 𝑜𝑝(1), 

 
where  

Σ𝜔0,𝑁
∗ = 𝐸 (−

1

𝑁

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜔𝜕𝜔′
) −

1

𝑛
{𝐸 (

1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜔𝜕𝜶𝑁
′ )𝐸 (−

1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ )

−1

𝐸 (
1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜔′
)} , and 

�̂�𝑁 = �̂�𝑁(�̂�𝑁) . Let �̂�𝑁
0 = �̂�𝑁(𝜔0) , �̂�𝑛,0

0 = �̂�𝑛,0(𝜔0) , and �̂�𝑛,𝑑
0 = �̂�𝑛,𝑑

0 (𝜔0) . Elements of those vectors 

are similarly defined. To study the asymptotic distribution of √𝑁(�̂�𝑁 − 𝜔0), therefore, the main issue 

is to examine 
1

√𝑁

𝜕 ln𝐿𝑁
∗ (𝜔0,�̂�𝑁(𝜔0))

𝜕𝜔
. By the second-order Taylor expansion of 

1

√𝑁

𝜕 ln𝐿𝑁
∗ (𝜔0,�̂�𝑁

0 )

𝜕𝜔
 around the 

true parameters 𝜶𝑁
0 , Proposition D.2 (ii) yields 

 
1

√𝑁

𝜕 ln 𝐿𝑁
∗ (𝜔0,�̂�𝑁

0 )

𝜕𝜔
=

1

√𝑁

𝜕 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜔
                                                         (9)                                                           

               +
1

𝑛
∑

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜔𝜕𝛼𝑗,𝑜
(�̂�𝑗,𝑜

0 − 𝛼𝑗,𝑜,0)
𝑛
𝑗=1 +

1

𝑛
∑

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜔𝜕𝛼𝑖,𝑑
(�̂�𝑖,𝑑

0 − 𝛼𝑖,𝑑,0)
𝑛
𝑖=1   

               +
1

2𝑛
∑ ∑

𝜕3 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜔𝜕𝛼𝑗,𝑜𝜕𝛼𝑘,𝑜
(�̂�𝑗,𝑜

0 − 𝛼𝑗,𝑜,0)(�̂�𝑘,𝑜
0 − 𝛼𝑘,𝑜,0)

𝑛
𝑗=1

𝑛
𝑘=1  

               +
1

2𝑛
∑ ∑

𝜕3 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜔𝜕𝛼𝑖,𝑑𝜕𝛼𝑘,𝑜
(�̂�𝑖,𝑑

0 − 𝛼𝑖,𝑑,0)(�̂�𝑘,𝑜
0 − 𝛼𝑘,𝑜,0)

𝑛
𝑖=1

𝑛
𝑘=1  

               +
1

2𝑛
∑ ∑

𝜕3 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜔𝜕𝛼𝑗,𝑜𝜕𝛼𝑙,𝑑
(�̂�𝑗,𝑜

0 − 𝛼𝑗,𝑜,0)(�̂�𝑙,𝑑
0 − 𝛼𝑙,𝑑,0)

𝑛
𝑗=1

𝑛
𝑙=1   

               +
1

2𝑛
∑ ∑

𝜕3 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜔𝜕𝛼𝑖,𝑑𝜕𝛼𝑙,𝑑
(�̂�𝑖,𝑑

0 − 𝛼𝑖,𝑑,0)(�̂�𝑙,𝑑
0 − 𝛼𝑙,𝑑,0)

𝑛
𝑖=1

𝑛
𝑙=1 + 𝑜𝑝(1). 

 
Note that the first term of the right-hand-side above has zero mean and characterizes the asymptotic 

variance Σ𝜔0
∗  . That is, 

1

√𝑁

𝜕 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜔

𝑑
→𝑁(𝟎, Σ𝜔0

∗ )  as 𝑛 → ∞ . By the 2nd ~ 7th terms above, 

1

√𝑁

𝜕 ln 𝐿𝑁
∗ (𝜔0,�̂�𝑁

0 )

𝜕𝜔
 is not centered at zero even for a large 𝑛. Those components would give some possible 

asymptotic bias terms. First, it comes from the usage of �̂�𝑁
0  instead of 𝜶𝑁

0 , whose components have 

slower convergence rates than √𝑁 = 𝑛 that is the convergence rate or �̂�𝑁.33 Second, the correlation 

 

           −1(𝑦𝑛,𝑖𝑗 > 0) {
1

2
ln 2𝜋𝜎2 + [∑ (

(𝐺𝑁(𝑌𝑁)𝑨𝑁(𝛿)𝐺𝑁(𝑌𝑁))
𝑙

𝑙
)∞

𝑙=1 ]
(𝑗−1)𝑛+𝑖,(𝑗−1)𝑛+𝑖

− 1(𝑦𝑛,𝑖𝑗 > 0) (𝜖𝑛,𝑖𝑗
+,∗ (𝜔, 𝛼𝑗,𝑜, 𝛼𝑖,𝑑))

2

}    

           −
𝜇

2𝑁
(∑ 𝛼𝑗,𝑜

𝑛
𝑗=1 − ∑ 𝛼𝑖,𝑑

𝑛
𝑖=1 )

2
 .  

 
33  Indeed, we have √𝑛(�̂�𝑗,𝑜

0 − 𝛼𝑗,𝑜,0) = 𝑂𝑝(1)  for 𝑗 = 1,⋯ , 𝑛  and √𝑛(�̂�𝑖,𝑑
0 − 𝛼𝑖,𝑑,0) = 𝑂𝑝(1)  for 𝑖 = 1,⋯ , 𝑛  by Lemma 

D.2 in the supplement file. This √𝑛-convergence rate is the same as that of the fixed-effect estimates in the linear SARF 
model.  
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between �̂�𝑗,𝑜
0  (and �̂�𝑖,𝑑

0 ) and the second and third order derivatives of the log-likelihood, which are 

related to �̂�𝑁. Third, the variances of �̂�𝑗,𝑜
0  and �̂�𝑖,𝑑

0  form the asymptotic bias term.34 

 
  To represent the asymptotic bias terms, the following notations are employed: 
 

Let ℋ̅𝑛 = 𝐸 (−
1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ )

−1

= [
ℋ̅(𝛼𝑜𝛼𝑜),𝑛 ℋ̅(𝛼𝑜𝛼𝑑),𝑛

ℋ̅(𝛼𝑜𝛼𝑑),𝑛
′ ℋ̅(𝛼𝑑𝛼𝑑),𝑛

],  

𝑎𝑛,𝑖𝑗 = [ℋ̅(𝛼𝑜𝛼𝑜),𝑛]𝑖𝑗, 𝑏𝑛,𝑖𝑗 = [ℋ̅(𝛼𝑜𝛼𝑑),𝑛]𝑖𝑗
, and 𝑐𝑛,𝑖𝑗 = [ℋ̅(𝛼𝑑𝛼𝑑),𝑛]𝑖𝑗

; 

𝜕 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝛼𝑗,𝑜
= ∑ 𝑞𝑛,𝑖𝑗

𝛼𝑜𝑛
𝑖=1  for 𝑗 = 1,⋯ , 𝑛; 

𝜕 ln𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝛼𝑖,𝑑
= ∑ 𝑞𝑛,𝑖𝑗

𝛼𝑑𝑛
𝑗=1  for 𝑖 = 1,⋯ , 𝑛; 

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜔𝜕𝛼𝑗,𝑜
= ∑ ℎ𝑛,𝑖𝑗

𝜔𝛼𝑜𝑛
𝑖=1  for 𝑗 = 1,⋯ , 𝑛; 

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜔𝜕𝛼𝑖,𝑑
= ∑ ℎ𝑛,𝑖𝑗

𝜔𝛼𝑑𝑛
𝑗=1  for 𝑖 = 1,⋯ , 𝑛; 

𝜕3 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜔𝜕𝛼𝑗,𝑜
2 = ∑ 𝑡𝑛,𝑖𝑗

𝜔𝛼𝑜𝑛
𝑖=1  for 𝑗 = 1,⋯ , 𝑛;  

𝜕3 ln 𝐿𝑁
∗ (𝜔𝜔0,𝜶𝑁

0 )

𝜕𝜔𝜕𝛼𝑖,𝑑
2 = ∑ 𝑡𝑛,𝑖𝑗

𝜔𝛼𝑑𝑛
𝑗=1  for 𝑖 = 1,⋯ , 𝑛; 

𝜕3 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛼𝑗,𝑜
3 = ∑ 𝑡𝑛,𝑖𝑗

𝛼𝑜𝑛
𝑖=1  for 𝑗 = 1,⋯ , 𝑛; and 

𝜕3 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛼𝑖,𝑑
3 = ∑ 𝑡𝑛,𝑖𝑗

𝛼𝑑𝑛
𝑗=1  for 𝑖 = 1,⋯ , 𝑛,  

where 𝑞𝑛,𝑖𝑗
𝛼𝑜 =

𝜕ℓ𝑛,𝑖𝑗
∗ (𝜔0,𝛼𝑗,𝑜,0,𝛼𝑖,𝑑,0)

𝜕𝛼𝑗,𝑜
, 𝑞𝑛,𝑖𝑗

𝛼𝑑 =
𝜕ℓ𝑛,𝑖𝑗
∗ (𝜔0,𝛼𝑗,𝑜,0,𝛼𝑖,𝑑,0)

𝜕𝛼𝑖,𝑑
,  

ℎ𝑛,𝑖𝑗
𝜔𝛼𝑜 =

𝜕2ℓ𝑛,𝑖𝑗
∗ (𝜔0,𝛼𝑗,𝑜,0,𝛼𝑖,𝑑,0)

𝜕𝜔𝜕𝛼𝑗,𝑜
=
𝜕2ℓ𝑛,𝑖𝑗

∗ (𝜔0,𝛼𝑗,𝑜,0,𝛼𝑖,𝑑,0)

𝜕𝜔𝜕𝛼𝑖,𝑑
= ℎ𝑛,𝑖𝑗

𝜔𝛼𝑑 ,  

𝑡𝑛,𝑖𝑗
𝜔𝛼𝑜 =

𝜕3ℓ𝑛,𝑖𝑗
∗ (𝜔0,𝛼𝑗,𝑜,0,𝛼𝑖,𝑑,0)

𝜕𝜔𝜕𝛼𝑗,𝑜
2 =

𝜕3ℓ𝑛,𝑖𝑗
∗ (𝜔0,𝛼𝑗,𝑜,0,𝛼𝑖,𝑑,0)

𝜕𝜔𝜕𝛼𝑖,𝑑
2 = 𝑡𝑛,𝑖𝑗

𝜔𝛼𝑑 , and  

𝑡𝑛,𝑖𝑗
𝛼𝑜 =

𝜕3ℓ𝑛,𝑖𝑗
∗ (𝜔0,𝛼𝑗,𝑜,0,𝛼𝑖,𝑑,0)

𝜕𝛼𝑗,𝑜
3 =

𝜕3ℓ𝑛,𝑖𝑗
∗ (𝜔0,𝛼𝑗,𝑜,0,𝛼𝑖,𝑑,0)

𝜕𝛼𝑖,𝑑
3 = 𝑡𝑛,𝑖𝑗

𝛼𝑑 . We provide the forms of them in Appendix D. 

 
  Using the notations above, we represent components characterizing the asymptotic bias of �̂�𝑁: 
 

Λ1,𝑁
∗ =

1

𝑛
∑ 𝑎𝑛,𝑗𝑗

1

𝑛
∑ ∑ 𝐸(𝑞𝑛,𝑘𝑗

𝛼𝑜 ℎ𝑛,𝑖𝑗
𝜔𝛼𝑜)𝑛

𝑖=1
𝑛
𝑘=1

𝑛
𝑗=1 , 

Λ2,𝑁
∗ =

1

𝑛
∑ 𝑐𝑛,𝑖𝑖

1

𝑛
∑ ∑ 𝐸(𝑞𝑛,𝑖𝑙

𝛼𝑑 ℎ𝑛,𝑖𝑗
𝜔𝛼𝑑)𝑛

𝑗=1
𝑛
𝑙=1

𝑛
𝑖=1 , 

Λ3,𝑁
∗ =

1

𝑛
∑ 𝑎𝑛,𝑗𝑗 (

1

𝑛
∑ 𝐸(ℎ𝑛,𝑘𝑗

𝜔𝛼𝑜)𝑛
𝑘=1 )∑ 𝐸(ℎ𝑛,𝑖𝑗

𝛼𝑜 𝑣𝛼𝑜,𝑛,𝑗)
𝑛
𝑖=1

𝑛
𝑗=1 ,  

Λ4,𝑁
∗ =

1

𝑛
∑ 𝑐𝑛,𝑖𝑖 (

1

𝑛
∑ 𝐸(ℎ𝑛,𝑖𝑙

𝜔𝛼𝑑)𝑛
𝑙=1 )∑ 𝐸(ℎ𝑛,𝑖𝑗

𝛼𝑑 𝑣𝛼𝑑,𝑛,𝑖)
𝑛
𝑗=1

𝑛
𝑖=1 , 

Λ5,𝑁
∗ =

1

2𝑛
∑ �̃�𝑛,(𝛼𝑜𝛼𝑜),𝑗𝑗
𝑛
𝑗=1 𝑎𝑛,𝑗𝑗

2 1

𝑛
∑ ∑ 𝐸(𝑞𝑛,𝑘𝑗

𝛼𝑜 𝑞𝑛,𝑙𝑗
𝛼𝑜 )𝑛

𝑙=1
𝑛
𝑘=1 , and 

Λ6,𝑁
∗ =

1

2𝑛
∑ �̃�𝑛,(𝛼𝑑𝛼𝑑),𝑖𝑖𝑐𝑛,𝑖𝑖

2 1

𝑛
∑ ∑ 𝐸(𝑞𝑛,𝑖𝑘

𝛼𝑑 𝑞𝑛,𝑖𝑙
𝛼𝑑 )𝑛

𝑙=1
𝑛
𝑘=1

𝑛
𝑖=1 ,  

 

where 𝑣𝛼𝑜,𝑛,𝑗 =
1

𝑛
∑ ∑ 𝑎𝑛,𝑗𝑘𝑞𝑛,𝑝𝑘

𝛼𝑜𝑛
𝑝=1

𝑛
𝑘=1 +

1

𝑛
∑ ∑ 𝑏𝑛,𝑗𝑙𝑞𝑛,𝑙𝑞

𝛼𝑑𝑛
𝑞=1

𝑛
𝑙=1 ,  

�̃�𝑛,(𝛼𝑜𝛼𝑜),𝑗𝑗 =
1

𝑛
∑ 𝐸(𝑡𝑛,𝑖𝑗

𝜔𝛼𝑜)𝑛
𝑖=1 +

1

𝑛
𝜋𝛼𝑜,𝑛,𝑗 ∑ 𝐸(𝑡𝑛,𝑖𝑗

𝛼𝑜 )𝑛
𝑖=1 +

1

𝑛
∑ 𝜋𝛼𝑑,𝑛,𝑖𝐸(𝑡𝑛,𝑖𝑗

𝛼𝑑 )𝑛
𝑖=1 , 

𝜋𝛼𝑜,𝑛,𝑗 =
1

𝑛
∑ ∑ 𝑎𝑛,𝑗𝑘𝐸(ℎ𝑛,𝑝𝑘

𝜔𝛼𝑜)𝑛
𝑝=1

𝑛
𝑘=1 +

1

𝑛
∑ ∑ 𝑏𝑛,𝑗𝑙𝐸(ℎ𝑛,𝑙𝑞

𝜔𝛼𝑑)𝑛
𝑞=1

𝑛
𝑙=1  for 𝑗 = 1,⋯ , 𝑛, 

𝑣𝛼𝑑,𝑛,𝑖 =
1

𝑛
∑ ∑ 𝑏𝑛,𝑘𝑖𝑞𝑛,𝑝𝑘

𝛼𝑜𝑛
𝑝=1

𝑛
𝑘=1 +

1

𝑛
∑ ∑ 𝑐𝑛,𝑖𝑙𝑞𝑛,𝑙𝑞

𝛼𝑑𝑛
𝑞=1

𝑛
𝑙=1 , 

�̃�𝑛,(𝛼𝑑𝛼𝑑),𝑖𝑖 =
1

𝑛
∑ 𝐸(𝑡𝑛,𝑖𝑗

𝜔𝛼𝑑)𝑛
𝑗=1 +

1

𝑛
∑ 𝜋𝛼𝑜,𝑛,𝑗𝐸(𝑡𝑛,𝑖𝑗

𝛼𝑜 )𝑛
𝑗=1 +

1

𝑛
𝜋𝛼𝑑,𝑛,𝑖 ∑ 𝐸(𝑡𝑛,𝑖𝑗

𝛼𝑑 )𝑛
𝑗=1 , and 

𝜋𝛼𝑑,𝑛,𝑖 =
1

𝑛
∑ ∑ 𝑏𝑛,𝑘𝑖𝐸(ℎ𝑛,𝑝𝑘

𝜔𝛼𝑜)𝑛
𝑝=1

𝑛
𝑘=1 +

1

𝑛
∑ ∑ 𝑐𝑛,𝑖𝑙𝐸(ℎ𝑛,𝑙𝑞

𝜔𝛼𝑑)𝑛
𝑞=1

𝑛
𝑙=1  for 𝑖 = 1,⋯𝑛. 

 

By Proposition D.1, 𝐸 (−
1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ )

−1

  can be approximated by a diagonal matrix and its off-

 
34 Those three points are raised by Hahn and Newey (2004). Refer to Section 2 in Hahn and Newey (2004). 
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diagonal components of are of 𝑂 (
1

𝑛
). Then, the second term in (9) can be approximated by Λ1,𝑁

∗ + Λ3,𝑁
∗ ; 

the third term’s approximation in (9) is Λ2,𝑁
∗ + Λ4,𝑁

∗  ; the fourth term is approximated by Λ5,𝑁
∗  ; the 

seventh term’s approximation is Λ6,𝑁
∗ ; and the fifth and sixth terms are stochastically negligible (see 

Proposition D.3). Note that Λ1,𝑁
∗ , Λ3,𝑁

∗  and Λ5,𝑁
∗  are originated from the estimators of the origins’ fixed 

effects �̂�𝑛,0
0  while Λ2,𝑁

∗ , Λ4,𝑁
∗ , and Λ6,𝑁

∗  comes from �̂�𝑛,𝑑
0 . This additive separation is originated from 

the additive separability of 𝛼𝑗,𝑜 and 𝛼𝑖,𝑑. For the following result, we define 

 

𝕊2,(𝜔,𝜔),𝑁(𝛿) =

[
 
 
 
 
 
𝑠𝜆𝜆,𝑁(𝛿) ∗ ∗ ∗ ∗

𝑠𝜆𝛾,𝑁(𝛿) 𝑠𝛾𝛾,𝑁(𝛿) ∗ ∗ ∗

𝑠𝜆𝜌,𝑁(𝛿) 𝑠𝛾𝜌,𝑁(𝛿) 𝑠𝜌𝜌,𝑁(𝛿) ∗ ∗

0 0 0 0 ∗
𝑠𝜆𝜎2 ,𝑁(𝛿) 𝑠𝛾𝜎2,𝑁(𝛿) 𝑠𝜌𝜎2,𝑁(𝛿) 0 𝑠𝜎2𝜎2,𝑁(𝜔𝛿)]

 
 
 
 
 

, for 𝛿 ∈ Θ𝛿 , 

 

where 𝑠𝜆𝜆,𝑁(𝛿) = 𝑡𝑟 (𝑾22,𝑁
2 𝑆𝑁2

∗−2(𝛿)), 𝑠𝜆𝛾,𝑁(𝛿) = 𝑡𝑟 (𝑾22,𝑁𝑴22,𝑁𝑆𝑁2
∗−2(𝛿)),  

𝑠𝜆𝜌,𝑁(𝛿) = 𝑡𝑟 (𝑾22,𝑁𝑹22,𝑁𝑆𝑁2
∗−2(𝛿)) , 𝑠𝜆𝜎2,𝑁(𝛿) = −𝑡𝑟 (𝑾22,𝑁𝑆𝑁2

∗−1(𝛿)) − 𝑡𝑟 (𝑾22,𝑁𝑆𝑁2
∗−2(𝛿)𝑨𝑁(𝛿)) , 

𝑠𝛾𝛾,𝑁(𝛿) = 𝑡𝑟 (𝑴22,𝑁
2 𝑆𝑁2

∗−2(𝛿)) , 𝑠𝛾𝜌,𝑁(𝛿) = 𝑡𝑟 (𝑴22,𝑁𝑹22,𝑁𝑆𝑁2
∗−2(𝛿)) , 𝑠𝛾𝜎2,𝑁(𝛿) = −𝑡𝑟 (𝑴22,𝑁𝑆𝑁2

∗−1(𝛿)) −

𝑡𝑟 (𝑴22,𝑁𝑆𝑁2
∗−2(𝛿)𝑨𝑁(𝛿)) , 𝑠𝜌𝜌,𝑁(𝛿) = 𝑡𝑟 (𝑹22,𝑁

2 𝑆𝑁2
∗−2(𝛿)) , 𝑠𝜌𝜎2,𝑁(𝛿) = −𝑡𝑟 (𝑹22,𝑁𝑆𝑁2

∗−1(𝛿)) −

𝑡𝑟 (𝑹22,𝑁𝑆𝑁2
∗−2(𝛿)𝑨𝑁(𝛿)) , and 𝑠𝜎2𝜎2,𝑁(𝛿) = 2𝑡𝑟 (𝑆𝑁2

∗−1(𝛿)𝑨𝑁(𝛿)) + 𝑡𝑟 (𝑆𝑁2
∗−2(𝛿)𝑨𝑁

2 (𝛿)) . The theorem 

below states the asymptotic properties of �̂�𝑁. 
 
Theorem 4.5. Suppose Assumptions 3.1, 4.1 – 4.4, 4.8, 4.10 and 4.12 hold. In addition, we assume that 
(i) each element of 𝜶𝑁 is a bounded constant in ℝ for all 𝑁, (ii) Σ𝜔0

∗ = lim
𝑛→∞

Σ𝜔0,𝑁
∗  is nonsingular and 

Σ𝜔0
∗ > 0 , (iii) 𝕊2,(𝜔,𝜔),𝑁(𝛿) ≥ 0  for 𝛿 ∈ Θ𝛿  , and (iv)  𝐸 (−

1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ )  is nonsingular and 

𝐸 (−
1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ ) > 0  under a large 𝑛 . Then, we have (i) �̂�𝑁

𝑝
→𝜔0 , and (ii) √𝑁(�̂�𝑁 − 𝜔0)

𝑑
→𝑁(Σ𝜔0

∗−1Λ∞
∗ , Σ𝜔0

∗−1)  as 𝑛 → ∞ , where Λ∞
∗ = lim

𝑛→∞
Λ𝑁
∗   with Λ𝑁

∗ = Λ1,𝑁
∗ + Λ2,𝑁

∗ + Λ3,𝑁
∗ + Λ4,𝑁

∗ + Λ5,𝑁
∗ +

Λ6,𝑁
∗ . 

 

Showing Theorem 4.5 is based on deriving the asymptotic expansion of 
1

√𝑁

𝜕 ln 𝐿𝑁
∗ (�̂�𝑁,�̂�𝑁)

𝜕𝜔
  under 

regularity conditions for the Taylor approximation of 
1

√𝑁

𝜕 ln 𝐿𝑁
∗ (�̂�𝑁,�̂�𝑁)

𝜕𝜔
. Condition (i) Theorem 4.5 is for 

consistency of �̂�𝑁  and �̂�𝑁 . Then, all components of ln 𝐿𝑁
∗ (𝜔)  (i.e., {ℓ𝑛,𝑖𝑗

∗ (𝜔)} ) satisfy the NED 

properties using the same arguments in Theorem 4.3. For well-definedness of the asymptotic variance 
of �̂�𝑁, Condition (ii) is introduced. Condition (iii) leads to strict concavity of ln 𝐿𝑁

∗ (𝜔, 𝜶𝑁).35 Under a 

large 𝑛 , Condition (iv) guarantees for invertibility of 𝐸 (−
1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ )  whose inverse is a 

component of the Taylor approximation of 
1

√𝑁

𝜕 ln 𝐿𝑁
∗ (𝜔,�̂�𝑁(𝜔))

𝜕𝜔
.36 With Conditions (i), (ii), and (iii), we 

can establish consistency of �̂�𝑁  and the asymptotic expansion of 
1

√𝑁

𝜕 ln𝐿𝑁
∗ (𝜔0,�̂�𝑁

0 )

𝜕𝜔
 . It implies 

 
35 Under this condition, the log-likelihood function under the Olsen’s (1978) reparameterization becomes strictly concave 
in the transformed parameters. The reason for having this condition is that Jacobian term under the transformation relies 
on the spatial interaction parameters as well as variance parameter. This condition can be removed when all eigenvalues of 
𝑊𝑛 and 𝑀𝑛 are real-valued. For this issue, refer to Lemma 2 in Liu, Xu, and Lee (2021) and our supplement file. 
36 In detail, the diagonal components ℋ̅𝑛 are one of the main components of {�̂�𝑗,𝑜

0 − 𝛼𝑗,𝑜,0} and {�̂�𝑖,𝑑
0 − 𝛼𝑖,𝑑,0} in (9). 
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√𝑁(�̂�𝑁 − 𝜔0) − Σ𝜔0,𝑁
∗−1 Λ𝑁

∗ = Σ𝜔0,𝑁
∗−1 1

√𝑁

𝜕 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜔

𝑑
→𝑁(𝟎, Σ𝜔0

∗−1) as 𝑛 → ∞. 

 
  Based on the results of Theorem 4.5, we can define a bias corrected MLE 
 

�̂�𝑁
𝑐 = �̂�𝑁 −

1

𝑛
Σ𝜔0,𝑁
∗−1 (�̂�𝑁, �̂�𝑁)Λ̂𝑁

∗ , 

 
where Σ𝜔0,𝑁

∗ (�̂�𝑁, �̂�𝑁)  denotes the asymptotic variance matrix evaluated at (�̂�𝑁, �̂�𝑁) , and Λ̂𝑁
∗  , is a 

consistent estimator of Λ∞
∗  with employing (�̂�𝑁 , �̂�𝑁). To obtain Λ̂𝑁

∗ , we can apply the similar idea of 
getting a truncated sum of sample covariances in time series literature.37  Note that Λ1,𝑁

∗  , Λ3,𝑁
∗  , and 

Λ5,𝑁
∗   take a form of Λ𝑜,𝑁

∗ =
1

𝑛
∑ 𝑑𝑛,𝑗

1

𝑛
∑ ∑ 𝐸(𝐴𝑛,𝑖𝑗𝐵𝑛,𝑘𝑗)

𝑛
𝑘=1

𝑛
𝑖=1

𝑛
𝑗=1   while Λ2,𝑁

∗  , Λ4,𝑁
∗  , and Λ6,𝑁

∗   take 

Λ𝑑,𝑁
∗ =

1

𝑛
∑ 𝑑𝑛,𝑖

1

𝑛
∑ ∑ 𝐸(𝐴𝑛,𝑖𝑗𝐵𝑛,𝑖𝑘)

𝑛
𝑘=1

𝑛
𝑗=1

𝑛
𝑖=1   where {𝑑𝑛,𝑖}  are non-stochastic bounded weights, and 

{𝐴𝑛,𝑖𝑗}  and {𝐵𝑛,𝑖𝑗}  are random components. For consistent estimators of Λ𝑜,∞
∗ = lim

𝑛→∞
Λ𝑜,𝑁
∗   and 

Λ𝑑,∞
∗ = lim

𝑛→∞
Λ𝑑,𝑁
∗ , we design  

 

Λ̂𝑜,𝑁
∗ =

1

𝑛
∑ �̂�𝑛,𝑗

1

𝑛
∑ ∑ �̂�𝑛,𝑖𝑗�̂�𝑛,𝑘𝑗𝑘∈𝑛𝑏𝑑(𝑖,𝑠𝑛)
𝑛
𝑖=1

𝑛
𝑗=1  and Λ̂𝑑,𝑁

∗ =
1

𝑛
∑ �̂�𝑛,𝑖

1

𝑛
∑ ∑ �̂�𝑛,𝑖𝑗�̂�𝑛,𝑖𝑘𝑘∈𝑛𝑏𝑑(𝑖,𝑠𝑛)
𝑛
𝑖=1

𝑛
𝑖=1 , 

 
where 𝑛𝑏𝑑(𝑖, 𝑠𝑛) denotes the 𝑖’s 𝑠𝑛-th order neighboring units induced by spatial weighting matrices, 

and �̂�𝑛,𝑖𝑗 , �̂�𝑛,𝑖𝑗  and �̂�𝑛,𝑖  are respectively 𝐴𝑛,𝑖𝑗 , 𝐵𝑛,𝑖𝑗 , and 𝑑𝑛,𝑖  evaluated at (�̂�𝑁, �̂�𝑁) .38  If 𝑠𝑛 → ∞ 

and 
sup
𝑛,𝑖

card({𝑘:𝑘∈𝑛𝑏𝑑(𝑖,𝑠𝑛)})

𝑛
→ 0, we have Λ̂𝑜,𝑁

∗
𝑝
→Λ𝑜,∞

∗  and Λ̂𝑑,𝑁
∗

𝑝
→Λ𝑑,∞

∗  as 𝑛 → ∞.39 

 
  The asymptotic property of the bias corrected estimator �̂�𝑁

𝑐  is stated in Theorem 4.6. 
 

Theorem 4.6. Assume that the conditions of Theorem 4.5 hold. If Λ̂𝑁
∗
𝑝
→Λ∞

∗  as  𝑛 → ∞, we have 
 

√𝑁(�̂�𝑁
𝑐 − 𝜔0)

𝑑
→𝑁(𝟎, Σ𝜔0

∗−1) as 𝑛 → ∞. 

 

  Theorem 4.6 can be verified by showing Σ𝜔0,𝑁
∗ (�̂�𝑁, �̂�𝑁)

𝑝
→ Σ𝜔0

∗  as 𝑛 → ∞. The result follows by the 

continuous mapping theorem with ‖�̂�𝑁 − 𝜔0‖
𝑝
→0 and ‖�̂�𝑁 − 𝜶𝑁

0 ‖∞
𝑝
→0 as 𝑛 → ∞. Compared to the 

bias correction for the linear SARF model with fixed effects, we need to employ the estimates �̂�𝑁 in 

evaluating Σ𝜔0,𝑁
∗ (�̂�𝑁, �̂�𝑁)  and Λ̂𝑁

∗  . Since our model implies 
# of origin units

# of destination units
=
𝑛

𝑛
= 1 , there is no 

restriction on a sample size 𝑛 as Lee and Yu (2010).40 
 

5. Monte Carlo simulations 
 

 
37 In a nonlinear panel setting with time-dependent but cross-sectionally independent observations, Hahn and Kuersteiner 
(2011) and Fernandez-Val and Weidner (2016) apply the truncation idea. 
38 For example, consider 𝑊𝑛 is a sparse adjacency matrix and 𝑀𝑛 = 𝑊𝑛 . Then, 𝑘 ∈ 𝑛𝑏𝑑(𝑖, 𝑠𝑛) if [𝑊𝑛

𝑙]𝑖𝑘 ≠ 0 for some 𝑙 ∈
{0,1,⋯ , 𝑠𝑛}. 
39 Note that card({𝑘: 𝑘 ∈ 𝑛𝑏𝑑(𝑖, 𝑠𝑛)}) corresponds to the trimming parameter for the time dimension in Fernandez-Val and 

Weidner (2016). To show Λ̂𝑜,𝑁
∗

𝑝
→Λ𝑜,∞

∗  and Λ̂𝑑,𝑁
∗

𝑝
→Λ𝑑,∞

∗  as 𝑛 → ∞, hence, we can apply the similar strategy of the proof of 

Theorem 4.3 in Fernandez-Val and Weidner (2016) (see Part II of the proof of Theorem 4.3 in Fernandez-Val and Weidner 
(2016)). 
40 To have the asymptotic normality of the bias corrected MLE for spatial dynamic panel data models, Lee and Yu (2010) 

verify that 
𝑛

𝑇3
→ 0 and 

𝑇

𝑛3
→ 0 are required. Those conditions are introduced to achieve the asymptotic equivalence of the 

infeasible bias corrected MLE and the feasible bias corrected MLE. 
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5.1 Finite sample performance 
 

  In this subsection, we conduct Monte Carlo simulations to study the finite sample performance of the 

MLE 휃̂𝑁 . Also, we investigate misspecification errors when one uses the linear SARF model but the true 

data generating process (DGP) is the SARF Tobit model. Two DGPs are considered: 

 

DGP 1. Linear SARF model: equation (3); and DGP 2. SARF Tobit model: equation (6) 

 

In generating the data, we utilize the same 𝑋𝑛,1 and 𝑍𝑁,1 in Section 6. That is, 𝑛 = 48, 𝐾 = 1, and 

𝐿 = 1. We consider an adjacency matrix of states’ borders (denoted by 𝑊𝑛
𝑎) and suppose 𝑀𝑛 = 𝑊𝑛

𝑎 in 

this subsection: 𝑤𝑛,𝑖𝑗
𝑎 = 1  if states 𝑖  and 𝑗  with 𝑗 ≠ 𝑖  are bordering states; and 𝑤𝑛,𝑖𝑗

𝑎 = 0 

otherwise. Both 𝑊𝑛
𝑎 and 𝑀𝑛 are symmetric spatial weighting matrices. For the first experiment, we 

consider 휃0 = (1, 0.02, 0.02, 0.01, −4, 1, 1, 1)′ , which satisfies the spatial stability and model 

coherency. Simulation results for additional parameter sets are provided in the supplement file. The 

disturbances 𝜖𝑛,𝑖𝑗s are independently drawn from the standard normal distribution.41 For the SARF 

Tobit model (DGP 2), we generate 𝑣𝑒𝑐(𝑌𝑁) by the contraction mapping with a tolerance 10
−6.  

 

  In order to evaluate finite sample performance of 휃̂𝑁 , we consider three criteria: (i) empirical bias, 

(ii) empirical standard deviation (STD), and (iii) 95% coverage probability. The number of sample 

repetitions is 1,000 for each experiment. 

 

Table 1. Simulation results for the linear SARF and SARF Tobit models 
DGP 1 (Linear SARF). 휃0 = (𝛼0, 𝜆0, 𝛾0, 𝜌0, 𝛽0, 𝑏0, 𝑐0, 𝜎0

2)′ = (1, 0.02, 0.02, 0.01, −4, 1, 1, 1)′ 

 𝛼0 𝜆0 𝛾0 𝜌0 𝛽0 𝑏0 𝑐0 𝜎0
2 

Bias 0.0001  -0.0003  -0.0004  0.0000  0.0001  0.0014  0.0014  0.0005  

STD 0.0001  0.0014  0.0014  0.0004  0.0008  0.0015  0.0015  0.0001  

95% CP 1.0000  0.9980  1.0000  0.9620  1.0000  1.0000  1.0000  1.0000  

 
DGP 2 (SARF Tobit). 휃0 = (𝛼0, 𝜆0, 𝛾0, 𝜌0, 𝛽0, 𝑏0, 𝑐0, 𝜎0

2)′ = (1, 0.02, 0.02, 0.01, −4, 1, 1, 1)′ 

% of nonzero observations (average): 83.38% 

 𝛼0 𝜆0 𝛾0 𝜌0 𝛽0 𝑏0 𝑐0 𝜎0
2 

Bias 0.0002  -0.0014  -0.0015  0.0002  0.0011  0.0032  0.0032  0.0005  

STD 0.0001  0.0015  0.0014  0.0004  0.0007  0.0013  0.0013  0.0001  

95% CP 1.0000  0.9960  0.9990  0.9510  1.0000  1.0000  1.0000  1.0000  

Misspecification from assuming the linear SARF model 

Bias 0.0011  -0.0081  -0.0081  0.0013  0.0090  0.0158  0.0159  0.0015  

STD 0.0007  0.0011  0.0010  0.0004  0.0093  0.0033  0.0022  0.0091  

95% CP 1.0000  0.0200  0.0130  0.1560  0.9970  0.9990  1.0000  0.9970  

 

  For both cases, we observe reasonable performance of the MLE in terms of biases and CPs. Under the 

larger spatial influence case, biases become slightly larger (in absolute values) while there is no 

significant change in STDs. In �̂�𝑁  and 𝛾𝑁 , we detect downward biases. On the other hand, upward 

biases are observed in �̂�𝑁, �̂�𝑁, and �̂�𝑁
2. 

 

 
41  In the supplement file, we provide additional simulation results for non-normally distributed 𝜖𝑛,𝑖𝑗  s: (1) uniform, (2) 

Logistic, (3) Gamma, (4) Beta, and (5) mixed normal distributions. We observe that the MLE performs well except for 
estimating the variance parameter 𝜎0

2 with the case of the mixed normal distribution. 
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  Table 1 also shows the simulation results under DGP 2 for the SARF Tobit model. By adjusting 𝛽0, we 

can control a proportion of nonzero observations. We provide average percentages of nonzero 

observations. For misspecification analyses, we also report the estimation results using the SARF model. 

 

  When the model is correctly specified (i.e., SARF Tobit model), the MLE performs well and overall 

performance is similar with that provided, which is for the linear SARF model in Table 1. For all cases, 

biases increase when we do not consider the Tobit structure. By observing the estimates’ low levels of 

CPs for 𝜆0, 𝛾0, and 𝜌0, we observe that statistical inference for the spatial interaction parameters would 

be invalid under the misspecification. Under the model misspecification, we detect large biases in 

estimates of the linear sensitivity parameters 𝛽0, 𝑏0, and 𝑐0. Misspecification biases increase when a 

percentage of zero observations increases. Under larger spatial influences, misspecification biases tend 

to be larger (except for estimates of 𝑏0 and 𝑐0). 

 

  As the second issue, we estimate the parameter 𝜔0 = (𝜆0, 𝛾0, 𝜌0, 𝛽0)
′ when there exist two-way fixed 

effects. We investigate the finite sample performance of the MLE and the bias corrected MLE. We 

consider 𝑛 = 25 in the main draft for computational tractability.42 We consider the LeSage and Pace’s 

(2008) specification with a row-normalized rook matrix as for a chess board, i.e., (𝑊𝑛,𝑀𝑛) =

(𝑊𝑅,𝑛
𝑟 ,𝑊𝑅,𝑛

𝑟′ ), where 𝑊𝑅,𝑛
𝑟 = [𝑤𝑅,𝑛,𝑖𝑗

𝑟 ] with 𝑤𝑅,𝑛,𝑖𝑗
𝑟 =

𝑤𝑛,𝑖𝑗
𝑟

∑ 𝑤𝑛,𝑖𝑘
𝑟𝑛

𝑘=1

. We utilize the first 25 states’ geographic 

locations for constructing 𝑍𝑁,1  while 𝑋𝑛,1  is excluded. For this experiment, 𝜔0 =

(0.1,0.1,0.05, −0.15,0.8)′  and 𝜔0 = (−0.1, −0.1, −0.05, −0.15,0.8)′  are considered. For the fixed 

effects, we draw 𝛼𝑗,𝑜 from 𝑁(1,0.01
2) and set 𝛼𝑖,𝑑 = 𝛼𝑖,𝑜 for 𝑖 = 1,⋯ , 𝑛. The trimming spatial order 

𝑠𝑛  for all 𝑖 = 1,⋯ , 𝑛  is defined by 𝑘 ∈ 𝑛𝑏𝑑(𝑖, 𝑠𝑛)  if [(𝑊𝑅,𝑛
𝑟 )

𝑙
]
𝑖𝑘
≠ 0  for some 𝑙 ∈ {0,1,⋯ , 𝑠𝑛} . We 

report the bias corrected MLE for the SARF Tobit model with 𝑠𝑛 = 1 and 2.43  

 

Table 2. Simulation results for the linear SARF and SARF Tobit models with fixed effects 
Case 1: 

DGP1 (Linear SARF). 𝑛 = 25, 𝜔0 = (𝜆0, 𝛾0, 𝜌0, 𝛽0, 𝜎0
2)′ = (0.1,0.1,0.05,−0.15,0.8)′ 

 𝜆0 𝛾0 𝜌0 𝛽0 𝜎0
2 

MLE 

Bias -0.0660 -0.0664 0.0071 0.0009 -0.0700 

STD 0.0515 0.0491 0.0880 0.0244 0.0456 

95% CP 0.7480 0.7620 0.9500 0.9420 0.5880 

Bias corrected MLE      

Bias -0.0070 -0.0072 -0.0009 0.0011 -0.0148 

STD 0.0534 0.0510 0.0948 0.0243 0.0490 

95% CP 0.9320 0.9340 0.9360 0.9380 0.8660 

 
DGP2 (SARF Tobit). 𝑛 = 25, 𝜔0 = (𝜆0, 𝛾0, 𝜌0, 𝛽0, 𝜎0

2)′ = (0.1,0.1,0.05,−0.15,0.8)′ 

% of nonzero observations (average): 92.22% 

 𝜆0 𝛾0 𝜌0 𝛽0 𝜎0
2 

MLE 

Bias -0.0704 -0.0706 0.0066 0.0009 -0.0704 

STD 0.0553 0.0528 0.0956 0.0245 0.0481 

 
42 Since we employ the direct estimation method for the SARF Tobit model with the fixed effects, a large 𝑛 leads to a linearly 
increasing parameter space. We observe that the case of 𝑛 = 25 not only provides a sufficient sample size (i.e., 𝑁 = 𝑛2 =
625), but it also takes a reasonable time for sample repetitions. In the supplement file, we provide the simulation results for 
a smaller 𝑛 = 16 and a larger 𝑛 = 36. 
43 The average value of card({𝑘: 𝑘 ∈ 𝑛𝑏𝑑(𝑖, 𝑠𝑛 = 1)}) is 4.2 while that of card({𝑘: 𝑘 ∈ 𝑛𝑏𝑑(𝑖, 𝑠𝑛 = 2)}) is 9.16. 
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95% CP 0.7440 0.7560 0.9460 0.9440 0.6160 

Bias corrected MLE with 𝑠𝑛 = 1      

Bias -0.0118 -0.0120 0.0120 0.0024 0.0193 

STD 0.0543 0.0519 0.0936 0.0246 0.0546 

95% CP 0.9360 0.9520 0.9540 0.9340 0.8820 

Bias corrected MLE with 𝑠𝑛 = 2      

Bias -0.0204 -0.0203 0.0136 0.0021 -0.0027 

STD 0.0569 0.0541 0.1009 0.0249 0.0537 

95% CP 0.9040 0.9400 0.9340 0.9360 0.8840 

 
Case 2: 

DGP1 (Linear SARF). 𝑛 = 25, 𝜔0 = (𝜆0, 𝛾0, 𝜌0, 𝛽0, 𝜎0
2)′ = (−0.1, −0.1,−0.05,−0.15,0.8)′ 

 𝜆0 𝛾0 𝜌0 𝛽0 𝜎0
2 

MLE 

Bias -0.0554 -0.0553 -0.0054 0.0022 -0.0793 

STD 0.0499 0.0482 0.0851 0.0242 0.0456 

95% CP 0.7880 0.7960 0.9560 0.9340 0.5180 

Bias corrected MLE      

Bias -0.0036 -0.0033 0.0026 0.0013 -0.0155 

STD 0.0522 0.0505 0.0924 0.0243 0.0495 

95% CP 0.9420 0.9240 0.9340 0.9340 0.8680 

 
DGP2 (SARF Tobit). 𝑛 = 25, 𝜔0 = (𝜆0, 𝛾0, 𝜌0, 𝛽0, 𝜎0

2)′ = (−0.1,−0.1,−0.05,−0.15,0.8)′ 

% of nonzero observations (average): 79.36% 

 𝜆0 𝛾0 𝜌0 𝛽0 𝜎0
2 

MLE 

Bias -0.0691 -0.0696 -0.0056 0.0023 -0.0836 

STD 0.0619 0.0601 0.1060 0.0245 0.0521 

95% CP 0.7840 0.8040 0.9560 0.9380 0.5380 

Bias corrected MLE with 𝑠𝑛 = 1      

Bias 0.0052 0.0044 0.0386 0.0059 0.0246 

STD 0.0623 0.0604 0.1066 0.0247 0.0609 

95% CP 0.9460 0.9460 0.9460 0.9240 0.8680 

Bias corrected MLE with 𝑠𝑛 = 2      

Bias -0.0135 -0.0138 0.0240 0.0050 -0.0029 

STD 0.0650 0.0624 0.1136 0.0250 0.0594 

95% CP 0.9280 0.9360 0.9420 0.9320 0.8720 

 

Downward biases in the MLEs of 𝜆0 , 𝛾0 , and 𝜎0
2  are detected for both models. Those downward 

biases for the SARF Tobit model tend to be larger than those for the linear SARF model. Magnitudes of 

those biases decrease when 𝑛  increases. These results are consistent with estimating the 

contemporaneous spatial effect, dynamic effect, and the variance parameters in a spatial dynamic panel 

data model (Lee and Yu, 2010). We do not capture a significant bias in estimating 𝜌0 and 𝛽0. After 

correcting the asymptotic biases, the magnitudes of the biases in the MLEs of 𝜆0 , 𝛾0 , and 𝜎0
2  are 

reduced and the CPs of them increase to be more adequate. For the bias correction of �̂�𝑁 and 𝛾𝑁 in 

case of the SARF Tobit model, choosing 𝑠𝑛 = 1 significantly reduces the downward biases in �̂�𝑁 and 

𝛾𝑁; and choosing 𝑠𝑛 = 2 performs well for the bias correction of �̂�𝑁
2. 

 

5.2 Selecting spatial weighting matrices (𝑾𝒏,𝑴𝒏) 
 

  In this subsection, we consider the model comparison issue in selecting 𝑊𝑛  and/or 𝑀𝑛 . If a 

practitioner wants to select a proper (𝑊𝑛, 𝑀𝑛) among various possible spatial weighting matrices, a 

statistical criterion can be a reasonable guidance for this issue. To generate asymmetric spatial 
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influences, we construct 𝑊𝑛
𝑒 = [𝑤𝑛,𝑖𝑗

𝑒 ] , 𝑤𝑛,𝑖𝑗
𝑒 =

1

|𝑖𝑛𝑐𝑜𝑚𝑒𝑖−𝑖𝑛𝑐𝑜𝑚𝑒𝑗|
(
ln 𝑖𝑛𝑐𝑜𝑚𝑒𝑗

ln 𝑖𝑛𝑐𝑜𝑚𝑒𝑖
)  and its row-normalized 

version, and 𝑖𝑛𝑐𝑜𝑚𝑒𝑖 denotes the state 𝑖’s real personal income level in the year 2010. We will use 

𝑊𝑛
𝑒 in the application part, and provide a justification on its specification. 

 

  From 𝑊𝑛
𝑒 , three specifications are considered: (1) Case 1: (𝑊𝑛,𝑀𝑛) = (𝑊𝑛

𝑒 ,𝑊𝑛
𝑒), (2) Case 2: LeSage 

and Pace’s (2008) specification: (𝑊𝑛, 𝑀𝑛) = (𝑊𝑛
𝑒 ,𝑊𝑛

𝑒′) , and (3) Case 3: LeSage and Pace’s (2008) 

specification with row-normalization: (𝑊𝑛, 𝑀𝑛) = (𝑊𝑅,𝑛
𝑒 ,𝑊𝑅,𝑛

𝑒′ ), where 𝑊𝑅,𝑛
𝑒 = [𝑤𝑅,𝑛,𝑖𝑗

𝑒 ] with 𝑤𝑅,𝑛,𝑖𝑗
𝑒 =

𝑤𝑛,𝑖𝑗
𝑒

∑ 𝑤𝑛,𝑖𝑘
𝑒𝑛

𝑘=1

. By considering an asymmetric spatial weighting matrix, we make a difference between the 

case of 𝑀𝑛 = 𝑊𝑛
𝑒 and the LeSage and Pace’s (2008) specification (i.e., 𝑀𝑛 = 𝑊𝑛

𝑒′). We measure the 

degree of matrix’s asymmetry using 
‖𝐴−𝐴′‖

2

2‖𝐴‖2
 , where 𝐴  is a square matrix. Using a matrix norm, this 

measure evaluates the normalized distance between 𝐴  and 𝐴′  and is located in [0,1] . We observe 

‖𝑊𝑛
𝑒−𝑊𝑛

𝑒′‖
2

2‖𝑊𝑛
𝑒‖2

= 0.0001  and 
‖𝑊𝑅,𝑛

𝑒 −𝑊𝑅,𝑛
𝑒′ ‖

2

2‖𝑊𝑅,𝑛
𝑒 ‖

2

= 0.2349 . 44  It implies that the row normalization for 𝑊𝑛
𝑒 

generates a relatively high level of asymmetry. We generate the data for the three cases by considering 

휃0 = (1, 0.02, 0.02, 0.01, −4, 1, 1, 1)′ since this parameter vector provides the representative simulation 

results in Section 5.1 by generating sufficient zero values (about 17%). We estimate the model using the 

three candidate specifications. 

 

  For model comparison, we consider a measure based on the sample log-likelihood. The theoretical 

foundation of this model framework is the Akaike information criterion (AIC) (see Akaike, 1973). AIC 

measures the Kullback-Leibler divergence, which captures the distance between the (unknown) true 

model’s distribution and that of a candidate model. For each DGP, we consider the quantity ∆𝑙=

exp((𝐴𝐼𝐶𝑡𝑟𝑢𝑒 − 𝐴𝐼𝐶𝑙)/2), where 𝐴𝐼𝐶𝑡𝑟𝑢𝑒 denotes the AIC evaluated at the true model and 𝐴𝐼𝐶𝑙  is the 

AIC evaluated at Case 𝑙 = 1,2, and 3. This measure is the relative likelihood of the model 𝑙 capturing 

the information loss from using the model 𝑙 . The Akaike weight defined by ∆̅𝑙=
∆𝑙

∑ ∆𝑟
𝑅
𝑟=1

 , where 𝑅 

denotes the number of candidate models, represents the probability that model 𝑙  minimizes the 

information loss among candidate models.45  The Akaike weights are valuable indices in empirical 

applications as the true unknown 𝐴𝐼𝐶𝑡𝑟𝑢𝑒 will be canceled from the numerator and the denominator. 

The figures below show how this measure is reasonable in determining a proper specification. We only 

report the results when the SARF Tobit model is taken. The simulation results for the linear SARF model 

are similar with the below. 

 

 

 

 

 

 

 

44  A baseline matrix norm can be replaced by other norms. For example, 
‖𝑊𝑛

𝑒−𝑊𝑛
𝑒′‖

1

2‖𝑊𝑛
𝑒‖1

= 0.0001 , 
‖𝑊𝑛

𝑒−𝑊𝑛
𝑒′‖

∞

2‖𝑊𝑛
𝑒‖∞

= 0.0001 , 

‖𝑊𝑅,𝑛
𝑒 −𝑊𝑅,𝑛

𝑒′ ‖
1

2‖𝑊𝑅,𝑛
𝑒 ‖

1

= 0.2674 and 
‖𝑊𝑅,𝑛

𝑒 −𝑊𝑅,𝑛
𝑒′ ‖

∞

2‖𝑊𝑅,𝑛
𝑒 ‖

∞

= 0.5292. 

45 For details, refer to Section 2.9 of Burnham and Anderson (2002). 
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Figure 3. Akaike weights 

   
True DGP: Case 1 True DGP: Case 2 True DGP: Case 3 

 

The numbers in the bar graphs show the averages of Akaike weights (multiplied by 100). In terms of 

average, the Akaike weight takes the highest value at each true model. When Case 1 or Case 2 is true, 

the Akaike weights from Cases 1 and 2 are similar while those of Case 3 are close to zeros. If the true 

DGP follows Case 3, the Akaike weights for Cases 1 and 2 are almost zeros. Those results imply that the 

Akaike weight is a reasonable measure in selecting a proper specification on (𝑊𝑛,𝑀𝑛)  when each 

candidate specification generates distinct spatial influences. 

 

6. Application: States’ migration flow 
 

In this section, we consider the migration flows among the 48 U.S. contiguous states (excluding Alaska 

and Hawaii) as an application. For each pair (𝑖, 𝑗), 𝑦𝑛,𝑖𝑗 denotes the logged migration flows (added 1) 

from state 𝑗  in year 2010 to state 𝑖  in year 2011 (i.e., 𝑦𝑛,𝑖𝑗 = ln(𝑚𝑓𝑙𝑜𝑤𝑖𝑗 + 1) ). As univariate 

explanatory variables {𝑥𝑛,𝑖} , we consider the states’ (1) logged population levels {𝑥𝑛,𝑖,1} , (2) 

percentage growth rates of per capita real personal incomes {𝑥𝑛,𝑖,2}  in year 2010, (3) insured 

unemployment rate {𝑥𝑛,𝑖,3} in year 2010, (4) 5-year average housing burden ratios {𝑥𝑛,𝑖,4} from year 

2006 to year 2010, and (5) the logged degrees of nodes in the states’ adjacency network {𝑥𝑛,𝑖,5}.46 For 

𝑧𝑛,𝑖𝑗,1, the logged (kilometer-based) geographic distances (𝑑𝑖𝑗) added 1 is employed. In addition to 𝑑𝑖𝑗 , 

demographic and/or economic distances are considered as z-variables. For this, we consider the income 

growth differential |𝑥𝑛,𝑖,2 − 𝑥𝑛,𝑗,2| as 𝑧𝑛,𝑖𝑗,2, insured unemployment rate differential |𝑥𝑛,𝑖,3 − 𝑥𝑛,𝑗,3| as 

𝑧𝑛,𝑖𝑗,3, and housing burden ratio differential |𝑥𝑛,𝑖,4 − 𝑥𝑛,𝑗,4| as 𝑧𝑛,𝑖𝑗,4.47 All variables are collected from 

the U.S Census. For details of variable specifications, refer to the supplement file. 

 

For combinations of spatial weighting matrices, six specifications are considered. First, we consider 

the shares of historical migration influxes and outflows (from 2009 to 2010). An 𝑛 × 𝑛 matrix 𝑊𝑛
𝐼 =

[𝑤𝑛,𝑖𝑗
𝐼 ] is designed to present forces toward destinations. Each entry 𝑤𝑛,𝑖𝑗

𝐼  is the share of migration 

flow from 𝑗 to 𝑖 among migration influxes to 𝑖. To represent forces from origins, we consider an 𝑛-

 
46 Since the states’ adjacency matrix is symmetric, its outdegree is the same as its indegree. Hence, it is a degree. 
47 Taking the absolute value on 𝑥𝑛,𝑖,𝑘 − 𝑥𝑛,𝑗,𝑘  generates additional variations relative to 𝑥𝑛,𝑖,𝑘 and 𝑥𝑛,𝑗,𝑘. Other types of z-

variables can be considered to show an incentive of migrations (e.g., 𝑥𝑛,𝑖,𝑘 − 𝑥𝑛,𝑗,𝑘  or 
𝑥𝑛,𝑖,𝑘

𝑥𝑛,𝑗,𝑘
 ). In our estimation results, 

however, it is difficult to identify the relevant sensitivity parameter due to small variations in an alternative z-variable. 
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dimensional square matrix 𝑀𝑛
𝑂 = [𝑚𝑛,𝑖𝑗

𝑂 ]  whose (𝑖, 𝑗) -element 𝑚𝑛,𝑖𝑗
𝑂   is the share of migration flow 

from 𝑗  to 𝑖  among migration outflows from 𝑗 . Those two matrices are directed networks and can 

show different roles of origins and destinations in spreading spatial spillover effects. For alternative 

specifications, we consider the states’ adjacency matrix 𝑊𝑛
𝑎  and a matrix constructed by their 

economic relations 𝑊𝑛
𝑒 . We construct 𝑊𝑛

𝑒  by the economic distance |𝑖𝑛𝑐𝑜𝑚𝑒𝑖 − 𝑖𝑛𝑐𝑜𝑚𝑒𝑗|  and its 

product with 
ln(𝑖𝑛𝑐𝑜𝑚𝑒𝑗)

ln(𝑖𝑛𝑐𝑜𝑚𝑒𝑖)
 . The weight 

ln(𝑖𝑛𝑐𝑜𝑚𝑒𝑗)

ln(𝑖𝑛𝑐𝑜𝑚𝑒𝑖)
  generates asymmetric influences. If 𝑖𝑛𝑐𝑜𝑚𝑒𝑗 >

𝑖𝑛𝑐𝑜𝑚𝑒𝑖, a signal from 𝑗 to 𝑖 (𝑤𝑛,𝑖𝑗
𝑒 ) is larger than that from 𝑖 to 𝑗 (i.e., a larger effect from a higher 

income region). From 𝑊𝑛
𝑎 , 𝑊𝑛

𝑒 , and their row normalized versions, e.g., 𝑊𝑅,𝑛
𝑎 = [𝑤𝑅,𝑛,𝑖𝑗

𝑎 ]  with 

𝑤𝑅,𝑛,𝑖𝑗
𝑎 =

𝑤𝑛,𝑖𝑗
𝑎

∑ 𝑤𝑛,𝑖𝑘
𝑎𝑛

𝑘=1

, we have six specifications: (1) (𝑊𝑛, 𝑀𝑛) = (𝑊𝑛
𝐼 , 𝑀𝑛

𝑂), (2) (𝑊𝑛,𝑀𝑛) = (𝑊𝑛
𝑎,𝑊𝑛

𝑎), (3) 

(𝑊𝑛, 𝑀𝑛) = (𝑊𝑅,𝑛
𝑎 ,𝑊𝑅,𝑛

𝑎′ ) (i.e., LeSage and Pace’s (2008) specification), (4) (𝑊𝑛,𝑀𝑛) = (𝑊𝑛
𝑒 ,𝑊𝑛

𝑒), (5) 

(𝑊𝑛, 𝑀𝑛) = (𝑊𝑛
𝑒 ,𝑊𝑛

𝑒′) , and (6) (𝑊𝑛, 𝑀𝑛) = (𝑊𝑅,𝑛
𝑒 ,𝑊𝑅,𝑛

𝑒′ ) . In the supplement file, we report the 

estimation results when (𝑊𝑛, 𝑀𝑛) = (𝑊𝑛
𝑒 ,𝑊𝑛

𝑒) and (𝑊𝑛, 𝑀𝑛) = (𝑊𝑛
𝑒 ,𝑊𝑛

𝑒′), i.e., the cases (4) and (5). 

 

  Then, we estimate the resource flow model discussed in Section 2.1. When 𝜆0 ≠ 0  or 𝛾0 ≠ 0  or 

𝜌0 ≠ 0 , there exist effects from third-party’s characteristics. Then, 𝑠𝑖𝑛𝑣,𝑔ℎ
𝑖𝑗

  is the ((𝑗 − 1)𝑛 +

𝑖, (ℎ − 1)𝑛 + 𝑔) -element of 𝑆𝑁
−1  which characterizes the spatial spillover effect. The weight 𝑠𝑖𝑛𝑣,𝑖𝑗

𝑖𝑗
 

usually takes a number greater than one and shows how the spatial spillovers work to amplify the 

characteristics’ effects (i.e., intensity of the multiplier effect). If there is no spatial spillover effect, 

𝑠𝑖𝑛𝑣,𝑖𝑗
𝑖𝑗

= 1 for all (𝑖, 𝑗) and 𝑠𝑖𝑛𝑣,𝑘𝑙
𝑖𝑗

= 0 for (𝑔, ℎ) ≠ (𝑖, 𝑗) (i.e., the conventional gravity model).48 For 

example, note that 𝛽1,0  presents the elasticity of geographic distance 𝑑𝑖𝑗  . Then, 𝛽1,0𝑠𝑖𝑛𝑣,𝑖𝑗
𝑖𝑗

> 𝛽1,0 , 

where 𝛽1,0𝑠𝑖𝑛𝑣,𝑖𝑗
𝑖𝑗

 is the amplified elasticity of 𝑑𝑖𝑗 , if 𝑠𝑖𝑛𝑣,𝑖𝑗
𝑖𝑗

> 1 since 𝑠𝑖𝑛𝑣,𝑖𝑗
𝑖𝑗

 is a diagonal element of 

𝑆𝑁
−1 . If (𝑔, ℎ) ≠ (𝑖, 𝑗) , 𝑠𝑖𝑛𝑣,𝑔ℎ

𝑖𝑗
  represents how much the third parties (𝑔, ℎ) ’s characteristics affect 

𝑚𝑓𝑙𝑜𝑤𝑖𝑗. We will report {𝑠𝑖𝑛𝑣,𝑔ℎ
𝑖𝑗

} after providing the estimation results. 

 

Table 3. Descriptive statistics: States’ migration flows 
Variables Mean Std. dev. Minimum Maximum 

Migration flows (× 104) 1.9253 17.4002 0.0000 527.1168 

Geographic dist. (km) 1662.0418 957.1254 60.9591 4283.9987 

Population (× 106) 6.3887 6.9237 0.5644 37.3277 

Personal income growth (%) 1.4545 1.5102 -1.2748 7.2790 

Insured unemployment rate (%) 3.3831 0.8768 1.2346 5.2431 

Housing burden ratio (%) 33.8697 4.8457 26.3536 49.1117 

Logged degree of 𝑊𝑛
𝑎  1.4204 0.4151 0 2.0794 

 

 

 

 

 

 

 
48 In the McCallum's (1995) gravity model framework with 𝐿 = 1 and 𝐾 = 1 for simplicity, we have  

𝑚𝑓𝑙𝑜𝑤𝑖𝑗 = 𝑚𝑓𝑙𝑜𝑤̅̅ ̅̅ ̅̅ ̅̅ ̅(1 + 𝑑𝑖𝑗)
𝛽1,0
𝑝𝑜𝑝

𝑖

𝑏1,0𝑝𝑜𝑝
𝑗

𝑐1,0exp(𝜖𝑖𝑗), 

where 𝑚𝑓𝑙𝑜𝑤̅̅ ̅̅ ̅̅ ̅̅ ̅ is absorbed in a constant term for estimation. 
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Figure 4. Heatmap for the U.S. state level migration flows 

 
 

Table 3 shows the descriptive statistics. From the heatmap of the U.S. migration flows (Figure 4), we 

observe two features: (1) intrastate migration flows {𝑦𝑛,𝑖𝑖} are dominant over interstate ones {𝑦𝑛,𝑖𝑗} 

(𝑖 ≠ 𝑗 ); (2) 93.88% observations are nonzero, there exist unignorable zeros of the states’ migration 

flows. For the first feature, the traditional logistic specification (e.g., Sasser (2010)) is weak in 

explaining the dominating intrastate migration. It assumes that economic conditions in a state other 

than a given origin and destination pair have no impact on the migration choice. On the contrary, our 

model suggests that the impact of the characteristics of the origin and destination pair can be amplified 

by the third-party’s characteristics via spatial spillover effects. We propose that local moves are more 

intense for three possible reasons: (1) the relocation costs, including the moving cost (measured by 𝑑𝑖𝑗) 

and the information cost (by the demographic and economic distances), (2) the larger impact of a state 

𝑖’s 𝑘th characteristics 𝑥𝑛,𝑖,𝑘 on 𝑦𝑛,𝑖𝑖 (i.e., 𝑏𝑘,0 + 𝑐𝑘,0); and (3) the amplified effects of (1) and (2) by 

the spatial multiplier effect ( 𝑠𝑖𝑛𝑣,𝑔ℎ
𝑖𝑖  ) characterized by the feedback effects 𝑖 ↦ ⋯ ↦ 𝑖  via spatial 

networks. For the second feature, a migration flow 𝑚𝑓𝑙𝑜𝑤𝑖𝑗  is the aggregation of individuals’ 

relocation decisions. An individual chooses to migrate to places only in the case that her utility is 

maximized by balancing the benefit to move and the cost to migrate. As a result, zero values of migration 

flows (about 6%) can occur when we aggregate individuals’ choices. It motivates us to consider the 

SARF Tobit model. 

 

Table 4. Estimation results I: States’ migration flows 
 Linear SARF SARF Tobit 

Parameters\Specification (𝑊𝑛
𝐼,𝑀𝑛

𝑂) (𝑊𝑛
𝑎 ,𝑊𝑛

𝑎) (𝑊𝑅,𝑛
𝑎 ,𝑊𝑅,𝑛

𝑎′ ) (𝑊𝑅,𝑛
𝑒 ,𝑊𝑅,𝑛

𝑒′ ) (𝑊𝑛
𝐼,𝑀𝑛

𝑂) (𝑊𝑛
𝑎 ,𝑊𝑛

𝑎) (𝑊𝑅,𝑛
𝑎 ,𝑊𝑅,𝑛

𝑎′ ) (𝑊𝑅,𝑛
𝑒 ,𝑊𝑅,𝑛

𝑒′ ) 

Constant -9.0100*** 

[1.2075] 

-15.3024*** 

[0.8087] 

-16.5112*** 

[0.8475] 

-9.1665*** 

[0.9905] 

-9.5311*** 

[1.2565] 

-15.7306*** 

[0.8622] 

-7.9918*** 

[0.9046] 

-19.2525*** 

[1.0438] 

𝜆0  0.5725*** 

[0.0400] 

0.0545*** 

[0.0045] 

0.2516*** 

[0.0228] 

0.1961*** 

[0.0249] 

0.6044*** 

[0.0410] 

0.0556*** 

[0.0048] 

0.3532*** 

[0.0236] 

0.1177*** 

[0.0268] 

𝛾0  0.6221*** 

[0.0385] 

0.0520*** 

[0.0046] 

0.2910*** 

[0.0228] 

0.1436*** 

[0.0253] 

0.6250*** 

[0.0406] 

0.0498*** 

[0.0050] 

0.3875*** 

[0.0234] 

0.0538** 

[0.0271] 

𝜌0  -0.3283*** 

[0.0848] 

-0.0028** 

[0.0011] 

-0.1004*** 

[0.0326] 

-0.4127*** 

[0.0361] 

-0.3194*** 

[0.0833] 

-0.0018 

[0.0012] 

-0.2677*** 

[0.0340] 

-0.2487*** 

[0.0386] 

𝛽1,0 (𝑑𝑖𝑗 ↦ 𝑦𝑛,𝑖𝑗) -0.6910*** 

[0.0249] 

-0.7214*** 

[0.0273] 

-0.6876*** 

[0.0293] 

-1.0709*** 

[0.0267] 

-0.6926*** 

[0.0261] 

-0.7140*** 

[0.0290] 

-0.7441*** 

[0.0313] 

-1.0093*** 

[0.0282] 

𝛽2,0 (|𝑥𝑛,𝑖,2 − 𝑥𝑛,𝑗,2| ↦ 𝑦𝑛,𝑖𝑗) 0.0113 

[0.0209] 

0.0302 

[0.0222] 

0.0135 

[0.0220] 

0.0100 

[0.0240] 

0.0124 

[0.0223] 

0.0169 

[0.0236] 

-0.0235 

[0.0236] 

0.0486* 

[0.0254] 

𝛽3,0 (|𝑥𝑛,𝑖,3 − 𝑥𝑛,𝑗,3| ↦ 𝑦𝑛,𝑖𝑗) 0.0577 

[0.0377] 

0.0800** 

[0.0401] 

0.0573 

[0.0396] 

0.0234 

[0.0440] 

0.0524 

[0.0401] 

0.0484 

[0.0427] 

0.0473 

[0.0424] 

0.0514 

[0.0465] 

𝛽4,0 (|𝑥𝑛,𝑖,4 − 𝑥𝑛,𝑗,4| ↦ 𝑦𝑛,𝑖𝑗) -0.0234*** -0.0409*** -0.0326*** -0.0185*** -0.0231*** -0.0361*** -0.0113 -0.0373*** 
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[0.0073] [0.0077] [0.0077] [0.0084] [0.0078] [0.0082] [0.0082] [0.0089] 

𝑏1,0 (𝑥𝑛,𝑖,1 ↦ 𝑦𝑛,𝑖𝑗) 0.4325*** 

[0.0550] 

0.8414*** 

[0.0422] 

0.7805*** 

[0.0424] 

0.8344*** 

[0.0502] 

0.4587*** 

[0.0584] 

0.8926*** 

[0.0451] 

0.5355*** 

[0.0449] 

1.1341*** 

[0.0535] 

𝑏2,0 (𝑥𝑛,𝑖,2 ↦ 𝑦𝑛,𝑖𝑗) 0.0419** 

[0.0206] 

0.0509** 

[0.0218] 

0.0445** 

[0.0217] 

0.0020 

[0.0234] 

0.0448** 

[0.0219] 

0.0396* 

[0.0232] 

-0.0038 

[0.0233] 

0.0321 

[0.0248] 

𝑏3,0 (𝑥𝑛,𝑖,3 ↦ 𝑦𝑛,𝑖𝑗) -0.0152 

[0.0377] 

-0.0384 

[0.0389] 

-0.0557 

[0.0389] 

-0.0262 

[0.0425] 

-0.0130 

[0.0400] 

-0.0407 

[0.0415] 

-0.0606 

[0.0416] 

-0.0148 

[0.0450] 

𝑏4,0 (𝑥𝑛,𝑖,4 ↦ 𝑦𝑛,𝑖𝑗) 0.0029 

[0.0083] 

0.0200 

[0.0089] 

0.0099 

[0.0088] 

-0.0030 

[0.0097] 

0.0007 

[0.0088] 

0.0104 

[0.0095] 

0.0054 

[0.0094] 

-0.0029 

[0.0103] 

𝑏5,0 (𝑥𝑛,𝑖,5 ↦ 𝑦𝑛,𝑖𝑗) -0.0108 

[0.0740] 

-0.9941*** 

[0.1375] 

-0.0118 

[0.0777] 

-0.1415 

[0.0853] 

-0.0134 

[0.0786] 

-1.1996*** 

[0.1465] 

-0.1532 

[0.0833] 

-0.0091 

[0.0901] 

𝑐1,0 (𝑥𝑛,𝑗,1 ↦ 𝑦𝑛,𝑖𝑗) 0.4484*** 

[0.0550] 

0.7771*** 

[0.0417] 

0.7762*** 

[0.0420] 

0.6990*** 

[0.0491] 

0.4374*** 

[0.0572] 

0.7836*** 

[0.0444] 

0.5332*** 

[0.0446] 

0.9865*** 

[0.0522] 

𝑐2,0 (𝑥𝑛,𝑗,2 ↦ 𝑦𝑛,𝑖𝑗) 0.0537** 

[0.0209] 

0.0525** 

[0.0218] 

0.0561*** 

[0.0217] 

0.0029 

[0.0234] 

0.0556** 

[0.0222] 

0.0391* 

[0.0232] 

0.0162 

[0.0233] 

0.0424* 

[0.0248] 

𝑐3,0 (𝑥𝑛,𝑗,3 ↦ 𝑦𝑛,𝑖𝑗) 0.0233 

[0.0371] 

0.0139 

[0.0389] 

-0.0107 

[0.0389] 

0.0500 

[0.0423] 

0.0314 

[0.0394] 

0.0366 

[0.0414] 

-0.0160 

[0.0416] 

0.0695 

[0.0448] 

𝑐4,0 (𝑥𝑛,𝑗,4 ↦ 𝑦𝑛,𝑖𝑗) 0.0137 

[0.0084] 

0.0399*** 

[0.0089] 

0.0273*** 

[0.0088] 

0.0200** 

[0.0096] 

0.0121 

[0.0089] 

0.0406*** 

[0.0095] 

0.0203** 

[0.0094] 

0.0216** 

[0.0102] 

𝑐5,0 (𝑥𝑛,𝑗,5 ↦ 𝑦𝑛,𝑖𝑗) 0.2114** 

[0.0754] 

-0.6951*** 

[0.1357] 

0.2125*** 

[0.0783] 

0.1451* 

[0.0855] 

0.2334*** 

[0.0801] 

-0.7289*** 

[0.1446] 

0.0708 

[0.0838] 

0.3125*** 

[0.0906] 

𝜎0
2  1.5960*** 

[0.0488] 

1.7990*** 

[0.0533] 

1.7622*** 

[0.0529] 

2.1139*** 

[0.0627] 

1.7963*** 

[0.0582] 

2.0268*** 

[0.0635] 

2.0097*** 

[0.0643] 

2.3533*** 

[0.0739] 

Log-likelihood -3867.5132 -3977.4477 -3964.3566 -4135.4614 -3969.7881 -4078.7266 -4114.9061 -4218.8884 

Akaike weight× 100 100.0000 0.0000 0.0000 0.0000 100.0000 0.0000 0.0000 0.0000 

Note: Theoretical standard deviations are in parenthesis. Estimates that are significant at the 10%, 5%, and 1% 

levels are respectively marked by “*”, “**”, and “***”. 

 

Table 4 reports the estimation results for the linear SARF and SARF Tobit models. The Akaike weights 

suggest that the first setting (𝑊𝑛,𝑀𝑛) = (𝑊𝑛
𝐼 , 𝑀𝑛

𝑂) is the  best for both models. We observe that the 

estimates from the SARF Tobit model tend to be larger than those from the linear SARF model (in 

absolute values). However, the two models (linear SARF and SARF Tobit) yield the same sign and similar 

significance of estimates. For interpretations, we focus on the estimates from the SARF Tobit model. 

First, by the estimates for 𝜆0 and 𝛾0, we detect significant positive spatial effects from flows 𝑦𝑛,𝑔𝑗 (for 

𝑔 ≠ 𝑖) and 𝑦𝑛,𝑖ℎ (for ℎ ≠ 𝑗) on 𝑦𝑛,𝑖𝑗. It implies that the overall inflow (to destination 𝑖) or outflow 

(from origin 𝑗) tendency has a positive influence on 𝑦𝑛,𝑖𝑗. For example, the migration flow from Ohio 

to Indiana increases if that from Ohio to a third-party connected state (e.g., Kentucky) or that from a 

third-party state to Indiana increases. Second, for the parameter 𝜌0, a negative effect of migration flows 

among third-party states on 𝑦𝑛,𝑖𝑗  is captured. 49  Third, the geographic distance has significantly 

negative effect on a state’s migration flow 𝑦𝑛,𝑖𝑗. The geographic-distance-elasticity of the migration flow 

is −0.7030. The effects of the income growth difference (𝑧𝑛,𝑖𝑗,2) and relative labor market condition 

(𝑧𝑛,𝑖𝑗,3) on 𝑦𝑛,𝑖𝑗 are not significantly captured. The housing burden ratio differential (𝑧𝑛,𝑖𝑗,4) negatively 

affects 𝑦𝑛,𝑖𝑗. 

 

Fourth, the estimates for 𝑏1,0 , 𝑏2,0  𝑐1,0 , and 𝑐2,0  show that the logged population levels and the 

personal income growths of both origin and destination significantly positively affect 𝑦𝑛,𝑖𝑗. The effect 

of origin’s population is larger than that of destination’s population. The importance of the origin state’ 

network connections on a migration flow is significantly identified (the estimate of 𝑐5,0). Last. we reject 

 
49 In the supplement file (Section 3.2.1), we report the estimation results when the averages of inflows and outflows (𝑦𝑛,𝑖. 

and 𝑦𝑛.𝑗) are considered as dependent variables (with the conventional SAR model). We do not capture significant spatial 

influences among those averages of flows. It seems that the aggregation leads to losing information in spatial influences 
among the origin-destination flows. 
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the hypothesis 𝐻0: 𝑏𝑘,0 = 𝑐𝑘,0 for 𝑘 = 5 (logged degrees of 𝑊𝑛
𝑎). 

 

Table 5. Estimation results II (with the fixed-effect specification): States’ migration flows 
 Linear SARF SARF Tobit 

Parameters\Specification (𝑊𝑛
𝐼,𝑀𝑛

𝑂) (𝑊𝑛
𝑎 ,𝑊𝑛

𝑎) (𝑊𝑅,𝑛
𝑎 ,𝑊𝑅,𝑛

𝑎′ ) (𝑊𝑅,𝑛
𝑒 ,𝑊𝑅,𝑛

𝑒′ ) (𝑊𝑛
𝐼,𝑀𝑛

𝑂) (𝑊𝑛
𝑎 ,𝑊𝑛

𝑎) (𝑊𝑅,𝑛
𝑎 ,𝑊𝑅,𝑛

𝑎′ ) (𝑊𝑅,𝑛
𝑒 ,𝑊𝑅,𝑛

𝑒′ ) 

𝜆0  0.1505*** 

[0.0567] 

0.0377*** 

[0.0052] 

0.1299*** 

[0.0262] 

0.0685*** 

[0.0267] 

0.2198*** 

[0.0599] 

0.1237*** 

[0.0121] 

0.1377*** 

[0.0278] 

0.0484* 

[0.0282] 

𝛾0  0.1448*** 

[0.0552] 

0.0417*** 

[0.0053] 

0.2157*** 

[0.0254] 

-0.0084 

[0.0269] 

0.5059*** 

[0.0554] 

0.1317*** 

[0.0113] 

0.2249*** 

[0.0271] 

-0.0417 

[0.0283] 

𝜌0  -0.2287*** 

[0.0733] 

0.0026** 

[0.0012] 

0.1338*** 

[0.0401] 

-0.1920*** 

[0.0546] 

0.8670*** 

[0.1312] 

-0.0102*** 

[0.0003] 

0.1506*** 

[0.0427] 

-0.1712*** 

[0.0571] 

𝛽1,0 (𝑑𝑖𝑗 ↦ 𝑦𝑛,𝑖𝑗) -0.7870*** 

[0.0253] 

-0.8051*** 

[0.0292] 

-0.7458*** 

[0.0313] 

-1.1089*** 

[0.0259] 

-0.7693*** 

[0.0260] 

-0.0091 

[0.0205] 

-0.7315*** 

[0.0332] 

-1.1708*** 

[0.0275] 

𝛽2,0 (|𝑥𝑛,𝑖,2 − 𝑥𝑛,𝑗,2| ↦ 𝑦𝑛,𝑖𝑗) 0.0299 

[0.0299] 

0.0327 

[0.0306] 

0.0201 

[0.0303] 

0.0650** 

[0.0321] 

0.0229 

[0.0316] 

0.2282*** 

[0.0370] 

0.0150 

[0.0323] 

0.0761** 

[0.0342] 

𝛽3,0 (|𝑥𝑛,𝑖,3 − 𝑥𝑛,𝑗,3| ↦ 𝑦𝑛,𝑖𝑗) -0.0185 

[0.0464] 

-0.0188 

[0.0475] 

-0.0257 

[0.0470] 

0.0014 

[0.0498] 

-0.0247 

[0.0488] 

0.0426 

[0.0563] 

-0.0397 

[0.0499] 

0.0056 

[0.0529] 

𝛽4,0 (|𝑥𝑛,𝑖,4 − 𝑥𝑛,𝑗,4| ↦ 𝑦𝑛,𝑖𝑗) -0.0191** 

[0.0091] 

-0.0215** 

[0.0094] 

-0.0189** 

[0.0092] 

-0.0218** 

[0.0098] 

-0.0139 

[0.0096] 

-0.0421*** 

[0.0110] 

-0.0223** 

[0.0098] 

-0.0271*** 

[0.0104] 

𝜎0
2  1.5315*** 

[0.0422] 

1.5454*** 

[0.0440] 

1.5103*** 

[0.0430] 

1.7084*** 

[0.0484] 

1.6674*** 

[0.0489] 

2.0201*** 

[0.0574] 

1.7429*** 

[0.0509] 

2.0501*** 

[0.0575] 

Log-likelihood -3697.0327 -3741.8366 -3717.7547 -3842.8731 -3790.7025 -5270.1536 -3828.8817 -3950.8906 

Akaike weight× 100 100.0000 0.0000 0.0000 0.0000 100.0000 0.0000 0.0000 0.0000 

Note: Theoretical standard deviations are in parenthesis. Estimates that are significant at the 10%, 5%, and 1% 

levels are respectively marked by “*”, “**”, and “***”. 

 

Also, we consider the SARF model with the fixed-effect specification. The bias corrected ML estimates 

are provided in Table 5. Even for the specifications with fixed effects, we observe that (𝑊𝑛
𝐼 , 𝑀𝑛

𝑂) is the 

best. After controlling for some time-invariant state characteristics, the estimates of 𝜆0 , 𝛾0  and 𝜌0 

tend to become smaller in absolute values. Significant negative impact of the bilateral distance on 𝑦𝑛,𝑖𝑗 

is found. When the difference between the housing burden ratio of the origin state ( 𝑗 ) and the 

destination state (𝑖) increases, the linear SARF model with fixed effects captures that the outflow of 

migrants from 𝑗 to 𝑖 decreases. We do not detect significant effects of other characteristics.  

 

Table 6. Equilibrium effects 
 Linear SARF Linear SARF Linear SARF + Fixed-effect Linear SARF + Fixed-effect 

 𝑠𝑖𝑛𝑣,𝑖𝑗
𝑖𝑗

 𝑠𝑖𝑛𝑣,𝑔ℎ
𝑖𝑗

 with (𝑔, ℎ) ≠ (𝑖, 𝑗) 𝑠𝑖𝑛𝑣,𝑖𝑗
𝑖𝑗

 𝑠𝑖𝑛𝑣,𝑔ℎ
𝑖𝑗

 with (𝑔, ℎ) ≠ (𝑖, 𝑗) 

Mean 1.0607 0.0028 1.0024 0.0002 

25th-percentile 1.0416 0.0003 1.0017 0.0000 

Median 1.0556 0.0008 1.0023 0.0000 

75th-percentile 1.0739 0.0019 1.0030 0.0000 

 SARF Tobit 

𝑠𝑖𝑛𝑣,𝑖𝑗
𝑖𝑗

 

SARF Tobit 

𝑠𝑖𝑛𝑣,𝑔ℎ
𝑖𝑗

 with (𝑔, ℎ) ≠ (𝑖, 𝑗) 

SARF Tobit + Fixed-effect 

𝑠𝑖𝑛𝑣,𝑖𝑗
𝑖𝑗

 

SARF Tobit + Fixed-effect 

𝑠𝑖𝑛𝑣,𝑔ℎ
𝑖𝑗

 with (𝑔, ℎ) ≠ (𝑖, 𝑗) 

Mean 1.0675 0.0044 1.0164 0.0000 

25th-percentile 1.0454 0.0007 1.0098 0.0000 

Median 1.0615 0.0016 1.0161 0.0000 

75th-percentile 1.0828 0.0039 1.0245 0.0068 

 

  Table 6 reports the statistics of {𝑠𝑖𝑛𝑣,𝑔ℎ
𝑖𝑗

} showing the equilibrium effect under (𝑊𝑛, 𝑀𝑛) = (𝑊𝑛
𝐼 , 𝑀𝑛

𝑂). 

The multiplier effects from the SARF Tobit models ({𝑠𝑖𝑛𝑣,𝑖𝑗
𝑖𝑗

} ) are greater than those from the linear 

specifications. When we include fixed effects in the models, the multiplier effects become smaller. The 

off-diagonal elements of 𝑆𝑁
−1 (i.e., {𝑠𝑖𝑛𝑣,𝑔ℎ

𝑖𝑗
}
(𝑔,ℎ)≠(𝑖,𝑗)

) are much less than the diagonal elements of 𝑆𝑁
−1 



37 

 

({𝑠𝑖𝑛𝑣,𝑖𝑗
𝑖𝑗

} ). It implies that only a small number of third-party units have significant influences on 

𝑚𝑓𝑙𝑜𝑤𝑖𝑗.  

 

7. Conclusion 
 

  We develop a spatial autoregressive model for an origin-destination flow dependent variable (SARF) 

with estimation methods. Using a similar structure of flow data with a panel data set, our model 

accommodates the two-way fixed effect specification. For a specific data environment of a flow variable 

with possible zero flow, we also consider the SARF Tobit model. We study the asymptotic properties of 

the maximum likelihood (ML) estimator (quasi-ML estimator for the linear SARF model). To establish 

the asymptotic properties of the MLE for the SARF Tobit model, the near-epoch dependence concept 

developed by Jenish and Prucha (2012) is employed. Monte Carlo simulation results are provided to 

deliver finite sample properties of the ML and QML estimators. Last, we apply our models to the U.S. 

states’ migration flows. We detect significant spatial influences from neighboring migration flows. 

 

Appendix. Mathematical proofs 
 

  Throughout this section, we will use the following notations. Recall that 𝑐𝑤,𝑐,𝑗 = ∑ 𝑤𝑛,𝑖𝑗
𝑛
𝑖=1   and 

𝑐𝑚,𝑐,𝑗 = ∑ 𝑚𝑛,𝑖𝑗
𝑛
𝑖=1  for each 𝑗; and 𝑐𝑤,𝑟,𝑖 = ∑ 𝑤𝑛,𝑖𝑗

𝑛
𝑗=1  and 𝑐𝑚,𝑟,𝑖 = ∑ 𝑚𝑛,𝑖𝑗

𝑛
𝑗=1  for each 𝑖. Note that all 

elements 𝑤𝑛,𝑖𝑗  and 𝑚𝑛,𝑖𝑗  are nonnegative by construction. Then, 𝑐𝑤,𝑐 = sup𝑛 max
𝑗=1,⋯,𝑛

𝑐𝑤,𝑐,𝑗 =

sup𝑛‖𝑊𝑛‖1 , 𝑐𝑚,𝑐 = sup𝑛 max
𝑗=1,⋯,𝑛

𝑐𝑚,𝑐,𝑗 = sup𝑛‖𝑀𝑛‖1 , 𝑐𝑤,𝑟 = sup𝑛 max
𝑖=1,⋯,𝑛

𝑐𝑤,𝑟,𝑖 = sup𝑛‖𝑊𝑛‖∞ , and 

𝑐𝑚,𝑟 = sup𝑛 max
𝑖=1,⋯,𝑛

𝑐𝑚,𝑟,𝑖 = sup𝑛‖𝑀𝑛‖∞.  

 

A. Spatial stability 
 

  Here we introduce more details about spatial stability for the SARF model. Note that the cross product 

(𝐼𝑛⊗𝑊𝑛)(𝑀𝑛
′ ⊗ 𝐼𝑛) = 𝑀𝑛

′ ⊗𝑊𝑛 by Kronecker mixed product rule. We assume that 𝑊𝑛 and 𝑀𝑛 are 

diagonalizable, i.e., 𝑊𝑛 = Γ1𝑛Λ1𝑛Γ1𝑛
−1 and 𝑀𝑛 = Γ2𝑛Λ2𝑛Γ2𝑛

−1, where Λ𝑗,𝑛 = diag(�̅�𝑗𝑛,1, … , �̅�𝑗𝑛,𝑛), 𝑗 = 1,2 

are diagonal matrices of eigenvalues and corresponding Γ𝑗𝑛  are eigenvector matrices. As 𝑀𝑛
′ =

(Γ2𝑛Λ2𝑛Γ2𝑛
−1)′ = Γ2𝑛

′−1Λ2𝑛Γ2𝑛
′ , so 𝑀𝑛

′  has the same eigenvalue matrix but its eigenvector matrix is Γ2𝑛
′−1. 

The eigenvalues of 𝜆(𝐼𝑛⊗𝑊𝑛) + 𝛾(𝑀𝑛
′ ⊗ 𝐼𝑛) + 𝜌(𝑀𝑛

′ ⊗𝑊𝑛) are in the subsequent Claim A.1. 

 

Claim A.1. An eigenvalue of 𝜆(𝐼𝑛⊗𝑊𝑛) + 𝛾(𝑀𝑛
′ ⊗ 𝐼𝑛) + 𝜌(𝑀𝑛

′ ⊗𝑊𝑛) is 𝜆�̅�1𝑛,𝑖 + 𝛾�̅�2𝑛,𝑗 + 𝜌�̅�2𝑛,𝑗�̅�1𝑛,𝑖 

for 𝑖, 𝑗 = 1,… , 𝑛. 

 

Proof of Claim A.1. Let 𝑥1𝑛,𝑖 be the 𝑖th eigenvector corresponding to �̅�1𝑛,𝑖 of 𝑊𝑛, and 𝑥2𝑛,𝑗  be the 

𝑗th eigenvector corresponding to �̅�2𝑛,𝑗 of 𝑀𝑛
′ . For arbitrary 𝑖 and 𝑗, 

 

                             [𝜆(𝐼𝑛⊗𝑊𝑛) + 𝛾(𝑀𝑛
′ ⊗ 𝐼𝑛) + 𝜌(𝑀𝑛

′ ⊗𝑊𝑛) ](𝑥2𝑗⊗𝑥1𝑖) 

= 𝜆(𝑥2𝑛,𝑗⊗𝑊𝑛𝑥1𝑛,𝑖) + 𝛾(𝑀𝑛
′ 𝑥2𝑛,𝑗⊗𝑥1𝑛,𝑖) + 𝜌(𝑀𝑛

′ 𝑥2𝑛,𝑗⊗𝑊𝑛𝑥1𝑛,𝑖) 

                                  = (𝜆�̅�1𝑛,𝑖 + 𝛾�̅�2𝑛,𝑗 + 𝜌�̅�2𝑛,𝑗�̅�1𝑛,𝑖)(𝑥2𝑛,𝑗⊗𝑥1𝑛,𝑖) 
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Thus, we have the claimed result. ∎ 

 

For spatial stability, the parameter space of the stable model can be  

 

{(𝜆, 𝛾, 𝜌): |𝜆�̅�1𝑛,𝑖 + 𝛾�̅�2𝑛,𝑗 + 𝜌�̅�2𝑛,𝑗�̅�1𝑛,𝑖| < 1, for all 𝑖, 𝑗 = 1,… , 𝑛}. 

 

This implies that, with 𝛿 = (𝜆, 𝛾, 𝜌)′ in this parameter space, 

 

det(𝑆𝑁(𝛿)) = ∏ (1 − (𝜆�̅�1𝑛,𝑖 + 𝛾�̅�2𝑛,𝑗 + 𝜌�̅�2𝑛,𝑗�̅�1𝑛,𝑖))
𝑛
𝑖,𝑗=1 > 0.  

 

When 𝜌 = −𝜆𝛾,   𝑆𝑁(𝛿) = 𝐼𝑁 − 𝜆(𝐼𝑛⊗𝑊𝑛) − 𝛾(𝑀𝑛
′ ⊗ 𝐼𝑛) − 𝜌(𝑀𝑛

′ ⊗𝑊𝑛) = (𝐼𝑁 − 𝜆(𝐼𝑛⊗𝑊𝑛))(𝐼𝑁 −

𝛾(𝑀𝑛
′ ⊗ 𝐼𝑛)).  This would be a separable spatial filter case (LeSage and Pace, 2008). Then the 

eigenvalues of 𝑆𝑁(𝛿)  can be factorized into (1 − 𝜆�̅�1𝑛,𝑖)(1 − �̅�2𝑛,𝑗), 𝑖, 𝑗 = 1,… 𝑛  and det(𝑆𝑁(𝛿)) =

∏ (1 − 𝜆�̅�1𝑛,𝑖)(1 − 𝛾�̅�2𝑛,𝑗)
𝑛
𝑖,𝑗=1 .  

 

B. Model’s coherency 

  Now we consider model’s coherency for the SARF Tobit model. Note that 𝑨𝑁  has zero diagonal 

elements due to excluding self-influence, i.e., 𝑤𝑛,𝑖𝑖 = 0  and 𝑚𝑛,𝑗𝑗 = 0 for 𝑖, 𝑗 = 1,… , 𝑛 , and under 

Assumption 3.1, ‖𝑨𝑁‖∞ = max
𝑓
∑ 𝒂𝑓𝑓′
𝑁
𝑓′=1 ≤ 휁 < 1, where 𝒂𝑓𝑓′ denotes the (𝑓, 𝑓′)-element of |𝑨𝑁|. 

By spectral radius theorem, for any 𝑟 × 𝑟  principal submatrix 𝑨𝑁,𝑟  of 𝑨𝑁 , we have 

max
𝑖
|𝜑𝑖(𝑨𝑁,𝑟)| ≤ ‖𝑨𝑁,𝑟‖∞ ≤

‖𝑨𝑁‖∞ ≤ 휁 , where 𝜑𝑖(𝑨𝑁,𝑟) is the 𝑖th characteristic root of 𝑨𝑁,𝑟 . For 

each 𝑟, let 𝜚𝑖,𝑟 = 𝜑𝑖(𝐼𝑟 − 𝑨𝑁,𝑟) denote the 𝑖th eigenvalue of 𝐼𝑟 − 𝑨𝑁,𝑟 . Then, 𝜚𝑖,𝑟 = 1 − 𝜑𝑖(𝑨𝑁,𝑟). If 

𝜑𝑖(𝑨𝑁,𝑟) is real, 𝜚𝑖,𝑟 = 1 − 𝜑𝑖(𝑨𝑁,𝑟) ≥ 1 − 휁. If 𝜚𝑖,𝑟 is complex (i.e., 𝜑𝑖(𝑨𝑁,𝑟) = 𝑐𝑅,𝑟,𝑖 + 𝐢 ∙ 𝑐𝐼,𝑟,𝑖 where 

𝑐𝑅,𝑟,𝑖, 𝑐𝐼,𝑟,𝑖 ∈ ℝ, and 𝐢 = √−1), its conjugate �̅�𝑖,𝑟 is also an eigenvalue of 𝐼𝑟 − 𝑨𝑁,𝑟 . Then,  

 

    𝜚𝑖�̅�𝑖 = (1 − 𝑐𝑅,𝑟,𝑖 − 𝐢 ∙ 𝑐𝐼,𝑟,𝑖)(1 − 𝑐𝑅,𝑟,𝑖 + 𝐢 ∙ 𝑐𝐼,𝑟,𝑖) = 1 − 2𝑐𝑅,𝑟,𝑖 + 𝑐𝑅,𝑟,𝑖
2 + 𝑐𝐼,𝑟,𝑖

2   

                                             ≥ 1 − 2√𝑐𝑅,𝑟,𝑖
2 + 𝑐𝐼,𝑟,𝑖

2 + 𝑐𝑅,𝑟,𝑖
2 + 𝑐𝐼,𝑟,𝑖

2   

                                             ≥ (1 −max
𝑖
|𝜑𝑖(𝑨𝑁,𝑟)|)

2

≥ (1 − 휁)2 

 

since |𝜑𝑖(𝑨𝑁,𝑟)| = √𝑐𝑅,𝑟,𝑖
2 + 𝑐𝐼,𝑟,𝑖

2 ≤ 휁. Thus, we have the corresponding principal minor |𝐼𝑟 − 𝑨𝑁,𝑟| ≥

(1 − 휁)𝑟 > 0. 

 

C. Asymptotic properties of the MLE for the SARF Tobit model 

C.1. Consistency of the MLE 
 

To prove consistency, the following propositions will be employed. First, consider the sequences 

{𝑦𝑛,𝑖𝑗}, {∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗
𝑛
𝑔=1 }, {∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 }, {∑ ∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1

𝑛
𝑔=1 }, {𝜖𝑛,𝑖𝑗

∗ (휃)}, and {𝑦𝑛,𝑖𝑗
∗ }, where  
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𝑦𝑛,𝑖𝑗
∗ = 𝜆0∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗

𝑛
𝑔=1 + 𝛾0∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 + 𝜌0∑ ∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1

𝑛
𝑔=1 + 𝒙𝑛,𝑖𝑗𝜅0 + 𝜖𝑛,𝑖𝑗  as in (6) 

inside 𝐹(∙) , 𝜖𝑛,𝑖𝑗
∗ (휃) = (𝑦𝑛,𝑖𝑗 − 𝜆∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗

𝑛
𝑔=1 − 𝛾∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 − 𝜌∑ ∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1

𝑛
𝑔=1 −

𝒙𝑛,𝑖𝑗𝜅)/𝜎 , and 𝒙𝑛,𝑖𝑗 = (1, 𝑧𝑛,𝑖𝑗,1, ⋯ , 𝑧𝑛,𝑖𝑗,𝐿 , 𝑥𝑛,𝑖,1, ⋯ , 𝑥𝑛,𝑖,𝐾, 𝑥𝑛,𝑗,1,⋯ , 𝑥𝑛,𝑗,𝐾)  (i.e., 𝒙𝑛,𝑖𝑗 = 𝒙𝑁,𝑓  with 𝑓 =

(𝑗 − 1)𝑛 + 𝑖 is the 𝑓th row of 𝐗𝑁). For the propositions below, the notation 𝐴 ≤
∗ 𝐵, where 𝐴 = [𝑎𝑓𝑓′] 

and 𝐵 = [𝑏𝑓𝑓′]  means |𝑎𝑓𝑓′| ≤ |𝑏𝑓𝑓′|  for all 𝑓, 𝑓
′ = 1,⋯ ,𝑁 , and the notation |𝐴|  for a matrix 𝐴 =

[𝑎𝑓𝑓′] means |𝐴| = [|𝑎𝑓𝑓′|]. 

 

  Before establishing Proposition C.1, we introduce the following lemma. 

 

Lemma C.1. Let 𝒂𝑛,(𝑖,𝑗),(𝑔,ℎ)  be the (𝑓, 𝑓
′) -element of |𝑨𝑁| , where 𝑓 = (𝑗 − 1)𝑛 + 𝑖  and 𝑓

′ = (ℎ −

1)𝑛 + 𝑔. Assume that the model’s spatial stability and coherency hold. Under Assumption 4.2 (iii-1), 

𝒂𝑓𝑓′ > 0  can be only if 𝑑𝐹((𝑖, 𝑗), (𝑔, ℎ)) ≤ �̅�  and 𝒂𝑛,(𝑖,𝑗),(𝑔,ℎ) = 0  otherwise. Then, 

∑ ∑ [|𝑨𝑁|
𝑙]𝑓𝑓′

∞
𝑙=1

𝑁
𝑓′=1 ≤ ∑ 휁𝑙∞

𝑙=[𝑠
�̅�⁄
]+1

→ 0  as 𝑠 → ∞ , where [𝑠
�̅�⁄
]  is the biggest integer that is less or 

equal than 𝑠
�̅�⁄
 . Under Assumption 4.2 (iii-2), 𝒂𝑛,(𝑖,𝑗),(𝑔,ℎ) ≤ �̃�0𝑑𝐹((𝑖, 𝑗), (𝑔, ℎ))

−𝑎
  for some �̃�0 > 0 . 

Moreover, ∑ [|𝑨𝑁|
𝑙]𝑓𝑓′

∞
𝑙=1 ≤ 𝐶1𝑑𝐹((𝑖, 𝑗), (𝑔, ℎ))

−𝑎
 for some 𝐶1 > 0. 

 

Proof of Lemma C.1. Note that (𝑒𝑛,𝑗
′ ⊗𝑒𝑛,𝑖

′ )(𝐼𝑛⊗𝑊𝑛)(𝑒𝑛,ℎ⊗ 𝑒𝑛,𝑔) = 𝑒𝑛,𝑗
′ 𝑒𝑛,𝑗𝑤𝑛,𝑖𝑔, (𝑒𝑛,𝑗

′ ⊗ 𝑒𝑛,𝑖
′ )(𝑀𝑛

′ ⊗

𝐼𝑛)(𝑒𝑛,ℎ⊗ 𝑒𝑛,𝑔) = 𝑚𝑛,ℎ𝑗𝑒𝑛,𝑖
′ 𝑒𝑛,𝑔, and (𝑒𝑛,𝑗

′ ⊗𝑒𝑛,𝑖
′ )(𝑀𝑛

′ ⊗𝑊𝑛)(𝑒𝑛,ℎ⊗ 𝑒𝑛,𝑔) = 𝑤𝑛,𝑖𝑔𝑚𝑛,ℎ𝑗. Then,  

 

𝒂𝑛,(𝑖,𝑗),(𝑔,ℎ) = |𝜆0|1(𝑗 = ℎ)𝑤𝑛,𝑖𝑔 + |𝛾0|1(𝑖 = 𝑔)𝑚𝑛,ℎ𝑗 + |𝜌0|𝑤𝑛,𝑖𝑔𝑚𝑛,ℎ𝑗 , 

 

so there exist four cases for 𝒂𝑛,(𝑖,𝑗),(𝑔,ℎ). The column sum vector of 𝑨𝑁 is 

 

𝜆0𝑙𝑛
′ ⊗ (𝑐𝑤,𝑐,1,⋯ , 𝑐𝑤,𝑐,𝑛) + 𝛾0(𝑐𝑚,𝑟,1, ⋯ , 𝑐𝑚,𝑟,𝑛) ⊗ 𝑙𝑛

′ + 𝜌0(𝑐𝑚,𝑟,1, ⋯ , 𝑐𝑚,𝑟,𝑛) ⊗ (𝑐𝑤,𝑐,1, ⋯ , 𝑐𝑤,𝑐,𝑛), 

 

so ‖𝑨𝑁‖1 ≤ |𝜆0|𝑐𝑤,𝑐 + |𝛾0|𝑐𝑚,𝑟 + |𝜌0|𝑐𝑤,𝑐𝑐𝑚,𝑟 = Γ < ∞. Note that there exist the 𝑛 same column sum 

components in the first part. 

 

Case 1, Assumption 4.2 (iii-1): Suppose Assumption 4.2 (iii-1) holds. First, if 𝑖 = 𝑔 and 𝑗 = ℎ, we have 

𝒂𝑛,(𝑖,𝑗),(𝑔,ℎ) = 0. Second, when 𝑖 ≠ 𝑔 and 𝑗 = ℎ, 𝒂𝑛,(𝑖,𝑗),(𝑔,ℎ) = |𝜆0|𝑤𝑛,𝑖𝑔 > 0 only if 𝑑𝐹((𝑖, 𝑗), (𝑔, ℎ)) ≤

�̅�  since 𝑑𝐹((𝑖, 𝑗), (𝑔, ℎ)) = max{𝑑(𝑖, 𝑗), 𝑑(𝑔, ℎ)} = 𝑑(𝑖, 𝑔) ≤ �̅� . Third, when 𝑖 = 𝑔  and 𝑗 ≠ ℎ , 

𝒂𝑛,(𝑖,𝑗),(𝑔,ℎ) = |𝛾0|𝑚𝑛,ℎ𝑗 > 0  only if 𝑑𝐹((𝑖, 𝑗), (𝑔, ℎ)) ≤ �̅�  since 𝑑𝐹((𝑖, 𝑗), (𝑔, ℎ)) =

max{𝑑(𝑖, 𝑔), 𝑑(𝑗, ℎ)} = 𝑑(𝑗, ℎ) ≤ �̅� . Fourth, when 𝑖 ≠ 𝑔  and 𝑗 ≠ ℎ , 𝒂𝑛,(𝑖,𝑗),(𝑔,ℎ) = |𝜌0|𝑤𝑛,𝑖𝑔𝑚𝑛,ℎ𝑗 > 0 

only if 𝑑𝐹((𝑖, 𝑗), (𝑔, ℎ)) ≤ �̅� , because both 𝑤𝑛,𝑖𝑔 > 0  and 𝑚𝑛,ℎ𝑗 > 0  only if both 𝑑(𝑖, 𝑔)  ≤ �̅�  and 

𝑑(𝑗, ℎ) ≤ �̅�, then 𝑑𝐹((𝑖, 𝑗), (𝑔, ℎ)) = max{𝑑(𝑖, 𝑔), 𝑑(𝑗, ℎ)} ≤ �̅�. Hence, we can show that 𝒂𝑛,(𝑖,𝑗),(𝑔,ℎ) > 0 

only if 𝑑𝐹((𝑖, 𝑗), (𝑔, ℎ)) ≤ �̅� and 𝒂𝑛,(𝑖,𝑗),(𝑔,ℎ) = 0 otherwise. 

 

  For some large 𝑠 > 0, we observe  

 

∑ ∑ [|𝑨𝑁|
𝑙]𝑓𝑓′

∞
𝑙=1

𝑁
𝑓′=1   
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     = ∑ ∑ ∑ ∑ ⋯∑ 𝒂𝑛,(𝑖,𝑗),(𝑖1,𝑗1)𝒂𝑛,(𝑖1,𝑗1),(𝑖2,𝑗2)⋯𝒂𝑛,(𝑖𝑙−1,𝑗𝑙−1),(𝑔,ℎ)
𝑛
𝑖𝑙−1,𝑗𝑙−1=1

𝑛
𝑖2,𝑗2=1

𝑛
𝑖1,𝑗1=1

𝑛
𝑔,ℎ=1

∞

𝑙=[𝑠
�̅�⁄
]+1

  

     ≤ ∑ 휁𝑙∞

𝑙=[𝑠
�̅�⁄
]+1

. 

 

The first equality comes from Claim C.2.3 of Qu and Lee (2015). By Assumption 3.1, the following 

inequality holds because 

 

∑ ∑ ∑ ⋯∑ 𝒂𝑛,(𝑖,𝑗),(𝑖1,𝑗1)𝒂𝑛,(𝑖1,𝑗1),(𝑖2,𝑗2)⋯𝒂𝑛,(𝑖𝑙−1,𝑗𝑙−1),(𝑔,ℎ)
𝑛
𝑖𝑙−1,𝑗𝑙−1=1

𝑛
𝑖2,𝑗2=1

𝑛
𝑖1,𝑗1=1

𝑛
𝑔,ℎ=1   

     = ∑ ∑ ⋯∑ 𝒂𝑛,(𝑖,𝑗),(𝑖1,𝑗1)⋯𝒂𝑛,(𝑖𝑙−2,𝑗𝑙−2),(𝑖𝑙−1,𝑗𝑙−1)
𝑛
𝑖𝑙−1,𝑗𝑙−1=1

𝑛
𝑖2,𝑗2

𝑛
𝑖1,𝑗1=1

∑ 𝒂𝑛,(𝑖𝑙−1,𝑗𝑙−1),(𝑔,ℎ)
𝑛
𝑔,ℎ=1⏟              

≤

  

     ≤ 휁 ∑ ⋯∑ 𝒂𝑛,(𝑖,𝑗),(𝑖1,𝑗1)⋯𝒂𝑛,(𝑖𝑙−3,𝑗𝑙−3),(𝑖𝑙−2,𝑗𝑙−2) ∑ 𝒂𝑛,(𝑖𝑙−2,𝑗𝑙−2),(𝑖𝑙−1,𝑗𝑙−1)
𝑛
𝑖𝑙−1,𝑗𝑙−1=1⏟                    

≤

𝑛
𝑖𝑙−2,𝑗𝑙−2=1

𝑛
𝑖1,𝑗1=1

  

     ≤ ⋯ ≤ 휁𝑙 .  

 

Then, ∑ ∑ [|𝑨𝑁|
𝑙]𝑓𝑓′

∞
𝑙=1

𝑁
𝑓′=1 ≤ ∑ 휁𝑙∞

𝑙=[𝑠
�̅�⁄
]+1

≤ (1 − 휁)−1휁
𝑠
�̅�⁄ → 0 as 𝑠 → ∞. 

 

Case 2, Assumption 4.2 (iii-2): Consider the case of Assumption 4.2 (iii-2). First, 𝒂𝑛,(𝑖,𝑗),(𝑔,ℎ) = 0 if 𝑖 =

𝑔  and 𝑗 = ℎ . Second, 𝒂𝑛,(𝑖,𝑗),(𝑔,ℎ) = |𝜆0|𝑤𝑛,𝑖𝑔  if 𝑖 ≠ 𝑔  and 𝑗 = ℎ . Then, 𝒂𝑛,(𝑖,𝑗),(𝑔,ℎ) = |𝜆0|𝑤𝑛,𝑖𝑔 ≤

|𝜆0|𝐶0𝑑𝐹((𝑖, 𝑗), (𝑔, ℎ))
−𝑎
  since 𝑑𝐹((𝑖, 𝑗), (𝑔, ℎ)) = max{𝑑(𝑖, 𝑔), 𝑑(𝑗, ℎ)} = 𝑑(𝑖, 𝑔) . Third, 𝒂𝑛,(𝑖,𝑗),(𝑔,ℎ) =

|𝛾0|𝑚𝑛,ℎ𝑗 ≤ |𝛾0|𝐶0𝑑𝐹((𝑖, 𝑗), (𝑔, ℎ))
−𝑎
  if 𝑖 = 𝑔  and 𝑗 ≠ ℎ . Last, if 𝑖 ≠ 𝑔  and 𝑗 ≠ ℎ , 𝒂𝑛,(𝑖,𝑗),(𝑔,ℎ) ≤

|𝜌0|𝑤𝑛,𝑖𝑔𝑚𝑛,ℎ𝑗 ≤ |𝜌0|𝐶0
2𝑑(𝑖, 𝑔)−𝑎𝑑(𝑗, ℎ)−𝑎 ≤ |𝜌0|𝐶0

2𝑑𝐹((𝑖, 𝑗), (𝑔, ℎ))
−𝑎
  since 𝑑(𝑖, 𝑔) ≥ 1  and 𝑑(𝑗, ℎ) ≥

1 with 𝑎 > 1. Hence, we have 𝒂𝑛,(𝑖,𝑗),(𝑔,ℎ) ≤ �̃�0𝑑𝐹((𝑖, 𝑗), (𝑔, ℎ))
−𝑎
 for some �̃�0 > 0. 

 

As the next step, we will show ‖𝑨𝑁
𝑙 ‖

1
≤ 𝑙𝐾Γ휁𝑙−1 for 𝑙 ∈ ℤ+, where 𝐾 is a positive integer that does 

not depend on 𝑛. First, if 𝑐𝑤,𝑐 ≤ 𝑐𝑤,𝑟, ‖𝑨𝑁
𝑙 ‖

1
≤ (|𝜆0|𝑐𝑤,𝑟 + |𝛾0|𝑐𝑚,𝑟 + |𝜌0|𝑐𝑤,𝑟𝑐𝑚,𝑟)

𝑙
≤ 휁𝑙 . Consider the 

case of 𝑐𝑤,𝑐 > 𝑐𝑤,𝑟 . Then, we have ‖𝑊𝑛
𝑝‖
1
≤ 𝑝𝑐𝑤,𝑐𝐾𝑊𝑐𝑤,𝑟

𝑝−1  for 𝑝 ∈ ℤ+  by Claim C.1.2 of Qu and Lee 

(2015). For 𝑙 = 2,3,4,⋯, by the triangle inequality, we have 

 

‖𝑨𝑁
𝑙 ‖

1
≤ ∑

𝑙!

𝑝!𝑞!𝑟!𝑝+𝑞+𝑟=𝑙 |𝜆0|
𝑝|𝛾0|

𝑞|𝜌0|
𝑟‖𝑊𝑛

𝑝+𝑟‖
1
‖𝑀𝑛‖∞

𝑞+𝑟  

            ≤ ∑
𝑙!

𝑝!𝑞!𝑟!𝑝+𝑞+𝑟=𝑙 |𝜆0|
𝑝|𝛾0|

𝑞|𝜌0|
𝑟(𝑝 + 𝑟)𝐾𝑊𝑐𝑤,𝑐𝑐𝑤,𝑟

𝑝+𝑟−1
𝑐𝑚,𝑟
𝑞+𝑟
  

                ≤ 𝑙𝐾𝑊𝑐̅

(

 
 
∑

𝑙!

𝑝!𝑞!𝑟!𝑝+𝑞+𝑟=𝑙 |𝜆0|
𝑝|𝛾0|

𝑞|𝜌0|
𝑟𝑐𝑤,𝑟
𝑝+𝑟𝑐𝑚,𝑟

𝑞+𝑟

⏟                        

=(|𝜆0|𝑐𝑤,𝑟+|𝛾0|𝑐𝑚,𝑟+|𝜌0|𝑐𝑤,𝑟𝑐𝑚,𝑟)
𝑙

)

 
 

 ≤ 𝑙𝐾Γ휁𝑙−1, 

 

where 𝐾  is a positive constant satisfying 𝐾𝑊𝑐̅휁 ≤ 𝐾Γ  and 𝑐̅ > 1  such that 𝑐𝑤,𝑐 = �̅�𝑐𝑤,𝑟 . The second 

and third inequalities hold since ‖𝑊𝑛
𝑝+𝑟‖

1
≤ (𝑝 + 𝑟)𝐾𝑊𝑐𝑤,𝑐𝑐𝑤,𝑟

𝑝+𝑟−1 = (𝑝 + 𝑟)𝐾𝑊𝑐̅𝑐𝑤,𝑟
𝑝+𝑟 , and 

𝑙!

𝑝!𝑞!𝑟!
(𝑝 +

𝑟) ≤ 𝑙
𝑙!

𝑝!𝑞!𝑟!
 for 𝑝, 𝑞, 𝑟 ∈ ℤ+ such that 𝑝 + 𝑞 + 𝑟 = 𝑙 ∈ ℤ+. 
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For any 𝑙 ∈ ℤ+ , we construct two matrices 𝑨1𝑁 = [𝒂1𝑛,(𝑖,𝑗),(𝑔,ℎ)]  and 𝑨2𝑁 = [𝒂2𝑛,(𝑖,𝑗),(𝑔,ℎ)]  as 

follows: 𝒂1𝑛,(𝑖,𝑗),(𝑔,ℎ) = 𝒂𝑛,(𝑖,𝑗),(𝑔,ℎ) ∙ 1(𝒂𝑛,(𝑖,𝑗),(𝑔,ℎ) ≤ �̃�0 (
𝑑𝐹((𝑖,𝑗),(𝑔,ℎ))

𝑙
)
−𝑎

)  and 𝒂2𝑛,(𝑖,𝑗),(𝑔,ℎ) =

𝒂𝑛,(𝑖,𝑗),(𝑔,ℎ) ∙ 1(𝒂𝑛,(𝑖,𝑗),(𝑔,ℎ) > �̃�0 (
𝑑𝐹((𝑖,𝑗),(𝑔,ℎ))

𝑙
)
−𝑎

) , then |𝑨𝑁| = 𝑨1𝑁 + 𝑨2𝑁  and 

𝒂1𝑛,(𝑖,𝑗),(𝑔,ℎ)𝒂2𝑛,(𝑖,𝑗),(𝑔,ℎ) = 0 . At least one of the items 𝒂𝑛,(𝑖,𝑗),(𝑖1,𝑗1) , 𝒂𝑛,(𝑖1,𝑗1),(𝑖2,𝑗2) , ⋯ , and 

𝒂𝑛,(𝑖𝑙−1,𝑗𝑙−1),(𝑔,ℎ)  would be less or equal to �̃�0 (
𝑑𝐹((𝑖,𝑗),(𝑔,ℎ))

𝑙
)
−𝑎

 , because there exists at least two 

neighboring points in the chain (𝑖, 𝑗) → (𝑖1, 𝑗1) → ⋯ (𝑖𝑙−1, 𝑗𝑙−1) → (𝑔, ℎ) such that their distance is at 

least 
𝑑𝐹((𝑖,𝑗),(𝑔,ℎ))

𝑙
. Hence,  

 

   [𝑨2𝑁
𝑙 ]

𝑓𝑓′
= ∑ ⋯∑ 𝒂𝑛,(𝑖,𝑗),(𝑖1,𝑗1)⋯𝒂𝑛,(𝑖𝑙−1,𝑗𝑙−1),(𝑔,ℎ)

𝑛
𝑖𝑙−1,𝑗𝑙−1=1

𝑛
𝑖1,𝑗1=1

∙ 1 (all 𝒂′𝑠 > �̃�0 (
𝑑𝐹((𝑖,𝑗),(𝑔,ℎ))

𝑙
)
−𝑎

),  

 

and we have  

 

            [|𝑨𝑁|
𝑙]𝑓𝑓′ = [|𝑨𝑁|

𝑙 − 𝑨2𝑁
𝑙 ]

𝑓𝑓′
≤ |𝑨1𝑁|𝑚𝑎𝑥 ∑ ‖𝑨2𝑁‖∞

𝑚‖|𝑨𝑁|
𝑙−𝑚−1‖1

𝑙−1
𝑚=0   

                     ≤ �̃�0 (
𝑑𝐹((𝑖,𝑗),(𝑔,ℎ))

𝑙
)
−𝑎

휁𝑙−1𝐾Γ∑ (𝑙 − 𝑚 − 1)𝑙−1
𝑚=0   

                     ≤  �̃�0
∗𝑑𝐹 (

𝑑𝐹((𝑖,𝑗),(𝑔,ℎ))

𝑙
)
−𝛼

𝑙2+𝑎휁𝑙−1, 

 

where �̃�0
∗ = �̃�0𝐾Γ . The first inequality follows by Lemma A.3. in Xu and Lee (2015b) and ‖𝑨𝑁

𝑙 ‖
1
≤

𝑙𝐾Γ휁𝑙−1  for 𝑙 ∈ ℤ+  by Assumption 4.2, all elements in 𝑨1𝑁  are less or equal to �̃�0 (
𝑑𝐹((𝑖,𝑗),(𝑔,ℎ))

𝑙
)
−𝑎

 , 

and ∑ (𝑙 − 𝑚 − 1)𝑙−1
𝑚=0 = ∑ 𝑚𝑙−1

𝑚=1 =
𝑙(𝑙−1)

2
≤ 𝑙2. Then,  

 

        ∑ [|𝑨𝑁|
𝑙]𝑓𝑓′

∞
𝑙=1 = ∑ ∑ ⋯∑ 𝒂𝑛,(𝑖,𝑗),(𝑖1,𝑗1)⋯𝒂𝑛,(𝑖𝑙−1,𝑗𝑙−1),(𝑔,ℎ)

𝑛
𝑖𝑙−1,𝑗𝑙−1=1

𝑛
𝑖1,𝑗1=1

∞
𝑙=1    

                     ≤ �̃�0
∗𝑑𝐹 (𝑑𝐹((𝑖, 𝑗), (𝑔, ℎ)))

−𝑎

휁−1∑ 𝑙2+𝑎휁𝑙∞
𝑙=1  

                     ≤ 𝐶2𝑑𝐹 (𝑑𝐹((𝑖, 𝑗), (𝑔, ℎ)))
−𝑎

,  

 

where 𝐶2 = �̃�0
∗휁−1∑ 𝑙2+𝑎휁𝑙∞

𝑙=1 < ∞. ∎ 

 

Proposition C.1. Assume that the model’s spatial stability and coherency hold.  

  (i) If sup𝑛,𝑖,𝑗𝐸|𝜖𝑛,𝑖𝑗|
𝑝
< ∞  for some 𝑝 ≥ 1 , we have uniform 𝐿𝑝 -boundedness of {𝑦𝑛,𝑖𝑗} , 

{∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗
𝑛
𝑔=1 }, {∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 }, {∑ ∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1

𝑛
𝑔=1 }, {𝜖𝑛,𝑖𝑗

∗ (휃)}, and {𝑦𝑛,𝑖𝑗
∗ }. 

(ii) Under Assumptions 4.1, 4.2 (iii-1), 4.3, and 4.4, {𝑦𝑛,𝑖𝑗} , {∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗
𝑛
𝑔=1 } , {∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 } , 

{∑ ∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗
𝑛
ℎ=1

𝑛
𝑔=1 }, {𝜖𝑛,𝑖𝑗

∗ (휃)}, and {𝑦𝑛,𝑖𝑗
∗ } are geometrically 𝐿2-NED on 𝜖. For example,  

‖𝑦𝑛,𝑖𝑗 − 𝐸 (𝑦𝑛,𝑖𝑗|ℱ𝑛,𝑖𝑗(𝑠))‖
𝐿2
≤ 𝐶휁𝑠/�̅�  where 𝐶  is a constant, and �̅�  is a constant defined in 

Assumption 4.2 (iii-1). 

(iii) Under Assumptions 4.1, 4.2 (iii-2), 4.3, and 4.4, {𝑦𝑛,𝑖𝑗} , {∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗
𝑛
𝑔=1 } , {∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 } , 

{∑ ∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗
𝑛
ℎ=1

𝑛
𝑔=1 }, {𝜖𝑛,𝑖𝑗

∗ (휃)}, and {𝑦𝑛,𝑖𝑗
∗ } are uniformly 𝐿2-NED on 𝜖. For example,  
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‖𝑦𝑛,𝑖𝑗 − 𝐸 (𝑦𝑛,𝑖𝑗|ℱ𝑛,𝑖𝑗(𝑠))‖
𝐿2
≤ 𝐶𝑠2𝑑−𝑎  where 𝐶  is a constant, and both 𝑑  and 𝑎  are constants 

such that 𝑎 > 2𝑑 in Assumption 4.2 (iii-2). 

 

Proof of C.1 (i). Recall that 

 

𝑣𝑒𝑐(𝑌𝑁) = 𝐹(𝑣𝑒𝑐(𝑌𝑁
∗)) = 𝐹(𝑨𝑁𝑣𝑒𝑐(𝑌𝑁) + 𝐗𝑁𝜅0 + 𝑣𝑒𝑐(𝜖𝑁)). 

 

Under the model’s coherency (Assumption 3.1), 𝑣𝑒𝑐(𝑌𝑁)  can be represented by a unique explicit 

function of 𝐗𝑁𝜅0 + 𝑣𝑒𝑐(𝜖𝑁) . Denote the unique solution of 𝑣𝑒𝑐(𝑌𝑁) = 𝐹(𝑨𝑁𝑣𝑒𝑐(𝑌𝑁) + 𝐗𝑁𝜅0 +

𝑣𝑒𝑐(𝜖𝑁))   as 𝐲𝑁(𝐗𝑁𝜅0 + 𝑣𝑒𝑐(𝜖𝑁))  with 𝑓 th element 𝐲𝑁,𝑓 = 𝑒𝑁,𝑓
′ 𝐲𝑁(𝐗𝑁𝜅0 + 𝑣𝑒𝑐(𝜖𝑁)).  By the mean 

value theorem for a convex function (see Wegge (1974)), we have 

 

𝐲𝑁(𝐗𝑁𝜅0 + 𝑣𝑒𝑐(𝜖𝑁)) − 𝐲𝑁(𝟎) = ∇𝐹̅̅̅̅ × [𝑨𝑁𝐲𝑁(𝐗𝑁𝜅0 + 𝑣𝑒𝑐(𝜖𝑁)) + 𝐗𝑁𝜅0 + 𝑣𝑒𝑐(𝜖𝑁) − (𝑨𝑁𝐲𝑁(𝟎) + 0)] 

 

where ∇𝐹̅̅ ̅̅ = 𝑑𝑖𝑎𝑔(∇𝐹1̅̅ ̅̅ ̅,⋯ , ∇𝐹𝑁̅̅ ̅̅ ̅), ∇𝐹𝑓̅̅ ̅̅ ̅ (𝑓 = 1,⋯ ,𝑁) is a subgradient of 𝐹(∙) at a point lying between 

𝑒𝑁,𝑓
′ 𝑨𝑁𝐲𝑁(𝐗𝑁𝜅0 + 𝑣𝑒𝑐(𝜖𝑁)) and 0.50 Note that for the Tobit model, 𝐲𝑁(𝟎) = 𝟎 and the sub-gradients 

of 𝐹(∙) lie between 0 and 1. Under spatial stability, we have a Neumann series expansion of 𝐲𝑁(𝐗𝑁𝜅0 +

𝑣𝑒𝑐(𝜖𝑁)), i.e., 𝐲𝑁(𝐗𝑁𝜅0 + 𝑣𝑒𝑐(𝜖𝑁)) = (𝐼𝑁 − ∇𝐹̅̅̅̅ 𝑨𝑁)
−1∇𝐹̅̅̅̅ (𝐗𝑁𝜅0 + 𝑣𝑒𝑐(𝜖𝑁)). Since 

 

(𝐼𝑁 − ∇𝐹̅̅̅̅ 𝑨𝑁)
−1∇𝐹̅̅̅̅ = ∑ (∇𝐹̅̅̅̅ 𝑨𝑁)

𝑙∇𝐹̅̅̅̅∞
𝑙=0 ≤∗ ∑ |𝑨𝑁|

𝑙∞
𝑙=0 ≡ 𝕄𝑁 = [𝐦𝑁,𝑓𝑓′],  

 

where 𝐴 = [𝑎𝑓𝑓′] ≤
∗ 𝐵 = [𝑏𝑓𝑓′]  indicates |𝑎𝑓𝑓′| ≤ |𝑏𝑓𝑓′|  for all 𝑓  and 𝑓

′ . Then, we have 

|𝐲𝑁,𝑓(𝐗𝑁𝜅0 + 𝑣𝑒𝑐(𝜖𝑁))| ≤ ∑ 𝐦𝑁,𝑓𝑓′|𝒙𝑁,𝑓′𝜅0 + 𝜖𝑁,𝑓′|
𝑁
𝑓′=1  . By the Minkowski’s inequality, we have 

‖𝐲𝑁,𝑓(𝐗𝑁𝜅0 + 𝑣𝑒𝑐(𝜖𝑁))‖𝐿𝑝
≤ ∑ 𝐦𝑁,𝑓𝑓′‖𝒙𝑁,𝑓′𝜅0 + 𝜖𝑁,𝑓′‖𝐿𝑝

𝑁
𝑓′=1 < ∞  uniformly in 𝑛 . Hence, {𝑦𝑛,𝑖𝑗}  is 

uniformly 𝐿𝑝-bounded. Using the same strategy, we can show that {∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗
𝑛
𝑔=1 }, {∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 }, 

{∑ ∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗
𝑛
ℎ=1

𝑛
𝑔=1 }, and {𝑦𝑛,𝑖𝑗

∗ } are uniformly 𝐿𝑝-bounded. For {𝜖𝑛,𝑖𝑗
∗ (휃)}, we can employ that 

휃 belongs to a compact parameter space Θ. 

 

Proofs of (ii) and (iii). Consider the NED properties of {𝑦𝑛,𝑖𝑗}. Choose two possible bases 𝜖𝑁
(1)
 and 𝜖𝑁

(2)
, 

which generate 𝑌𝑁
(1)
  and 𝑌𝑁

(2)
 , respectively. That is, 𝑣𝑒𝑐(𝑌𝑁

(𝑗)
) = 𝐹 (𝑨𝑁𝑣𝑒𝑐(𝑌𝑁

(𝑗)
) + 𝐗𝑁

(𝑗)
𝜅0 +

𝑣𝑒𝑐(𝜖𝑁
(𝑗)
)) for 𝑗 = 1,2. Using the same way in the proof of (i), we obtain 

𝑣𝑒𝑐(𝑌𝑁
(1)
) − 𝑣𝑒𝑐(𝑌𝑁

(2)) = (𝐼𝑁 − ∇𝐹�̃�𝑨𝑁)
−1
∇𝐹�̃� × [(𝐗𝑁

(1) − 𝐗𝑁
(2))𝜅0 + (𝑣𝑒𝑐(𝜖𝑁

(1)
) − 𝑣𝑒𝑐(𝜖𝑁

(2)
))]  and 

(𝐼𝑁 − ∇𝐹�̃�𝑨𝑁)
−1
∇𝐹�̃� ≤

∗ 𝕄𝑁 , where ∇𝐹�̃�  is a diagonal matrix containing the sub-gradients of 𝐹(∙) 

evaluated between the two points. Note that 𝐸 (𝑦𝑛,𝑖𝑗|ℱ𝑛,𝑖𝑗(𝑠)) is an approximation of 𝑦𝑛,𝑖𝑗, which is a 

function of {(𝒙𝑛,𝑔ℎ, 𝜖𝑛,𝑔ℎ): 𝑑𝐹((𝑖, 𝑗), (𝑔, ℎ)) ≤ 𝑠}. Then, we have 

 

 
50 The mean value theorem is applied to each element of 𝐹(𝑨𝑁𝑣𝑒𝑐(𝑌𝑁) + 𝐗𝑁𝜅0 + 𝑣𝑒𝑐(𝜖𝑁)). 



43 

 

‖𝑦𝑛,𝑖𝑗 − 𝐸 (𝑦𝑛,𝑖𝑗|ℱ𝑛,𝑖𝑗(𝑠))‖
𝐿2
≤ ∑ 𝐦𝑛,(𝑖,𝑗),(𝑔,ℎ) ∙ ‖𝒙𝑛,𝑔ℎ𝜅0 + 𝜖𝑛,𝑔ℎ‖𝐿2

𝑛
𝑔,ℎ:𝑑𝐹((𝑖,𝑗),(𝑔,ℎ))>𝑠

  

                         ≤ sup𝑛,𝑔,ℎ‖𝒙𝑛,𝑔ℎ𝜅0 + 𝜖𝑛,𝑔ℎ‖𝐿2
∙ sup𝑛,𝑔,ℎ ∑ 𝐦𝑛,(𝑖,𝑗),(𝑔,ℎ)𝑔,ℎ:𝑑𝐹((𝑖,𝑗),(𝑔,ℎ))>𝑠

, 

 

where 𝐦𝑛,(𝑖,𝑗),(𝑔,ℎ) = 𝐦𝑁,𝑓𝑓′ (i.e., 𝑓 = (𝑗 − 1)𝑛 + 𝑖 and 𝑓
′ = (ℎ − 1)𝑛 + 𝑔). 

 

Note that sup𝑛,𝑔,ℎ‖𝒙𝑛,𝑔ℎ𝜅0 + 𝜖𝑛,𝑔ℎ‖𝐿2
< ∞ by Assumptions 4.3 and 4.5. To show the NED properties of 

{𝑦𝑛,𝑖𝑗}, we need to show sup𝑛,𝑔,ℎ ∑ 𝐦𝑛,(𝑖,𝑗),(𝑔,ℎ)𝑔,ℎ:𝑑𝐹((𝑖,𝑗),(𝑔,ℎ))>𝑠
→ 0 as 𝑠 → ∞. Using the results from 

Lemma C.1 with the similar argument of Proposition 1 in Xu and Lee (2015), we finish the proof. The 

details can be found in the supplement file. ∎ 

 

Next, we consider the NED properties of 1(𝑦𝑛,𝑖𝑗 > 0) , which is a component of ln 𝐿𝑁
∗ (휃) . Before 

discussing this issue, an additional condition is needed. The normality assumption (Assumption 4.8) 

helps to restrict an upper bound of probability densities of {𝑦𝑛,𝑖𝑗
∗ } .51  Here are relevant lemmas and 

proposition. Ideas of the proofs are the same as Xu and Lee’s (2015) Lemma 2 and Proposition 2. 

Modified proofs for our framework can be found in the supplement file. 

 

Lemma C.2. When 𝑀𝑛 is an 𝑛-dimensional symmetric matrix, 𝑥𝑛
′𝑀𝑛𝑥𝑛 ≥ min

𝑖=1,…,𝑛
𝜑𝑖(𝑀𝑛) 𝑥𝑛

′ 𝑥𝑛, where 

𝑥𝑛 is a nonzero 𝑛-dimensional vector. 

 

Lemma C.3. Assume that the model’s spatial stability and coherency hold (Assumption 3.1). Under 

Assumption 4.8, the essential supremums of densities of {𝑦𝑛,𝑖𝑗
∗ } are uniformly bounded in 𝑖, 𝑗, and 𝑛. 

 

Proposition C.2. Assume that the model’s spatial stability and coherency hold.  

(i) Under Assumptions 4.1, 4.2 (iii-1), 4.3, and 4.8, {1(𝑦𝑛,𝑖𝑗 > 0)} is uniformly and geometrically 𝐿2-

NED on 𝜖. That is, ‖1(𝑦𝑛,𝑖𝑗 > 0) − 𝐸 (1(𝑦𝑛,𝑖𝑗 > 0)|ℱ𝑛,𝑖𝑗(𝑠))‖
𝐿2
≤ 𝐶휁𝑠/3�̅� where 𝐶 is a constant, and 

�̅� is a constant defined in Assumption 4.2 (iii-1). 

(ii) Under Assumptions 4.1, 4.2 (iii-2), 4.3, and 4.8, {1(𝑦𝑛,𝑖𝑗 > 0)} is uniformly 𝐿2-NED on 𝜖. That 

is, ‖1(𝑦𝑛,𝑖𝑗 > 0) − 𝐸 (1(𝑦𝑛,𝑖𝑗 > 0)|ℱ𝑛,𝑖𝑗(𝑠))‖
𝐿2
≤ 𝐶𝑠(2𝑑−𝑎)/3 where 𝐶 is a constant, and both 𝑑 and 

𝑎 are constants such that 𝑎 > 2𝑑 in Assumption 4.2 (iii-2). 

 

  Here is the proof of consistency. 

 

Proof of consistency. Under the unique identification condition, for consistency, it suffices to show (1) 

uniform convergence sup ∈Θ
1

𝑁
[ln 𝐿𝑁

∗ (휃) − 𝐸 ln 𝐿𝑁
∗ (휃)]

𝑝
→0  and (2) the uniform equicontinuity of 

{
1

𝑁
𝐸 ln 𝐿𝑁

∗ (휃)}.  

 

Step 1 (Uniform convergence): Note that 

 

 
51 Note that the event of {𝑦𝑛,𝑖𝑗 > 0} is the same as that of {𝑦𝑛,𝑖𝑗

∗ > 0}. 
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1

𝑁
[ln 𝐿𝑁

∗ (휃) − 𝐸(ln 𝐿𝑁
∗ (휃))] =

1

𝑁
∑ [1(𝑦𝑛,𝑖𝑗 = 0) lnΦ(𝜖𝑛,𝑖𝑗

∗ (휃)) − 𝐸 (1(𝑦𝑛,𝑖𝑗 = 0) lnΦ(𝜖𝑛,𝑖𝑗
∗ (휃)))]𝑛

𝑖.𝑗=1    

                     −
1

2𝑁
ln 2𝜋𝜎2 ∑ [1(𝑦𝑛,𝑖𝑗 > 0) − 𝐸1(𝑦𝑛,𝑖𝑗 > 0)]

𝑛
𝑖,𝑗=1  

                     +
1

𝑁
[ln|𝑆𝑁2

∗ (𝛿)| − 𝐸 ln|𝑆𝑁2
∗ (𝛿)|]  

                     −
1

2𝑁
∑ [1(𝑦𝑛,𝑖𝑗 > 0) (𝜖𝑛,𝑖𝑗

∗ (휃))
2

− 𝐸1(𝑦𝑛,𝑖𝑗 > 0) (𝜖𝑛,𝑖𝑗
∗ (휃))

2

]𝑛
𝑖,𝑗=1 .              (C. 1)  

 

  First, note that 
1

2𝑁
ln 2𝜋𝜎2∑ [1(𝑦𝑛,𝑖𝑗 > 0) − 𝐸1(𝑦𝑛,𝑖𝑗 > 0)]

𝑛
𝑖,𝑗=1

𝑝
→ 0  uniformly in Θ  since each 𝜎2 

is a positive constant due to the compact parameter space assumption. Second, consider the last term 

of (C.1). Observe the components of {(𝜖𝑛,𝑖𝑗
∗ (휃))

2

}: 

 

(𝜖𝑛,𝑖𝑗
∗ (휃))

2

=
1

𝜎2
𝑦𝑛,𝑖𝑗
2 +

𝜆2

𝜎2
(∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗

𝑛
𝑔=1 )

2
+
𝛾2

𝜎2
(∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 )

2
+
𝜌2

𝜎2
(∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
𝑔,ℎ=1 )

2
  

         +
1

𝜎2
(𝒙𝑛,𝑖𝑗𝜅)

2
−
2𝜆

𝜎2
𝑦𝑛,𝑖𝑗(∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗

𝑛
𝑔=1 ) −

2𝛾

𝜎2
𝑦𝑛,𝑖𝑗(∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 ) 

         −
2𝜌

𝜎2
𝑦𝑛,𝑖𝑗(∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
𝑔,ℎ=1 ) −

2

𝜎2
𝑦𝑛,𝑖𝑗(𝒙𝑛,𝑖𝑗𝜅) +

2𝜆𝛾

𝜎2
(∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗

𝑛
𝑔=1 )(∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 )  

         +
2𝜆𝜌

𝜎2
(∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗

𝑛
𝑔=1 )(∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
𝑔=1 ) 

         +
2𝛾𝜌

𝜎2
(∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 )(∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
𝑔,ℎ=1 )  

         +
2𝜆

𝜎2
(∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗

𝑛
𝑔=1 )(𝒙𝑛,𝑖𝑗𝜅) +

2𝛾

𝜎2
(∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 )(𝒙𝑛,𝑖𝑗𝜅) 

         +
2𝜌

𝜎2
(∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
𝑔=1 )(𝒙𝑛,𝑖𝑗𝜅).  

 

By Proposition C.1 and using the compact parameter space assumption, {(𝜖𝑛,𝑖𝑗
∗ (휃))

2

}  for each 휃  is 

uniformly 𝐿2 -NED on 𝜖 , and uniformly 𝐿2+   -bounded for some 휂 > 0 . Since {1(𝑦𝑛.𝑖𝑗 > 0)}  is also 

uniformly 𝐿2 -NED on 𝜖  by Proposition C.2, {1(𝑦𝑛,𝑖𝑗 > 0) (𝜖𝑛,𝑖𝑗
∗ (휃))

2

}  is uniformly 𝐿1 -NED on 𝜖 . 

Hence, it satisfies the conditions for the WLLN: sup ∈Θ
1

𝑁
∑ [1(𝑦𝑛,𝑖𝑗 > 0) (𝜖𝑛,𝑖𝑗

∗ (휃))
2

− 𝐸1(𝑦𝑛,𝑖𝑗 >
𝑛
𝑖,𝑗=1

0) (𝜖𝑛,𝑖𝑗
∗ (휃))

2

]
𝑝
→ 0. 

 

  Third, we will consider  

sup ∈Θ
1

𝑁
∑ [1(𝑦𝑛,𝑖𝑗 = 0) lnΦ(𝜖𝑛,𝑖𝑗

∗ (휃)) − 𝐸 (1(𝑦𝑛,𝑖𝑗 = 0) lnΦ(𝜖𝑛,𝑖𝑗
∗ (휃)))]𝑛

𝑖,𝑗=1

𝑝
→ 0 . Let ℓ1,𝑁(휃) =

1

𝑁
∑ [1(𝑦𝑛,𝑖𝑗 = 0) lnΦ(𝜖𝑛,𝑖𝑗

∗ (휃)) − 𝐸 (1(𝑦𝑛,𝑖𝑗 = 0) lnΦ(𝜖𝑛,𝑖𝑗
∗ (휃)))]𝑛

𝑖,𝑗=1   for each 휃 . Observe that Θ  is 

compact by Assumption 4.4 and ℓ1,𝑁(휃)
𝑝
→ 0  for each 휃 ∈ Θ . By Theorem 1 in Andrews (1992), it 

suffices to check the stochastic equicontinuity of {ℓ1,𝑁(휃)} as Xu and Lee’s (2015) proof of Theorem 1. 

Observe that 

 

lnΦ (𝜖𝑛,𝑖𝑗
∗ (휃)) = ln[1 − Φ(�̃� ∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗

𝑛
𝑔=1 + �̃� ∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 + �̃� ∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
𝑔,ℎ=1 + 𝒙𝑛,𝑖𝑗�̃�)]  

             = ln Φ(−�̃� ∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗
𝑛
𝑔=1 − �̃� ∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 − �̃� ∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
𝑔,ℎ=1 − 𝒙𝑛,𝑖𝑗�̃�),  
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where �̃� = 𝜆/𝜎, �̃� = 𝛾/𝜎, �̃� = 𝜌/𝜎, and �̃� = 𝜅/𝜎 located at a close and bounded subset of ℝ3+𝐿+2𝐾 

(due to the compact parameter space assumption). By Lemma A.9 of Xu and Lee (2015b), 

|lnΦ(𝑥1) − lnΦ(𝑥2)| ≤ (2|𝑥1| + 2|𝑥2| + 𝐶2) ∙ |𝑥1 − 𝑥2|  for some 𝐶2 > 0 . For two sets of parameters 

(�̃�1, �̃�1, �̃�1, �̃�1
′)
′
 and (�̃�2, �̃�2, �̃�2, �̃�2

′ )
′
 and for some 𝐶2 > 0, then, 

 

1

𝑁
∑ 1(𝑦𝑛,𝑖𝑗 = 0) [

lnΦ(−�̃�1∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗
𝑛
𝑔=1 − �̃�1∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 − �̃�1∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
𝑔,ℎ=1 − 𝒙𝑛,𝑖𝑗�̃�1)

− lnΦ(−�̃�2∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗
𝑛
𝑔=1 − �̃�2∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 − �̃�2∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
𝑔,ℎ=1 − 𝒙𝑛,𝑖𝑗�̃�2)

]𝑛
𝑖,𝑗=1   

≤
1

𝑁
∑ [

2|�̃�1∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗
𝑛
𝑔=1 + �̃�1∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 + �̃�1∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
𝑔,ℎ=1 + 𝒙𝑛,𝑖𝑗�̃�1|

+2|�̃�2∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗
𝑛
𝑔=1 + �̃�2∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 + �̃�2∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
𝑔,ℎ=1 + 𝒙𝑛,𝑖𝑗�̃�2| + 𝐶2

]𝑛
𝑖,𝑗=1   

  × |(�̃�1 − �̃�2)∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗
𝑛
𝑔=1 + (�̃�1 − �̃�2)∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 + (�̃�1 − �̃�2)∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
𝑔,ℎ=1 + 𝒙𝑛,𝑖𝑗(�̃�1 − �̃�2)|  

≤
1

𝑁
∑ [4�̃�𝑚|∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗

𝑛
𝑔=1 | + 4�̃�𝑚|∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 | + 4�̃�𝑚|∑ 𝑤𝑖𝑔𝑦𝑔ℎ𝑚ℎ𝑗

𝑛
𝑔,ℎ=1 | + 4|𝒙𝑛,𝑖𝑗|�̃�𝑚 + 𝐶2]⏟                                                            

≡𝑡𝑒𝑟𝑚1

𝑛
𝑖,𝑗=1   

  × (|∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗
𝑛
𝑔=1 | + |∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 | + |∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
𝑔,ℎ=1 | + |𝒙𝑛,𝑖𝑗|𝑙𝐿+2𝐾)⏟                                                    

≡𝑡𝑒𝑟𝑚2

  

  × (|�̃�1 − �̃�2| + |�̃�1 − �̃�2| + |�̃�1 − �̃�2| + ‖�̃�1 − �̃�2‖),  

 

where �̃�𝑚 , �̃�𝑚 , �̃�𝑚 , and �̃�𝑚  are respectively the supremums of �̃� , �̃� , �̃� , and �̃� , and ‖∙‖  denotes the 

Euclidean vector norm. By the compact parameter space assumption, they are finite. By Proposition C.1, 

the components in term1 and term2 above are uniformly 𝐿4+   -bounded for some 휂 > 0 . Then, 

‖𝑡𝑒𝑟𝑚1 ∙ 𝑡𝑒𝑟𝑚2‖𝐿
2+
𝜂
2

≤ ‖𝑡𝑒𝑟𝑚1‖𝐿4+𝜂 ∙ ‖𝑡𝑒𝑟𝑚2‖𝐿4+𝜂  by the generalized Hölder’s inequality. By applying 

Lemma 1(a) in Andrews (1992), {ℓ1,𝑁(휃)}  is stochastic equicontinuous and {
1

𝑁
∑ 𝐸 (1(𝑦𝑛,𝑖𝑗 =
𝑛
𝑖,𝑗=1

0) lnΦ(𝜖𝑛,𝑖𝑗
∗ (휃)))} is equicontinuous.  

 

Last, we will show sup ∈Θ
1

𝑁
[ln det (𝑆𝑁2

∗ (𝛿)) − 𝐸 ln det (𝑆𝑁2
∗ (𝛿))]

𝑝
→ 0 . Let 𝑨𝑁(𝛿) = 𝜆𝑾𝑁 + 𝛾𝑴𝑁 +

𝜌𝑹𝑁  for each 𝛿  and its (𝑓, 𝑓
′) -element be 𝒂𝑛,(𝑖,𝑗),(𝑔,ℎ)(𝛿) , where 𝑓 = (𝑗 − 1)𝑛 + 𝑖  and 𝑓

′ = (ℎ −

1)𝑛 + 𝑔. Then, by the Taylor expansion, 

 

     ln det (𝑆𝑁2
∗ (𝛿)) = −∑

1

𝑙
𝑡𝑟 ((𝐺𝑁(𝑌𝑁)𝑨𝑁(𝛿)𝐺𝑁(𝑌𝑁))

𝑙
)∞

𝑙=1   

           = −∑ 1(𝑦𝑛,𝑖𝑗 > 0) [∑
1

𝑙
𝑡𝑟 ((𝐺𝑁(𝑌𝑁)𝑨𝑁(𝛿)𝐺𝑁(𝑌𝑁))

𝑙
)∞

𝑙=1 ]
(𝑗−1)𝑛+𝑖,(𝑗−1)𝑛+𝑖

𝑛
𝑖,𝑗=1   

           = −∑ 1(𝑦𝑛,𝑖𝑗 > 0)∑
1

𝑙
∑ ⋯∑ 𝒂𝑛,(𝑖,𝑗),(𝑖1,𝑗1)(𝛿)⋯𝒂𝑛,(𝑖𝑙−1,𝑗𝑙−1)(𝑖,𝑗)(𝛿)𝑖𝑙−1,𝑗𝑙−1𝑖1,𝑗1

∞
𝑙=1

𝑛
𝑖,𝑗=1  

                                                 × 1(⋂ {𝑦𝑛,𝑖ℎ𝑗ℎ > 0}
𝑙−1
ℎ=1 )  

 

For each (𝑖, 𝑗) and 𝑞 ∈ ℤ+, define 𝑩1,𝑛,𝑖𝑗
𝑞 = ∑

1

𝑙
𝑏𝑙,𝑛,𝑖𝑗

𝑞
𝑙=1  with  

𝑏𝑙,𝑛,𝑖𝑗 = 1(𝑦𝑛,𝑖𝑗 > 0)∑ ⋯∑ 𝒂𝑛,(𝑖,𝑗),(𝑖1,𝑗1)(𝛿)⋯𝒂𝑛,(𝑖𝑙−1,𝑗𝑙−1)(𝑖,𝑗)(𝛿)𝑖𝑙−1,𝑗𝑙−1𝑖1,𝑗1 ∙ 1(⋂ {𝑦𝑛,𝑖ℎ𝑗ℎ > 0}
𝑙−1
ℎ=1 ) and  

𝑩2,𝑛,𝑖𝑗
𝑞 = ∑

1

𝑙
𝑏𝑙.𝑛,𝑖𝑗

∞
𝑙=𝑞+1 . By using Lemma A.8 in Xu and Lee (2015b), {𝑏𝑙,𝑛,𝑖𝑗} is uniformly 𝐿2-NED on 𝜖 

for 𝑙 ∈ ℤ+ . For each 𝑙 , we have 
1

𝑁
∑ (𝑏𝑙,𝑛,𝑖𝑗 − 𝐸𝑏𝑙,𝑛,𝑖𝑗)
𝑛
𝑖,𝑗=1

𝑝
→0  by applying Theorem 1 in Jenish and 

Prucha (2012). By the compact parameter space assumption, we obtain  

sup𝛿∈Θ𝛿 |
1

𝑁
∑ (𝑩1,𝑛,𝑖𝑗

𝑞
− 𝐸𝑩1,𝑛,𝑖𝑗

𝑞
)𝑛

𝑖,𝑗=1 |
𝑝
→0  for 𝑞 ∈ ℤ+ . Using the same expansion technique in Lemma 

C.1.,  
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sup𝛿∈Θ𝛿 |
1

𝑁
∑ 𝑩2,𝑛,𝑖𝑗

𝑞𝑛
𝑖,𝑗=1 | ≤ ∑

𝑙

𝑙

∞
𝑙=𝑞+1 ≤

𝑞+1

(𝑞+1)(1− )
.  

 

Take a positive integer 𝑞   such that 
𝑞 +1

(𝑞 +1)(1− )
<
2
  for an arbitrary small 휀 > 0 . It implies 

sup𝛿∈Θ𝛿 |
1

𝑁
∑ 𝑩2,𝑛,𝑖𝑗

𝑞𝑛
𝑖,𝑗=1 | <

2
  and sup𝛿∈Θ𝛿 |

1

𝑁
∑ 𝐸𝑩2,𝑛,𝑖𝑗

𝑞𝑛
𝑖,𝑗=1 | <

2
 . Then, sup𝛿∈Θ𝛿 |

1

𝑁
∑ (𝑩2,𝑛,𝑖𝑗

𝑞
−𝑛

𝑖,𝑗=1

𝐸𝑩2,𝑛,𝑖𝑗
𝑞

)| < 휀 . By combining (1) sup𝛿∈Θ𝛿 |
1

𝑁
∑ (𝑩1,𝑛,𝑖𝑗

𝑞
− 𝐸𝑩1,𝑛,𝑖𝑗

𝑞
)𝑛

𝑖,𝑗=1 |
𝑝
→0  and (2) 

sup𝛿∈Θ𝛿 |
1

𝑁
∑ (𝑩2,𝑛,𝑖𝑗

𝑞
− 𝐸𝑩2,𝑛,𝑖𝑗

𝑞
)𝑛

𝑖,𝑗=1 | < 휀, we obtain the desired result. 

 

Step 2 (Equicontinuity of {
1

𝑁
𝐸(ln 𝐿𝑁

∗ (휃))}): Recall that  

 
1

𝑁
𝐸(ln 𝐿𝑁

∗ (휃)) =
1

𝑁
∑ 𝐸 (1(𝑦𝑛,𝑖𝑗 = 0) lnΦ(𝜖𝑛,𝑖𝑗

∗ (휃)))𝑁
𝑖,𝑗=1 −

1

2𝑁
ln 2𝜋𝜎2 ∑ 𝐸1(𝑦𝑛,𝑖𝑗 > 0)

𝑛
𝑖,𝑗=1   

                   +
1

𝑁
𝐸 ln det (𝑆𝑁2

∗ (𝛿)) −
1

2𝑁
∑ 𝐸1(𝑦𝑛,𝑖𝑗 > 0) (𝜖𝑛,𝑖𝑗

∗ (휃))
2

𝑛
𝑖,𝑗=1 .  

 

By Step 1, we have verified that a family of functions {
1

𝑁
∑ 𝐸 (1(𝑦𝑛,𝑖𝑗 = 0) lnΦ(𝜖𝑛,𝑖𝑗

∗ (휃)))𝑛
𝑖,𝑗=1 }  is 

equicontinuous. By the compact parameter space assumption, {
1

2𝑁
ln 2𝜋𝜎2 ∑ 𝐸1(𝑦𝑛,𝑖𝑗 > 0)

𝑛
𝑖,𝑗=1 }  is 

equicontinuous. Consider 
1

𝑁
𝐸 ln det (𝑆𝑁2

∗ (𝛿)). Since  

sup𝑛sup𝛿∈Θ𝛿 |
𝜕

𝜕𝛿

1

𝑁
𝐸 ln det (𝑆𝑁2

∗ (𝛿))| = sup𝑛sup𝛿∈Θ𝛿

(

 
 
|
1

𝑁
𝑡𝑟 (�̃�𝑁�̃�𝑁

−1(𝛿))|

|
1

𝑁
𝑡𝑟 (�̃�𝑁�̃�𝑁

−1(𝛿))|

|
1

𝑁
𝑡𝑟 (�̃�𝑁�̃�𝑁

−1(𝛿))|
)

 
 
≤∗

1

1−
(

𝑐𝑤,𝑟
𝑐𝑚.𝑐

𝑐𝑤,𝑟𝑐𝑚,𝑐
) < ∞,  

 

{
1

𝑁
𝐸 ln det (𝑆𝑁2

∗ (𝛿))}  is equicontinuous. For the last component, observe that {𝐸1(𝑦𝑛,𝑖𝑗 >

0) (𝜖𝑛,𝑖𝑗
∗ (휃))

2

} is a sequence of uniformly 𝐿2+  -bounded components for some 휂 > 0 by Step 1. With 

the compact parameter space assumption, the last component is also equicontinuous. 

 

Step 3 (Identification uniqueness): In this part, we will derive the identification conditions provided in 

Assumption 4.9. Those also come from Rothenberg (1971): 휃0 is uniquely identified if and only if there 

is no observationally equivalent 휃 ∈ Θ. Suppose ln 𝐿𝑁
∗ (휃0) = ln 𝐿𝑁

∗ (휃1) for some 휃1 ∈ Θ with 휃1 ≠ 휃0. 

Consider a specific event ⋂ {𝑦𝑛,𝑖𝑗 > 0}
𝑛
𝑖,𝑗=1  , and note that 𝑃(⋂ {𝑦𝑛,𝑖𝑗 > 0}

𝑛
𝑖,𝑗=1 ) > 0 . In this case, 

ln 𝐿𝑁
∗ (휃0) = ln 𝐿𝑁

∗ (휃1) is equivalent to  

 

𝑁

2
ln 𝜎0

2 − ln det (𝑆𝑁2
∗ (𝛿0)) +

1

2
∑ (𝜖𝑛,𝑖𝑗

∗ (휃0))
2

𝑛
𝑖,𝑗=1 =

𝑁

2
ln 𝜎1

2 − ln det (𝑆𝑁2
∗ (𝛿1)) +

1

2
∑ (𝜖𝑛,𝑖𝑗

∗ (휃1))
2

𝑛
𝑖,𝑗=1 .  

 

Since 𝑦𝑛,𝑖𝑗 > 0 for all 𝑖, 𝑗 = 1,⋯ , 𝑛, we differentiate the above with respect to 𝑦𝑛,𝑔ℎ (for some 𝑔, ℎ ∈

{1,⋯ , 𝑛}): 
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−
1

𝜎0
2∑ (𝑦𝑛,𝑖𝑗 − (𝑒𝑛,𝑗

′ ⨂𝑒𝑛,𝑖
′ )𝑨𝑁(𝛿0)𝑣𝑒𝑐(𝑌𝑁) − 𝒙𝑛,𝑖𝑗𝜅0)(𝑒𝑛,𝑗

′ ⨂𝑒𝑛,𝑖
′ )𝑨𝑁(𝛿0)(𝑒𝑛,ℎ⨂𝑒𝑛,𝑔)

𝑛
𝑖,𝑗=1   

  +
1

𝜎0
2 (𝑦𝑛,𝑔ℎ − (𝑒𝑛,ℎ

′ ⨂𝑒𝑛,𝑔
′ )𝑨𝑁(𝛿0)𝑣𝑒𝑐(𝑌𝑁) − 𝒙𝑛,𝑔ℎ𝜅0)  

= −
1

𝜎1
2∑ (𝑦𝑁,𝑓 − (𝑒𝑛,𝑗

′ ⨂𝑒𝑛,𝑖
′ )𝑨𝑁(𝛿1)𝑣𝑒𝑐(𝑌𝑁) − 𝒙𝑁,𝑓𝜅1)(𝑒𝑛,𝑗

′ ⨂𝑒𝑛,𝑖
′ )𝑨𝑁(𝛿1)(𝑒𝑛,ℎ⨂𝑒𝑛,𝑔)

𝑛
𝑖,𝑗=1   

  +
1

𝜎0
2 (𝑦𝑛,𝑔ℎ − (𝑒𝑛,ℎ

′ ⨂𝑒𝑛,𝑔
′ )𝑨𝑁(𝛿1)𝑣𝑒𝑐(𝑌𝑁) − 𝒙𝑛,𝑔ℎ𝜅1).                                     (C. 2) 

 

  Let 𝑓 = (𝑗 − 1)𝑛 + 𝑖 and 𝑓′ = (ℎ − 1)𝑛 + 𝑔. By differentiating both sides of (C.2) with respect to 

𝑦𝑛,𝑔ℎ, we have  
1

𝜎0
2∑ [𝑨𝑁(𝛿0)]𝑓𝑓′

2𝑁
𝑓=1 +

1

𝜎0
2 =

1

𝜎1
2∑ [𝑨𝑁(𝛿1)]𝑓𝑓′

2𝑁
𝑓=1 +

1

𝜎1
2, which is equivalent that  

 

        
1

𝜎0
2 −

1

𝜎1
2 = ∑ (

1

𝜎1
2 [𝑨𝑁(𝛿1)]𝑓𝑓′

2 −
1

𝜎0
2 [𝑨𝑁(𝛿0)]𝑓𝑓′

2 )𝑁
𝑓=1   

            = (
𝜆1
2

𝜎1
2 −

𝜆0
2

𝜎0
2)∑ [𝑾𝑁]𝑓𝑓′

2𝑁
𝑓=1 + (

𝛾1
2

𝜎1
2 −

𝛾0
2

𝜎0
2)∑ [𝑴𝑁]𝑓𝑓′

2𝑁
𝑓=1 + (

𝜌1
2

𝜎1
2 −

𝜌0
2

𝜎0
2)∑ [𝑹𝑁]𝑓𝑓′

2𝑁
𝑓=1   

             + (
𝜆1𝛾1

𝜎1
2 −

𝜆0𝛾0

𝜎0
2 )∑ 2[𝑾𝑁]𝑓𝑓′[𝑴𝑁]𝑓𝑓′

𝑁
𝑓=1 + (

𝜆1𝜌1

𝜎1
2 −

𝜆0𝜌0

𝜎0
2 )∑ 2[𝑾𝑁]𝑓𝑓′[𝑹𝑁]𝑓𝑓′

𝑁
𝑓=1  

             + (
𝛾1𝜌1

𝜎1
2 −

𝛾0𝜌0

𝜎0
2 )∑ 2[𝑴𝑁]𝑓𝑓′[𝑹𝑁]𝑓𝑓′

𝑁
𝑓=1   

            = (
𝜆1
2

𝜎1
2 −

𝜆0
2

𝜎0
2)∑ [𝑾𝑁]𝑓𝑓′

2𝑁
𝑓=1 + (

𝛾1
2

𝜎1
2 −

𝛾0
2

𝜎0
2)∑ [𝑴𝑁]𝑓𝑓′

2𝑁
𝑓=1 + (

𝜌1
2

𝜎1
2 −

𝜌0
2

𝜎0
2)∑ [𝑹𝑁]𝑓𝑓′

2𝑁
𝑓=1   

 

for all 𝑓′ = 1,⋯ ,𝑁 . The above holds since [𝑾𝑁]𝑓𝑓′
2 = 1(𝑗 = ℎ)𝑤𝑛,𝑖𝑔

2  , [𝑴𝑁]𝑓𝑓′
2 = 1(𝑖 = 𝑔)𝑚𝑛,ℎ𝑗

2  , 

[𝑹𝑁]𝑓𝑓′
2 = 𝑤𝑛,𝑖𝑔

2 𝑚𝑛,ℎ𝑗
2  , [𝑾𝑁]𝑓𝑓′[𝑴𝑁]𝑓𝑓′ = 1(𝑖 = 𝑔, 𝑗 = ℎ)𝑤𝑛,𝑖𝑔𝑚𝑛,ℎ𝑗 = 0 , [𝑾𝑁]𝑓𝑓′[𝑹𝑁]𝑓𝑓′ =

1(𝑗 = ℎ)𝑤𝑛,𝑖𝑔 ⏟        
=[𝑾𝑁]𝑓𝑓′

𝑤𝑛,𝑖𝑔 𝑚𝑛,ℎ𝑗⏟      
=[𝑹𝑁]𝑓𝑓′

= 0 , and [𝑴𝑁]𝑓𝑓′[𝑹𝑁]𝑓𝑓′ = 1(𝑖 = 𝑔)𝑚𝑛,ℎ𝑗⏟        
=[𝑴𝑁]𝑓𝑓′

𝑤𝑛,𝑖𝑔𝑚𝑛,ℎ𝑗⏟      
=[𝑹𝑁]𝑓𝑓′

= 0 . For all 𝑓′ =

1,⋯ ,𝑁, note that a set of vectors {𝕨𝑓′
𝑠 ,𝕞𝑓′

𝑠 , 𝕣𝑓′
𝑠 } is linearly independent, where 𝕨𝑓′

𝑠 , 𝕞𝑓′
𝑠 , and 𝕣𝑓′

𝑠  are 

respectively consist of ∑ ([𝑾𝑁]𝑓𝑓′
2 − [𝑾𝑁]𝑓𝑓′′ 

2 )𝑁
𝑓=1  , ∑ ([𝑴𝑁]𝑓𝑓′

2 − [𝑴𝑁]𝑓𝑓′′
2 )𝑁

𝑓=1  , and ∑ ([𝑹𝑁]𝑓𝑓′
2 −𝑁

𝑓=1

[𝑹𝑁]𝑓𝑓′′
2 ) for 𝑓′′ ≠ 𝑓′. This condition implies 

𝜆1
2

𝜎1
2 =

𝜆0
2

𝜎0
2, 

𝛾1
2

𝜎1
2 =

𝛾0
2

𝜎0
2, 

𝜌1
2

𝜎1
2 =

𝜌0
2

𝜎0
2, and 

1

𝜎1
2 =

1

𝜎0
2, so we have 𝜎1

2 =

𝜎0
2, |𝜆0| = |𝜆1|, |𝛾1| = |𝛾0|, and |𝜌1| = |𝜌0|. 

 

By differentiating both sides of (C.2) with respect to 𝑦𝑛,𝑘𝑙 with (𝑘, 𝑙) ≠ (𝑔, ℎ), we have 

 

         −([𝑨𝑁(𝛿0)]𝑓′′𝑓′ + [𝑨𝑁(𝛿0)]𝑓′𝑓′′) + ∑ [𝑨𝑁(𝛿0)]𝑓𝑓′′[𝑨𝑁(𝛿0)]𝑓𝑓′
𝑁
𝑓=1                    (C.3) 

                = −([𝑨𝑁(𝛿1)]𝑓′′𝑓′ + [𝑨𝑁(𝛿1)]𝑓′𝑓′′) + ∑ [𝑨𝑁(𝛿1)]𝑓𝑓′′[𝑨𝑁(𝛿1)]𝑓𝑓′
𝑁
𝑓=1 , 

 

where 𝑓′′ = (𝑙 − 1)𝑛 + 𝑘, since 𝜎0
2 = 𝜎1

2. First, we consider the first part of (C.3):  

 

[𝑨𝑁(𝛿0)]𝑓′′𝑓′ + [𝑨𝑁(𝛿0)]𝑓′𝑓′′ − [𝑨𝑁(𝛿1)]𝑓′′𝑓′ − [𝑨𝑁(𝛿1)]𝑓′𝑓′′  

= (𝜆0 − 𝜆1)([𝑾𝑁]𝑓′′𝑓′ + [𝑾𝑁]𝑓′𝑓′′) + (𝛾0 − 𝛾1)([𝑴𝑁]𝑓′′𝑓′ + [𝑴𝑁]𝑓′𝑓′′)  

 +(𝜌0 − 𝜌1)([𝑹𝑁]𝑓′′𝑓′ + [𝑹𝑁]𝑓′𝑓′′)  

= (𝜆0 − 𝜆1)1(ℎ = 𝑙)(𝑤𝑛,𝑔𝑘 + 𝑤𝑛,𝑘𝑔) + (𝛾0 − 𝛾1)1(𝑔 = 𝑘)(𝑚𝑛,ℎ𝑙 +𝑚𝑛,𝑙ℎ)  

 +(𝜌0 − 𝜌1)(𝑚𝑛,ℎ𝑙𝑤𝑛,𝑘𝑔 +𝑚𝑛,𝑙ℎ𝑤𝑛,𝑔𝑘) 
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= (𝑒𝑛,ℎ
′ ⊗ 𝑒𝑛,𝑔

′ ) (
(𝜆0 − 𝜆1)𝐼𝑛⊗ (𝑊𝑛 +𝑊𝑛

′) + (𝛾0 − 𝛾1)(𝑀𝑛 +𝑀𝑛
′ ) ⊗ 𝐼𝑛

+(𝜌0 − 𝜌1)(𝑀𝑛
′ ⊗𝑊𝑛 +𝑀𝑛⊗𝑊𝑛

′)
) (𝑒𝑛,𝑙⊗𝑒𝑛,𝑘). 

 

  Consider the second part of (C.3) ∑ [𝑨𝑁(𝛿0)]𝑓𝑓′′[𝑨𝑁(𝛿0)]𝑓𝑓′
𝑁
𝑓=1 − ∑ [𝑨𝑁(𝛿1)]𝑓𝑓′′[𝑨𝑁(𝛿1)]𝑓𝑓′

𝑁
𝑓=1 . Then, 

we have 

 

∑ [𝑨𝑁(𝛿0)]𝑓ℎ[𝑨𝑁(𝛿0)]𝑓𝑔
𝑁
𝑓=1 − ∑ [𝑨𝑁(𝛿1)]𝑓ℎ[𝑨𝑁(𝛿1)]𝑓𝑔

𝑁
𝑓=1   

= ∑

(

 
 

(𝜆0
2 − 𝜆1

2)[𝑾𝑁]𝑓𝑓′′[𝑾𝑁]𝑓𝑓′ + (𝛾0
2 − 𝛾1

2)[𝑴𝑁]𝑓𝑓′′[𝑴𝑁]𝑓𝑓′ + (𝜌0
2 − 𝜌1

2)[𝑹𝑁]𝑓𝑓′′[𝑹𝑁]𝑓𝑓′

+(𝜆0𝛾0 − 𝜆1𝛾1)([𝑾𝑁]𝑓𝑓′′[𝑴𝑁]𝑓𝑓′ + [𝑴𝑁]𝑓𝑓′′[𝑾𝑁]𝑓𝑓′)

+(𝜆0𝜌0 − 𝜆1𝜌1)([𝑾𝑁]𝑓𝑓′′[𝑹𝑁]𝑓𝑓′ + [𝑹𝑁]𝑓𝑓′′[𝑾𝑁]𝑓𝑓′)

+(𝛾0𝜌0 − 𝛾1𝜌1)([𝑴𝑁]𝑓𝑓′′[𝑹𝑁]𝑓𝑓′ + [𝑹𝑁]𝑓𝑓′′[𝑴𝑁]𝑓𝑓′) )

 
 𝑁

𝑓=1     

= (𝜆0𝛾0 − 𝜆1𝛾1)(𝑤𝑛,𝑔𝑘𝑚𝑛,ℎ𝑙 + 𝑤𝑛,𝑘𝑔𝑚𝑛,𝑙ℎ) + (𝜆0𝜌0 − 𝜆1𝜌1)(𝑚𝑛,ℎ𝑙 +𝑚𝑛,𝑙ℎ)(∑ 𝑤𝑛,𝑖𝑔𝑤𝑛,𝑖𝑘
𝑛
𝑖=1 )  

  +(𝛾0𝜌0 − 𝛾1𝜌1)(𝑤𝑛,𝑔𝑘 + 𝑤𝑛,𝑘𝑔)(∑ 𝑚𝑛,ℎ𝑗𝑚𝑛,𝑙𝑗
𝑛
𝑗=1 ) 

= (𝑒𝑛,ℎ
′ ⊗ 𝑒𝑛,𝑔

′ )(

(𝜆0𝛾0 − 𝜆1𝛾1)(𝑀𝑛⊗𝑊𝑛 +𝑀𝑛⊗𝑊𝑛)

+(𝜆0𝜌0 − 𝜆1𝜌1)((𝑀𝑛 +𝑀𝑛
′ ) ⊗𝑊𝑛

′𝑊𝑛)

+(𝛾0𝜌0 − 𝛾1𝜌1)(𝑀𝑛𝑀𝑛
′ ⊗ (𝑊𝑛 +𝑊𝑛

′))

)(𝑒𝑛,𝑙⊗𝑒𝑛,𝑘)  

 

since 𝜆1
2 = 𝜆0

2, 𝛾1
2 = 𝛾0

2, and 𝜌1
2 = 𝜌0

2. Since 𝐼𝑛⊗ (𝑊𝑛 +𝑊𝑛
′), (𝑀𝑛 +𝑀𝑛

′ ) ⊗ 𝐼𝑛, 𝑀𝑛
′ ⊗𝑊𝑛 +𝑀𝑛⊗𝑊𝑛

′, 

𝑀𝑛⊗𝑊𝑛 +𝑀𝑛⊗𝑊𝑛 , (𝑀𝑛 +𝑀𝑛
′ ) ⊗𝑊𝑛

′𝑊𝑛 , and 𝑀𝑛𝑀𝑛
′ ⊗ (𝑊𝑛 +𝑊𝑛

′)  are linearly independent, 

relation (C.3) implies 𝜆0 = 𝜆1, 𝛾0 = 𝛾1, and 𝜌0 = 𝜌1. 

 

By putting 𝜆0 = 𝜆1, 𝛾0 = 𝛾1, 𝜌0 = 𝜌1, and 𝜎0
2 = 𝜎1

2, (C.2) becomes 

 

∑ [𝑨𝑁(𝛿0)]𝑓𝑓′𝒙𝑁,𝑓𝜅0
𝑁
𝑓=1 − 𝒙𝑁,𝑓′𝜅0 = ∑ [𝑨𝑁(𝛿0)]𝑓𝑓′𝒙𝑁,𝑓𝜅1

𝑁
𝑓=1 − 𝒙𝑁,𝑓′𝜅1 , which is equivalent to 

𝑒𝑁,𝑓′
′ (𝑨𝑁

′ (𝛿0) − 𝐼𝑁)𝐗𝑁𝜅0 = 𝑒𝑁,𝑓′
′ (𝑨𝑁

′ (𝛿0) − 𝐼𝑁)𝐗𝑁𝜅1 for an arbitrary 𝑓
′. It implies 𝑆𝑁

′ 𝐗𝑁𝜅0 = 𝑆𝑁
′ 𝐗𝑁𝜅1, 

so 𝐗𝑁𝜅0 = 𝐗𝑁𝜅1 due to invertibility of 𝑆𝑁
′ . By multiplying 𝐗𝑁

′  on both sides, 𝐗𝑁
′ 𝐗𝑁𝜅0 = 𝐗𝑁

′ 𝐗𝑁𝜅1. The 

invertibility assumption for 𝐗𝑁
′ 𝐗𝑁 yields 𝜅0 = 𝜅1. Under the conditions in Assumption 4.8, we cannot 

have 휃1 ≠ 휃0. ∎ 

 

C.2. Asymptotic distribution of the MLE 

 

To prove the asymptotic normality, we need to show the following properties. Recall that 𝑟𝑛,𝑖𝑗,𝜆 =

[�̃�𝑁�̃�𝑁
−1]

𝑓𝑓
= [∑ �̃�𝑁�̃�𝑁

𝑙∞
𝑙=0 ]

𝑓𝑓
 , 𝑟𝑛,𝑖𝑗,𝛾 = [�̃�𝑁�̃�𝑁

−1]
𝑓𝑓
= [∑ �̃�𝑁�̃�𝑁

𝑙∞
𝑙=0 ]

𝑓𝑓
 , and 𝑟𝑛,𝑖𝑗,𝜌 = [�̃�𝑁�̃�𝑁

−1]
𝑓𝑓
=

[∑ �̃�𝑁�̃�𝑁
𝑙∞

𝑙=0 ]
𝑓𝑓
 . Define 𝑟𝑛,𝑖𝑗,𝜆𝜆 = [�̃�𝑁

2 �̃�𝑁
−2]

𝑓𝑓
 , 𝑟𝑛,𝑖𝑗,𝛾𝛾 = [�̃�𝑁

2 �̃�𝑁
−2]

𝑓𝑓
 , 𝑟𝑛,𝑖𝑗,𝜌𝜌 = [�̃�𝑁

2 �̃�𝑁
−2]

𝑓𝑓
 , 𝑟𝑛,𝑖𝑗,𝜆𝛾 =

[�̃�𝑁�̃�𝑁�̃�𝑁
−2]

𝑓𝑓
 , 𝑟𝑛,𝑖𝑗,𝜆𝜌 = [�̃�𝑁�̃�𝑁�̃�𝑁

−2]
𝑓𝑓
 , and 𝑟𝑛,𝑖𝑗,𝛾𝜌 = [�̃�𝑁�̃�𝑁�̃�𝑁

−2]
𝑓𝑓
 , where 𝑓 = (𝑗 − 1)𝑛 + 𝑖 . Note 

that each term in the above can be represented by a Neuman series expansion and an indicator function. 

 

Proposition C.3. Assume that the model’s spatial stability and coherency hold.  

(i) Under Assumptions 4.1, 4.2 (iii-1), 4.4, and 4.5, {𝑟𝑛,𝑖𝑗,𝜆} , {𝑟𝑛,𝑖𝑗,𝛾} , {𝑟𝑛,𝑖𝑗,𝜌}  are uniformly and 

geometrically 𝐿2 -NED on 𝜖  with the NED coefficient 𝑠휁
𝑠/3�̅�  , where �̅�  is a constant defined in 

Assumption 4.2 (iii-1). Moreover, {𝑟𝑛,𝑖𝑗,𝜆𝜆} , {𝑟𝑛,𝑖𝑗,𝛾𝛾} , {𝑟𝑛,𝑖𝑗,𝜌𝜌} , {𝑟𝑛,𝑖𝑗,𝜆𝛾} , {𝑟𝑛,𝑖𝑗,𝜆𝜌} , and {𝑟𝑛,𝑖𝑗,𝛾𝜌}  are 
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uniformly and geometrically 𝐿2-NED on 𝜖 with the NED coefficient 𝑠
2휁𝑠/3�̅�. 

  (ii) Under Assumptions 4.1, 4.2 (iii-2), 4.5, and 4.5, {𝑟𝑛,𝑖𝑗,𝜆} , {𝑟𝑛,𝑖𝑗,𝛾} , {𝑟𝑛,𝑖𝑗,𝜌} , {𝑟𝑛,𝑖𝑗,𝜆𝜆} , {𝑟𝑛,𝑖𝑗,𝛾𝛾} , 

{𝑟𝑛,𝑖𝑗,𝜌𝜌} , {𝑟𝑛,𝑖𝑗,𝜆𝛾} , {𝑟𝑛,𝑖𝑗,𝜆𝜌} , and {𝑟𝑛,𝑖𝑗,𝛾𝜌}  are uniformly 𝐿2 -NED on 𝜖  with the NED coefficient 

𝑠(2𝑑−𝑎)/3, where both 𝑑 and 𝑎 are constants such that 𝑎 > 2𝑑 in Assumption 4.2 (iii-2). 

 

The proof of Proposition C.3 can be found in the supplement file. For example, the idea of proving the 

NED properties of {𝑟𝑛,𝑖𝑗,𝜆} is to represent 𝑟𝑛,𝑖𝑗,𝜆 as a Neumann series expansion, i.e.,  

 

           𝑟𝑛,𝑖𝑗,𝜆 = ∑ ∑ ⋯𝑖1,𝑗1
∑ 1(𝑗 = 𝑗1)𝑤𝑛,𝑖𝑖1𝒂𝑛,(𝑖1,𝑗1),(𝑖2,𝑗2)⋯𝒂𝑛,(𝑖𝑙,𝑗𝑙),(𝑖,𝑗)𝑖𝑙,𝑗𝑙

∞
𝑙=0   

                                  × 1 ({𝑦𝑛,𝑖𝑗 > 0} ∩ (⋂ {𝑦𝑛,𝑖ℎ𝑗ℎ > 0}
𝑙
ℎ=1 )). 

 

Then, we decompose 𝑟𝑛,𝑖𝑗,𝜆 as a finite member of terms (i.e., [∑ �̃�𝑁�̃�𝑁
𝑙𝑚

𝑙=0 ]
𝑓𝑓
 for a finite integer 𝑚) 

and a remaining infinite sum (i.e., [∑ �̃�𝑁�̃�𝑁
𝑙∞

𝑙=𝑚+1 ]
𝑓𝑓
). For the finite summation term, we can show its 

NED properties by applying Propositions C.1 and C.2. The remaining infinite summation term is small 

under a large 𝑚 (i.e., [∑ �̃�𝑁�̃�𝑁
𝑙∞

𝑙=𝑚+1 ]
𝑓𝑓
→ 0 as 𝑚 → ∞). 

 

  Note that deriving the asymptotic distribution of 휃̂𝑁  relies on the Taylor expansion argument: 

√𝑁(휃̂𝑁 − 휃0) = (−
1

𝑁

𝜕2 ln 𝐿𝑁
∗ (̃𝑁)

𝜕 𝜕 ′
)
−1

1

√𝑁

𝜕 ln 𝐿𝑁
∗ ( 0)

𝜕
, where 휃̃𝑁 lies between 휃̂𝑁 and 휃0. After establishing 

휃̂𝑁
𝑝
→ 휃0 , our direction of proof is to show 

1

𝑁

𝜕2 ln 𝐿𝑁(̃𝑁)

𝜕 𝜕 ′
− 𝐸 (

1

𝑁

𝜕2 ln 𝐿𝑁( 0)

𝜕 𝜕 ′
) = 𝑜𝑝(1)  and 

1

√𝑁
∑ 𝑞𝑛,𝑖𝑗(휃0)
𝑛
𝑖,𝑗=1

𝑑
→𝑁(𝟎, Σ

0

∗ ), where 𝑞𝑛,𝑖𝑗(휃) denotes the (𝑖, 𝑗)-component of the score evaluated at 

휃  (i.e., 
𝜕 ln 𝐿𝑁

∗ ( 0)

𝜕
= ∑ 𝑞𝑛,𝑖𝑗(휃0)

𝑛
𝑖,𝑗=1  ) and Σ

0

∗ = lim
𝑛→∞

Σ
0,𝑁
∗   with Σ

0,𝑁
∗ =

1

𝑁
𝑉𝑎𝑟(∑ 𝑞𝑛,𝑖𝑗(휃0)

𝑛
𝑖,𝑗=1 ) . In the 

supplement file, we provide the first and second order conditions. The set of first-order conditions can 

be written as the summation of 𝑞𝑛,𝑖𝑗(휃)  for each 휃 ∈ Θ . The next proposition characterizes the 

asymptotic distribution of 
1

√𝑁
∑ 𝑞𝑛,𝑖𝑗(휃0)
𝑛
𝑖,𝑗=1 . 

 

Proposition C.4. We additionally assume Assumptions 4.10 and 4.11. Under Assumption 4.2. (iii-2), 

Assumption 4.12 is additionally needed. Then, 
1

√𝑁
∑ 𝑞𝑛,𝑖𝑗(휃0)
𝑛
𝑖,𝑗=1

𝑑
→𝑁(𝟎, Σ

0

∗ ), where Σ
0

∗ = lim
𝑛→∞

Σ
0,𝑁
∗  

with Σ
0,𝑁
∗ =

1

𝑁
𝑉𝑎𝑟(∑ 𝑞𝑛,𝑖𝑗(휃0)

𝑛
𝑖,𝑗=1 ). 

 

  Proposition C.4 is the application of Corollary 1 of Jenish and Prucha (2012). Assumption 4.10 

corresponds to Assumption 3 in Jenish and Prucha (2012). Hence, the remaining point of proving 

Proposition C.4 is to have the uniform 𝐿2+̃-integrability of {‖𝑞𝑛,𝑖𝑗(휃0)‖} (Assumption 4 in Jenish and 

Prucha (2012). Proving asymptotic normality is showing 
1

𝑁

𝜕2 ln 𝐿𝑁
∗ (̃𝑁)

𝜕 𝜕 ′
− 𝐸 (

1

𝑁

𝜕2 ln 𝐿𝑁
∗ ( 0)

𝜕 𝜕 ′
) = 𝑜𝑝(1) and 

applying the Slutsky’s lemma with Proposition C.4. For having 
1

𝑁

𝜕2 ln 𝐿𝑁
∗ (̃𝑁)

𝜕 𝜕 ′
− 𝐸 (

1

𝑁

𝜕2 ln 𝐿𝑁
∗ ( 0)

𝜕 𝜕 ′
) = 𝑜𝑝(1), 

we then need to check regularity conditions (Assumption 2 in Jenish and Prucha (2012)) to apply 

Theorem 1 in Jenish and Prucha (2012). The detailed proofs of Proposition C.4 and Theorem 4 

(asymptotic normality) can be found in the supplement file.  
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D. Asymptotic properties of the MLE for the SARF Tobit model with the two-way fixed 

effects 
 

  Fernandez-Val and Weidner (2016) study the asymptotic distribution of parameters in nonlinear 
panel models with individual and time effects when 𝑛  and 𝑇  are large (i.e., large-𝑇  version of the 
incidental parameter problem). To derive the asymptotic distribution of �̂�𝑁, we will employ the notions 
established by Fernandez-Val and Weidner (2016) due to some similarities in terms of the framework. 

First, they consider the case 0 < lim
𝑛,𝑇→∞

𝑛

𝑇
< ∞  (Assumption 4.1 (i) in Fernandez-Val and Weidner 

(2016)). It corresponds to our case since we always have the same number of units (𝑛) for origins and 
destinations.52 Second, our fixed-effect specification belongs to the additive separable two-way fixed-
effect specification (Assumption 4.1 (iii) in Fernandez-Val and Weidner (2016)). Third, our statistical 
objective function ln 𝐿𝑁

∗ (𝜔, 𝜶𝑁)  is infinitely differentiable, so it satisfies smoothness conditions 
(Assumption 4.1 (iv) in Fernandez-Val and Weidner (2016)). The strict concavity of ln 𝐿𝑁

∗ (𝜔, 𝜶𝑁) in 
Assumption 4.1 (v) in Fernandez-Val and Weidner (2016) can be achieved by the reparameterization 
(Olsen, 1978). The difference comes from the dependence concept among observations. Their 
framework allows a general type of time dependence with cross-sectionally independent samples. On 
the other hand, our setting considers the weak cross-sectional dependence (characterized by the NED 
concept) across origins and destinations. 
 
  In the main draft, we provide the brief description of the arguments for consistency and asymptotic 
normality. The supplement file contains the arguments in detail.  
 

  The proposition below shows the structure of 𝐸 (−
1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ )

−1

. Note that the diagonal terms 

of 𝐸 (−
1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ )  are of 𝑂(1) , and its off-diagonal terms are of 𝑂 (

1

𝑛
) . When 

𝐸 (−
1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ ) is invertible under a large 𝑛, 𝐸 (−

1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ )

−1

 can be approximated by a 

diagonal matrix.  
 

Proposition D.1. We denote 𝐸 (−
1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ )

−1

≡ ℋ̅𝑛 = [
ℋ̅(𝛼𝑜𝛼𝑜),𝑛 ℋ̅(𝛼𝑜𝛼𝑑),𝑛

ℋ̅(𝛼𝑜𝛼𝑑),𝑛
′ ℋ̅(𝛼𝑑𝛼𝑑),𝑛

] , a block matrix. 

Under the same regularity conditions for Theorem 4.5, (i) 𝑎𝑛,𝑗𝑗 = [ℋ̅(𝛼𝑜𝛼𝑜),𝑛]𝑗𝑗   for 𝑗 = 1,⋯ , 𝑛  and 

𝑐𝑛,𝑖𝑖 = [ℋ̅(𝛼𝑑𝛼𝑑),𝑛]𝑖𝑖
  for 𝑖 = 1,⋯ , 𝑛  are of 𝑂(1) ; and ‖ℋ̅𝑛 − ℋ̃𝑛‖𝑚𝑎𝑥 = 𝑂 (

1

𝑛
) , where ‖𝐴𝑛‖𝑚𝑎𝑥 =

max𝑖,𝑗|[𝐴𝑛]𝑖𝑗| and ℋ̃𝑛 = 𝑑𝑖𝑎𝑔 ({𝑎𝑛,𝑗𝑗}𝑗=1
𝑛
, {𝑐𝑛,𝑖𝑖}𝑖=1

𝑛
) is an approximation of ℋ̅𝑛 . 

 
  Note that the dimension of �̂�𝑁(𝜔)  (and 𝜶𝑁

0  ) is 2𝑛 , which grows as 𝑛  increases. In order to 

evaluate an 2𝑛 × 1 vector, an 2𝑛 × 2𝑛 matrix (e.g., −
1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ ), and so on, we consider the 𝑞-

norm ‖∙‖𝑞 for 2 ≤ 𝑞 ≤ ∞.53 To characterize parameters near the true ones, we define the closed balls 

of radius 𝑟 ≥ 0 : (i) for 𝜔0 , let ℬ(𝜔0, 𝑟) = {𝜔: ‖𝜔 − 𝜔0‖ ≤ 𝑟} , and (ii) for 𝜶𝑁
0  , let ℬ𝑞(𝜶𝑁

0 , 𝑟) =

{𝜶𝑁: ‖𝜶𝑁 − 𝜶𝑁
0 ‖𝑞 ≤ 𝑟}. 

 
Step 1: As the first step to show the asymptotic distribution of �̂�𝑁 , we need to have Taylor 

 
52 In our setting, we always have 

# of origin units

# of destination units
= 1. 

53 The 𝑞-norm for a matrix and/or a tensor is defined the induced vector norm. Details can be found in the supplement file. 
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approximations of �̂�𝑁(𝜔) − 𝜶𝑁
0  and 

1

√𝑁

𝜕 ln 𝐿𝑁
∗ (𝜔,�̂�𝑁(𝜔))

𝜕𝜔
 for given 𝜔. To obtain the Taylor expansions of 

them, some regularity conditions should be checked (see Lemma D.1 in the supplement file). Those 
conditions are the counterpart of Assumption B.1 in Fernandez-Val and Weidner (2016).  
 
  The implication of the proposition below gives bounds of Taylor approximations’ (�̂�𝑁(𝜔) − 𝜶𝑁

0  and 
1

√𝑁

𝜕 ln 𝐿𝑁
∗ (𝜔,�̂�𝑁(𝜔))

𝜕𝜔
) the remainder terms if one takes 𝑟𝛼-consistent estimator �̃�𝑁 for �̂�𝑁(�̃�𝑁) − 𝜶𝑁

0  and 

1

√𝑁

𝜕 ln 𝐿𝑁
∗ (�̃�𝑁,�̂�𝑁(�̃�𝑁))

𝜕𝜔
.  

 
Proposition D.2. Assume the results in Lemma D.1 in the supplement hold and sup𝜔∈ℬ(𝜔0,𝑟𝜔)‖�̂�𝑁(𝜔) −

𝜶𝑁
0 ‖𝑞 = 𝑜𝑝(𝑟𝛼) . Let 𝑞 = 4 + 휂  for some 휂 > 0  and 0 ≤ 휀 <

1

4
−
1

𝑞
 . For 𝜔 ∈ ℬ(𝜔0, 𝑟𝜔)  and 𝜶𝑁 ∈

ℬ𝑞(𝜶𝑁
0 , 𝑟𝛼) where 𝑟𝛼 = 𝑜(𝑛

− ) and 𝑟𝜔 = 𝑜 (𝑛
−
1

𝑞
−
), we have the two results below: 

  (i) For a given 𝜔 ∈ ℬ(𝑟𝜔, 𝜔0), the Taylor expansion of �̂�𝑁(𝜔) around 𝜶𝑁
0  is 

 

�̂�𝑁(𝜔) − 𝜶𝑁
0 = (−

1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ )

−1
1

𝑛

𝜕 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁
+ (−

1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ )

−1
1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜔′
(𝜔 − 𝜔0)  

                                           

    +
1

2
(−

1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ )

−1

∑ {𝑢𝛼𝑜,𝑗
1

𝑛

𝜕3 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ 𝜕𝛼𝑗,0

(−
1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ )

−1
1

𝑛

𝜕 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁
}𝑛

𝑗=1   

                                      

    +
1

2
(−

1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ )

−1

∑ {𝑢𝛼𝑑,𝑖
1

𝑛

𝜕3 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ 𝜕𝛼𝑖,𝑑

(−
1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ )

−1
1

𝑛

𝜕 ln𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁
} + ℛ𝑁

𝛼(𝜔),𝑛
𝑖=1                                     

 

where 𝑢𝛼𝑜,𝑗   is the 𝑗 th element of an 𝑛 × 1  vector ℋ̅(𝛼𝑜𝛼𝑜),𝑛
1

𝑛

𝜕 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑛,𝑜
+ ℋ̅(𝛼𝑜𝛼𝑑),𝑛

1

𝑛

𝜕 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑛,𝑑
 , 

𝑢𝛼𝑑,𝑖  denotes the 𝑖 th element of ℋ̅(𝛼𝑑𝛼𝑜),𝑛
1

𝑛

𝜕 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑛,𝑜
+ ℋ̅(𝛼𝑑𝛼𝑑),𝑛

1

𝑛

𝜕 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑛,𝑑
 , ℛ𝑁

𝛼(𝜔)  denotes 

the remainder term.54 Note that ‖ℛ𝑁
𝛼(𝜔)‖𝑞 = 𝑜𝑝 (𝑛

−1+
1

𝑞) + 𝑜𝑝 (𝑛
1

𝑞 ∙ ‖𝜔 − 𝜔0‖) for 𝜔 ∈ ℬ(𝜔0, 𝑟𝜔). 

 

  (ii) For a given 𝜔 ∈ ℬ(𝑟𝜔 , 𝜔0), the Taylor expansion of 
1

√𝑁

𝜕 ln 𝐿𝑁
∗ (𝜔,�̂�𝑁(𝜔))

𝜕𝜔
 can be represented by 

 
1

√𝑁

𝜕 ln 𝐿𝑁
∗ (𝜔,�̂�𝑁(𝜔))

𝜕𝜔
= −Σ𝜔0,𝑁

∗ √𝑁(𝜔 − 𝜔0) + 𝑈𝑁
(0) + 𝑈𝑁

(1) + ℛ𝑁(𝜔),  

 
where  
 

Σ𝜔0,𝑁
∗ = 𝐸 (−

1

𝑁

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜔𝜕𝜔′
) −

1

𝑛
{𝐸 (

1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜔𝜕𝜶𝑁
′ )𝐸 (−

1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ )

−1

𝐸 (
1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜔′
)}, 

𝑈𝑁
(0) =

1

√𝑁

𝜕 ln𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜔
+ 𝐸 (

1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜔𝜕𝜶𝑁
′ ) ∙ 𝐸 (−

1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ )

−1

∙
1

𝑛

𝜕 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁
,  

𝑈𝑁
(1) = 𝑈𝑁

(1,𝑎) + 𝑈𝑁
(1,𝑏) with 𝑈𝑁

(1,𝑎) = 𝑈𝑁
(1,𝑎,1) + 𝑈𝑁

(1,𝑎,2), 

𝑈𝑁
(1,𝑎,1) = {

1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜔𝜕𝜶𝑁
′ − 𝐸 (

1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜔𝜕𝜶𝑁
′ )} ∙ 𝐸 (−

1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ )

−1

∙
1

𝑛

𝜕 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁
, 

𝑈𝑁
(1,𝑎,2) = −𝐸 (

1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜔𝜕𝜶𝑁
′ ) ∙ 𝐸 (−

1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ )

−1

{−
1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ − 𝐸 ((−

1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ ))}  

 
54 Since ℋ̅𝑛 is symmetric, note that ℋ̅(𝛼𝑑𝛼𝑜),𝑛

= ℋ̅(𝛼𝑜𝛼𝑑),𝑛
′ . 
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        ∙ 𝐸 (−
1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ )

−1
1

𝑛

𝜕 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁
, 

𝑈𝑁
(1,𝑏)

=
1

2
∑ (𝐸 (

1

𝑛

𝜕3 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜔𝜕𝜶𝑁
′ 𝜕𝛼𝑔

) + 𝐸 (
1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜔𝜕𝜶𝑁
′ ) ∙ 𝐸 (−

1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ )

−1

∙
dim(𝜶𝑁)
𝑔=1

                    𝐸 (
1

𝑛

𝜕3 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ 𝜕𝛼𝑔

)) ∙ [ℋ̅𝑛
1

𝑛

𝜕 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁
]
𝑔
𝐸 (−

1

𝑛

𝜕2 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ )

−1

∙
1

𝑛

𝜕 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜶𝑁
, 

 
ℛ𝑁(𝜔)  denotes the remainder term satisfying ‖ℛ𝑁(𝜔)‖ = 𝑜𝑝(1) + 𝑜𝑝(𝑛 ∙ ‖𝜔 − 𝜔0‖)  for 𝜔 ∈

ℬ(𝜔0, 𝑟𝜔), and 𝛼𝑔 denote the 𝑔th-element of 𝜶𝑁 and dim(𝜶𝑁) = 2𝑛. 

 
  In terms of the Fernandez-Val and Weidner’s (2016) expressions. the reminder terms satisfy 

sup
𝜔∈ℬ(𝜔0,𝑟𝜔)

𝑛
1−
1
𝑞‖ℛ𝑁

𝛼 (𝜔)‖
𝑞

1+𝑛∙‖𝜔−𝜔0‖
= 𝑜𝑝(1) and sup

𝜔∈ℬ(𝜔0,𝑟𝜔)

‖ℛ𝑁(𝜔)‖

1+𝑛∙‖𝜔−𝜔0‖
= 𝑜𝑝(1). Since we will finally achieve ‖�̂�𝑁 −

𝜔0‖ = 𝑂𝑝(𝑛
−1) = 𝑂𝑝 (

1

√𝑁
), we will have ‖ℛ𝑁

𝛼(�̂�𝑁)‖𝑞 = 𝑜𝑝 (𝑛
−1+

1

𝑞) and ‖ℛ𝑁(�̂�𝑁)‖ = 𝑜𝑝(1). 

 

Step 2: One additional condition for Proposition D.2 is ‖�̂�𝑁(𝜔) − 𝜶𝑁
0 ‖𝑞 = 𝑂 (𝑛

−
1

2
+
1

𝑞)  if ‖𝜔 − 𝜔0‖ =

𝑂 (𝑛−
1

2) . Lemmas D.2 and D.3 in the supplement file shows that ‖�̂�𝑁 − 𝜔0‖ = 𝑂𝑝 (𝑛
−
1

2)  and 

‖�̂�𝑁(�̂�𝑁) − 𝜶𝑁
0 ‖𝑞 = 𝑂 (𝑛

−
1

2
+
1

𝑞) if Σ𝜔0
∗ = lim

𝑛→∞
Σ𝜔0,𝑁
∗  is nonsingular and Σ𝜔0

∗ > 0. Showing Lemmas D.2 

and D.3 relies on strict concavity of the log-likelihood function. For this, we consider the 
reparameterization suggested by Olsen (1978), i.e., 𝒯: (𝜔, 𝜶𝑁) ↦ (𝜔∗, 𝜶𝑁

∗ ). By showing the results for 
the re-parameterized MLEs, we can obtain the desired results using the functional invariance property 

of the MLE (i.e., (�̂�𝑁, �̂�𝑁) = 𝒯
−1(�̂�𝑁

∗ , �̂�𝑁
∗ ) ). After verifying 𝑈𝑁

(0)
+ 𝑈𝑁

(1)
= 𝑂𝑝(1) , we can achieve 

‖�̂�𝑁 − 𝜔0‖ = 𝑂𝑝(𝑛
−1) = 𝑂𝑝 (

1

√𝑁
) (a part of Proposition D.3 shows 𝑈𝑁

(0)
+ 𝑈𝑁

(1)
= 𝑂𝑝(1)). 

 

Then, 𝑈𝑁
(0)
  is the main part of the asymptotic distribution of �̂�𝑁  while 𝑈𝑁

(1)
  characterizes the 

asymptotic bias of �̂�𝑁. We will show that 𝑈𝑁
(0) 𝑑
→𝑁(0, Σ𝜔0

∗ ) where Σ𝜔0
∗ = lim

𝑛→∞
Σ𝜔0,𝑁
∗  and 𝑈𝑁

(1)
− Λ𝑁

∗ =

𝑜𝑝(1) for some Λ𝑁
∗ . The lemma below characterizes the form of Λ𝑁

∗ . 

 

Step 3: The proposition below characterizes the key terms of the asymptotic expansion �̂�𝑁: (i) 𝑈𝑁
(0) 

and (ii) 𝑈𝑁
(1). 

 

Proposition D.3. (i) 𝑈𝑁
(0) 𝑑
→𝑁(𝟎, Σ𝜔0

∗ )  as 𝑛 → ∞ ; and (ii) 𝑈𝑁
(1,𝑎,1) − (Λ1,𝑁

∗ + Λ2,𝑁
∗ )

𝑝
→0 , 𝑈𝑁

(1,𝑎,2) −

(Λ3,𝑁
∗ + Λ4,𝑁

∗ )
𝑝
→0, and 𝑈𝑁

(1,𝑏) − (Λ5,𝑁
∗ + Λ6,𝑁

∗ )
𝑝
→0 as 𝑛 → ∞,  

 

where Λ1,𝑁
∗ =

1

𝑛
∑ 𝑎𝑛,𝑗𝑗

1

𝑛
∑ ∑ 𝐸(𝑞𝑛,𝑘𝑗

𝛼𝑜 ℎ𝑛,𝑖𝑗
𝜔𝛼𝑜)𝑛

𝑖=1
𝑛
𝑘=1

𝑛
𝑗=1 , 

Λ2,𝑁
∗ =

1

𝑛
∑ 𝑐𝑛,𝑖𝑖

1

𝑛
∑ ∑ 𝐸(𝑞𝑛,𝑖𝑙

𝛼𝑑 ℎ𝑛,𝑖𝑗
𝜔𝛼𝑑)𝑛

𝑗=1
𝑛
𝑙=1

𝑛
𝑖=1 , 

Λ3,𝑁
∗ =

1

𝑛
∑ 𝑎𝑛,𝑗𝑗 (

1

𝑛
∑ 𝐸(ℎ𝑛,𝑘𝑗

𝜔𝛼𝑜)𝑛
𝑘=1 )∑ 𝐸(ℎ𝑛,𝑖𝑗

𝛼𝑜 𝑣𝛼𝑜,𝑛,𝑗)
𝑛
𝑖=1

𝑛
𝑗=1 ,  

Λ4,𝑁
∗ =

1

𝑛
∑ 𝑐𝑛,𝑖𝑖 (

1

𝑛
∑ 𝐸(ℎ𝑛,𝑖𝑙

𝜔𝛼𝑑)𝑛
𝑙=1 )∑ 𝐸(ℎ𝑛,𝑖𝑗

𝛼𝑑 𝑣𝛼𝑑,𝑛,𝑖)
𝑛
𝑗=1

𝑛
𝑖=1 , 

Λ5,𝑁
∗ =

1

2𝑛
∑ �̃�𝑛,(𝛼𝑜𝛼𝑜),𝑗𝑗
𝑛
𝑗=1 𝑎𝑛,𝑗𝑗

2 1

𝑛
∑ ∑ 𝐸(𝑞𝑛,𝑘𝑗

𝛼𝑜 𝑞𝑛,𝑙𝑗
𝛼𝑜 )𝑛

𝑙=1
𝑛
𝑘=1 , and 

Λ6,𝑁
∗ =

1

2𝑛
∑ �̃�𝑛,(𝛼𝑑𝛼𝑑),𝑖𝑖𝑐𝑛,𝑖𝑖

2 1

𝑛
∑ ∑ 𝐸(𝑞𝑛,𝑖𝑘

𝛼𝑑 𝑞𝑛,𝑖𝑙
𝛼𝑑 )𝑛

𝑙=1
𝑛
𝑘=1

𝑛
𝑖=1 ,  
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with 𝑣𝛼𝑜,𝑛,𝑗 =
1

𝑛
∑ ∑ 𝑎𝑛,𝑗𝑘𝑞𝑛,𝑝𝑘

𝛼𝑜𝑛
𝑝=1

𝑛
𝑘=1 +

1

𝑛
∑ ∑ 𝑏𝑛,𝑗𝑙𝑞𝑛,𝑙𝑞

𝛼𝑑𝑛
𝑞=1

𝑛
𝑙=1  for 𝑗 = 1,⋯ , 𝑛,  

𝑣𝛼𝑑,𝑛,𝑖 =
1

𝑛
∑ ∑ 𝑏𝑛,𝑘𝑖𝑞𝑛,𝑝𝑘

𝛼𝑜𝑛
𝑝=1

𝑛
𝑘=1 +

1

𝑛
∑ ∑ 𝑐𝑛,𝑖𝑙𝑞𝑛,𝑙𝑞

𝛼𝑑𝑛
𝑞=1

𝑛
𝑙=1  for 𝑖 = 1,⋯𝑛, 

�̃�𝑛,(𝛼𝑜𝛼𝑜),𝑗𝑗 =
1

𝑛
∑ 𝐸(𝑡𝑛,𝑖𝑗

𝜔𝛼𝑜)𝑛
𝑖=1 +

1

𝑛
𝜋𝛼𝑜,𝑛,𝑗 ∑ 𝐸(𝑡𝑛,𝑖𝑗

𝛼𝑜 )𝑛
𝑖=1 +

1

𝑛
∑ 𝜋𝛼𝑑,𝑛,𝑖𝐸(𝑡𝑛,𝑖𝑗

𝛼𝑑 )𝑛
𝑖=1  for 𝑗 = 1,⋯ , 𝑛, 

�̃�𝑛,(𝛼𝑑𝛼𝑑),𝑖𝑖 =
1

𝑛
∑ 𝐸(𝑡𝑛,𝑖𝑗

𝜔𝛼𝑑)𝑛
𝑗=1 +

1

𝑛
∑ 𝜋𝛼𝑜,𝑛,𝑗𝐸(𝑡𝑛,𝑖𝑗

𝛼𝑜 )𝑛
𝑗=1 +

1

𝑛
𝜋𝛼𝑑,𝑛,𝑖 ∑ 𝐸(𝑡𝑛,𝑖𝑗

𝛼𝑑 )𝑛
𝑗=1  for 𝑖 = 1,⋯𝑛, 

where 𝜋𝛼𝑜,𝑛,𝑗 =
1

𝑛
∑ ∑ 𝑎𝑛,𝑗𝑘𝐸(ℎ𝑛,𝑝𝑘

𝜔𝛼𝑜)𝑛
𝑝=1

𝑛
𝑘=1 +

1

𝑛
∑ ∑ 𝑏𝑛,𝑗𝑙𝐸(ℎ𝑛,𝑙𝑞

𝜔𝛼𝑑)𝑛
𝑞=1

𝑛
𝑙=1  for 𝑗 = 1,⋯ , 𝑛, and 

𝜋𝛼𝑑,𝑛,𝑖 =
1

𝑛
∑ ∑ 𝑏𝑛,𝑘𝑖𝐸(ℎ𝑛,𝑝𝑘

𝜔𝛼𝑜)𝑛
𝑝=1

𝑛
𝑘=1 +

1

𝑛
∑ ∑ 𝑐𝑛,𝑖𝑙𝐸(ℎ𝑛,𝑙𝑞

𝜔𝛼𝑑)𝑛
𝑞=1

𝑛
𝑙=1  for 𝑖 = 1,⋯𝑛. 

 
Then, Λ𝑁

∗ = Λ1,𝑁
∗ + Λ2,𝑁

∗ + Λ3,𝑁
∗ + Λ4,𝑁

∗ + Λ5,𝑁
∗ + Λ6,𝑁

∗ . 

 
Step 4: By applying Proposition D.2 (ii) and Proposition D.3, we have 
 

√𝑁(�̂�𝑁 − 𝜔0) = Σ𝜔0
∗ (𝑈𝑁

(0)
+ 𝑈𝑁

(1)
) + 𝑜𝑝(1)

𝑑
→𝑁(Σ𝜔0

∗−1Λ∞
∗ , Σ𝜔0

∗−1) as 𝑛 → ∞, 

 
where Λ∞

∗ = lim
𝑛→∞

Λ𝑁
∗  with Λ𝑁

∗ = Λ1,𝑁
∗ + Λ2,𝑁

∗ + Λ3,𝑁
∗ + Λ4,𝑁

∗ + Λ5,𝑁
∗ + Λ6,𝑁

∗  (for details, refer to Lemma 

D.4 in the supplement). 
 
Derivatives: In this part, we provide the detailed forms of the key derivative components. Consider the 

first-order derivatives. Then, 
𝜕 ln 𝐿𝑁

∗ (𝜔,𝜶𝑁)

𝜕𝜔
= ∑ ∑ 𝑞𝑛,𝑖𝑗

𝜔 (𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)
𝑛
𝑗=1

𝑛
𝑖=1  with 

 

𝑞𝑛,𝑖𝑗
𝜔 (𝜔, 𝛼𝑗,𝑜, 𝛼𝑖,𝑑) = (

𝜕ln𝐿𝑁
∗
(𝜔,𝜶𝑁)
𝜕𝜆

𝜕ln𝐿𝑁
∗
(𝜔,𝜶𝑁)
𝜕𝛾

𝜕ln𝐿𝑁
∗
(𝜔,𝜶𝑁)
𝜕𝜌

𝜕ln𝐿𝑁
∗
(𝜔,𝜶𝑁)
𝜕𝛽′

𝜕 ln𝐿𝑁
∗
(𝜔,𝜶𝑁)

𝜕𝜎2
)
′

  

=

(

 
 
 
 
 
 
 
 
 
 
 
 

−1(𝑦𝑛,𝑖𝑗 = 0)𝜎
−1

𝜙(𝜖𝑛,𝑖𝑗
+,∗ (𝜔,𝛼𝑗,𝑜,𝛼𝑖,𝑑))(∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗

𝑛
𝑔=1 )

Φ(𝜖𝑛,𝑖𝑗
+,∗
(𝜔,𝛼𝑗,𝑜,𝛼𝑖,𝑑))

− 𝑟𝑛,𝑖𝑗,𝜆(𝛿) + 1(𝑦𝑛,𝑖𝑗 > 0)𝜎
−1𝜖𝑛,𝑖𝑗

+,∗ (𝜔, 𝛼𝑗,𝑜, 𝛼𝑖,𝑑)(∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗
𝑛
𝑔=1 )

−1(𝑦𝑛,𝑖𝑗 = 0)𝜎
−1

𝜙(𝜖𝑛,𝑖𝑗
+,∗ (𝜔,𝛼𝑗,𝑜,𝛼𝑖,𝑑))(∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 )

Φ(𝜖𝑛,𝑖𝑗
+,∗ (𝜔,𝛼𝑗,𝑜,𝛼𝑖,𝑑))

− 𝑟𝑛,𝑖𝑗,𝛾(𝛿) + 1(𝑦𝑛,𝑖𝑗 > 0)𝜎
−1𝜖𝑛,𝑖𝑗

+,∗ (𝜔, 𝛼𝑗,𝑜, 𝛼𝑖,𝑑)(∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗
𝑛
ℎ=1 )

−1(𝑦𝑛,𝑖𝑗 = 0)𝜎
−1

𝜙(𝜖𝑛,𝑖𝑗
+,∗ (𝜔,𝛼𝑗,𝑜,𝛼𝑖,𝑑))(∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
𝑔,ℎ=1 )

Φ(𝜖𝑛,𝑖𝑗
+,∗
(𝜔,𝛼𝑗,𝑜,𝛼𝑖,𝑑))

− 𝑟𝑛,𝑖𝑗,𝜌(𝛿) + 1(𝑦𝑛,𝑖𝑗 > 0)𝜎
−1𝜖𝑛,𝑖𝑗

+,∗ (𝜔, 𝛼𝑗,𝑜, 𝛼𝑖,𝑑)(∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗
𝑛
𝑔,ℎ=1 )

−1(𝑦𝑛,𝑖𝑗 = 0)𝜎
−1

𝜙(𝜖𝑛,𝑖𝑗
+,∗ (𝜔,𝛼𝑗,𝑜,𝛼𝑖,𝑑))𝒛𝑛,𝑖𝑗

Φ(𝜖𝑛,𝑖𝑗
+,∗ (𝜔,𝛼𝑗,𝑜,𝛼𝑖,𝑑))

+ 1(𝑦𝑛,𝑖𝑗 > 0)𝜎
−1𝜖𝑛,𝑖𝑗

+,∗ (𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)𝒛𝑛,𝑖𝑗

−
1

2𝜎2
1(𝑦𝑛,𝑖𝑗 = 0)

𝜙(𝜖𝑛,𝑖𝑗
+,∗
(𝜔,𝛼𝑗,𝑜,𝛼𝑖,𝑑))𝜖𝑛,𝑖𝑗

+,∗
(𝜔,𝛼𝑗,𝑜,𝛼𝑖,𝑑)

Φ(𝜖𝑛,𝑖𝑗
+,∗ (𝜔,𝛼𝑗,𝑜,𝛼𝑖,𝑑))

−
1

2𝜎2
1(𝑦𝑛,𝑖𝑗 > 0) +

1

2𝜎2
1(𝑦𝑛,𝑖𝑗 > 0)𝜖𝑛,𝑖𝑗

+,∗ (𝜔, 𝛼𝑗,𝑜, 𝛼𝑖,𝑑)
2

)

 
 
 
 
 
 
 
 
 
 
 
 

. 

 

At the true parameter values, let 𝑞𝑛,𝑖𝑗
𝜔 = 𝑞𝑛,𝑖𝑗

𝜔 (𝜔0, 𝛼𝑗,𝑜,0, 𝛼𝑖,𝑑,0)  for 𝑖 = 1,… , 𝑛  and 𝑗 = 1,… , 𝑛 . Other 

quantities below are similarly defined.  
 

  Consider 
𝜕 ln 𝐿𝑁

∗ (𝜔,𝜶𝑁)

𝜕𝜶𝑁
= (

𝜕 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛼1,𝑜
, ⋯ ,

𝜕 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛼𝑛,𝑜
,
𝜕 ln 𝐿𝑁

∗ (𝜔,𝜶𝑁)

𝜕𝛼1,𝑑
, ⋯ ,

𝜕 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛼𝑛,𝑑
)
′

. Observe that 

 

 

(

 
 
 
 

𝜕 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛼1,𝑜

𝜕 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛼2,𝑜

⋮
𝜕 ln 𝐿𝑁

∗ (𝜔,𝜶𝑁)

𝜕𝛼𝑛,𝑜 )

 
 
 
 

= ∑

(

 
 

𝑞𝑛,𝑖1
𝛼𝑜 (𝜔, 𝛼1,𝑜, 𝛼𝑖,𝑑)

𝑞𝑛,𝑖2
𝛼𝑜 (𝜔, 𝛼2,𝑜 , 𝛼𝑖,𝑑)

⋮
𝑞𝑛,𝑖𝑛
𝛼𝑜 (𝜔, 𝛼𝑛,𝑜, 𝛼𝑖,𝑑))

 
 𝑛

𝑖=1 , and 

(

 
 
 
 

𝜕 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛼1,𝑑

𝜕 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛼2,𝑑

⋮
𝜕 ln 𝐿𝑁

∗ (𝜔,𝜶𝑁)

𝜕𝛼𝑛,𝑑 )

 
 
 
 

= ∑

(

 
 

𝑞𝑛,1𝑗
𝛼𝑑 (𝜔, 𝛼𝑗,𝑜, 𝛼1,𝑑)

𝑞𝑛,2𝑗
𝛼𝑑 (𝜔, 𝛼𝑗,𝑜 , 𝛼2,𝑑)

⋮
𝑞𝑛,𝑛,𝑗
𝛼𝑑 (𝜔, 𝛼𝑗,𝑜, 𝛼𝑛,𝑑))

 
 𝑛

𝑗=1   
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where 𝑞𝑛,𝑖𝑗
𝛼𝑜 (𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑) = 𝑞𝑛,𝑖𝑗(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑) − 𝜇

1

𝑛
∑ 𝛼𝑗,𝑜
𝑛
𝑗=1 + 𝜇𝛼𝑖,𝑑 for 𝑗 = 1,⋯ , 𝑛,  

𝑞𝑛,𝑖𝑗
𝛼𝑑 (𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑) = 𝑞𝑛,𝑖𝑗(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑) + 𝜇𝛼𝑗,𝑜 − 𝜇

1

𝑛
∑ 𝛼𝑖,𝑑
𝑛
𝑖=1  for 𝑖 = 1,⋯ , 𝑛, and 

𝑞𝑛,𝑖𝑗(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑) = −1(𝑦𝑛,𝑖𝑗 = 0)𝜎
−1

𝜙(𝜖𝑛,𝑖𝑗
+,∗ (𝜔,𝛼𝑗,𝑜,𝛼𝑖,𝑑))

Φ(𝜖𝑛,𝑖𝑗
+,∗ (𝜔,𝛼𝑗,𝑜,𝛼𝑖,𝑑))

+ 1(𝑦𝑛,𝑖𝑗 > 0)𝜎
−1𝜖𝑛,𝑖𝑗

+,∗ (𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)  for each 

(𝑖, 𝑗).  
 
  Consider the relevant components of the second-order derivatives. 
 

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜶𝑁𝜕𝜶𝑁
′ =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕2 ln 𝐿𝑁

∗ (𝜔,𝜶𝑁)

𝜕𝛼1,𝑜𝜕𝛼1,𝑜
0 ⋯ 0

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛼1,𝑜𝜕𝛼1,𝑑

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛼1,𝑜𝜕𝛼2,𝑑
⋯

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛼1,𝑜𝜕𝛼𝑛,𝑑

∗
𝜕2 ln 𝐿𝑁

∗ (𝜔,𝜶𝑁)

𝜕𝛼2,𝑜𝜕𝛼2,𝑜
⋯ 0

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛼2,𝑜𝜕𝛼1,𝑑

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛼2,𝑜𝜕𝛼2,𝑑
⋯

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛼2,𝑜𝜕𝛼𝑛,𝑑

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

∗ ∗ ⋯
𝜕2 ln 𝐿𝑁

∗ (𝜔,𝜶𝑁)

𝜕𝛼𝑛,𝑜𝜕𝛼𝑛,𝑜

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛼𝑛,𝑜𝜕𝛼1,𝑑

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛼𝑛,𝑜𝜕𝛼2,𝑑
⋯

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛼𝑛,𝑜𝜕𝛼𝑛,𝑑

∗ ∗ ⋯ ∗
𝜕2 ln 𝐿𝑁

∗ (𝜔,𝜶𝑁)

𝜕𝛼1,𝑑𝜕𝛼1,𝑑
0 ⋯ 0

∗ ∗ ⋯ ∗ ∗
𝜕2 ln 𝐿𝑁

∗ (𝜔,𝜶𝑁)

𝜕𝛼2,𝑑𝜕𝛼2,𝑑
⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

∗ ∗ ⋯ ∗ ∗ ∗ ⋯
𝜕2 ln 𝐿𝑁

∗ (𝜔,𝜶𝑁)

𝜕𝛼𝑛,𝑑𝜕𝛼𝑛,𝑑 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 , 

  

where 
𝜕2 ln 𝐿𝑁

∗ (𝜔,𝜶𝑁)

𝜕𝛼𝑗,𝑜
2 = ∑ ℎ𝑛,𝑖𝑗

𝛼𝑜 (𝜔, 𝛼𝑗,𝑜, 𝛼𝑖,𝑑)
𝑛
𝑖=1  for 𝑗 = 1,… , 𝑛; 

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛼𝑗,𝑜𝜕𝛼𝑘,𝑜
= −𝜇 for 𝑗 ≠ 𝑘;  

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛼𝑗,𝑜𝜕𝛼𝑖,𝑑
= ℎ𝑛,𝑖𝑗(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑) + 𝜇 for 𝑗 = 1,… , 𝑛 and 𝑖 = 1,… , 𝑛;  

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛼𝑖,𝑑
2 = ∑ ℎ𝑛,𝑖𝑗

𝛼𝑑 (𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)
𝑛
𝑗=1  for 𝑖 = 1, … , 𝑛; and 

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛼𝑖,𝑑𝜕𝛼𝑙,𝑑
= −𝜇 for 𝑖 ≠ 𝑙 with  

ℎ𝑛,𝑖𝑗
𝛼𝑜 (𝜔, 𝛼𝑗,𝑜, 𝛼𝑖,𝑑) = ℎ𝑛,𝑖𝑗(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑) −

𝜇

𝑛
 for 𝑗 = 1,… , 𝑛, 

ℎ𝑛,𝑖𝑗
𝛼𝑑 (𝜔, 𝛼𝑗,𝑜, 𝛼𝑖,𝑑) = ℎ𝑛,𝑖𝑗(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑) −

𝜇

𝑛
 for 𝑖 = 1, … , 𝑛. 

ℎ𝑛,𝑖𝑗(𝜔, 𝛼𝑗,𝑜, 𝛼𝑖,𝑑) = 1(𝑦𝑛,𝑖𝑗 = 0)𝜎
−2𝜓(𝜖𝑛,𝑖𝑗

+,∗ (𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)) − 1(𝑦𝑛,𝑖𝑗 > 0)𝜎
−2. 

 

Consider the elements of ℎ𝑛,𝑖𝑗
𝜔𝛼𝑜(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑) for 𝑗 = 1,⋯ , 𝑛 and ℎ𝑛,𝑖𝑗

𝜔𝛼𝑑(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑) for 𝑖 = 1,⋯ , 𝑛. 

 

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜔𝜕𝜶𝑁
′ = 

[
 
 
 
 
 
 
 
 
 
𝜕2 ln 𝐿𝑁

∗ (𝜔,𝜶𝑁)

𝜕𝜆𝜕𝛼1,𝑜

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜆𝜕𝛼2,𝑜
⋯

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜆𝜕𝛼𝑛,𝑜

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜆𝜕𝛼1,𝑑

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜆𝜕𝛼2,𝑑
⋯

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜆𝜕𝛼𝑛,𝑑

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛾𝜕𝛼1,𝑜

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛾𝜕𝛼2,𝑜
⋯

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛾𝜕𝛼𝑛,𝑜

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛾𝜕𝛼1,𝑑

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛾𝜕𝛼2,𝑑
⋯

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛾𝜕𝛼𝑛,𝑑

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜌𝜕𝛼1,𝑜

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜌𝜕𝛼2,𝑜
⋯

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜌𝜕𝛼𝑛,𝑜

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜌𝜕𝛼1,𝑑

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜌𝜕𝛼2,𝑑
⋯

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜌𝜕𝛼𝑛,𝑑

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛽𝜕𝛼1,𝑜

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛽𝜕𝛼2,𝑜
⋯

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛽𝜕𝛼𝑛,𝑜

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛽𝜕𝛼1,𝑑

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛽𝜕𝛼2,𝑑
⋯

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛽𝜕𝛼𝑛,𝑑

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜎𝜕𝛼1,𝑜

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜎𝜕𝛼2,𝑜
⋯

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜎𝜕𝛼𝑛,𝑜

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜎𝜕𝛼1,𝑑

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜎𝜕𝛼2,𝑑
⋯

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜎𝜕𝛼𝑛,𝑑 ]
 
 
 
 
 
 
 
 
 

, 

 
where for 𝑗 = 1,… , 𝑛, 
 
𝜕2 ln 𝐿𝑁

∗ (𝜔,𝜶𝑁)

𝜕𝜆𝜕𝛼𝑗,𝑜
= ∑ ℎ𝑛,𝑖𝑗

𝜆𝛼𝑜(𝜔, 𝛼𝑗,𝑜, 𝛼𝑖,𝑑)
𝑛
𝑖=1 , 

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛾𝜕𝛼𝑗,𝑜
= ∑ ℎ𝑛,𝑖𝑗

𝛾𝛼𝑜(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)
𝑛
𝑖=1 ,  

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜌𝜕𝛼𝑗,𝑜
= ∑ ℎ𝑛,𝑖𝑗

𝜌𝛼𝑜(𝜔, 𝛼𝑗,𝑜, 𝛼𝑖,𝑑)
𝑛
𝑖=1 , 

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛽𝜕𝛼𝑗,𝑜
= ∑ ℎ𝑛,𝑖𝑗

𝛽𝛼𝑜(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)
𝑛
𝑖=1 , and 
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𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜎2𝜕𝛼𝑗,𝑜
= ∑ ℎ𝑛,𝑖𝑗

𝜎2𝛼𝑜(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)
𝑛
𝑖=1  with 

 

ℎ𝑛,𝑖𝑗
𝜆𝛼𝑜(𝜔, 𝛼𝑗,𝑜, 𝛼𝑖,𝑑) = 1(𝑦𝑛,𝑖𝑗 = 0)𝜎

−2𝜓(𝜖𝑛,𝑖𝑗
+,∗ (𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)) (∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗

𝑛
𝑔=1 )  

                 −1(𝑦𝑛,𝑖𝑗 > 0)𝜎
−2(∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗

𝑛
𝑔=1 ), 

ℎ𝑛,𝑖𝑗
𝛾𝛼𝑜(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑) = 1(𝑦𝑛,𝑖𝑗 = 0)𝜎

−2𝜓(𝜖𝑛,𝑖𝑗
+,∗ (𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)) (∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 )  

                 −1(𝑦𝑛,𝑖𝑗 > 0)𝜎
−2(∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 ), 

ℎ𝑛,𝑖𝑗
𝜌𝛼𝑜(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑) = 1(𝑦𝑛,𝑖𝑗 = 0)𝜎

−2𝜓(𝜖𝑛,𝑖𝑗
+,∗ (𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)) (∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
𝑔,ℎ=1 )  

                 −1(𝑦𝑛,𝑖𝑗 > 0)𝜎
−2(∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
𝑔,ℎ=1 ),  

ℎ𝑛,𝑖𝑗
𝛽𝛼𝑜(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑) = 1(𝑦𝑛,𝑖𝑗 = 0)𝜎

−2𝜓(𝜖𝑛,𝑖𝑗
+,∗ (𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)) 𝒛𝑛,𝑖𝑗 − 1(𝑦𝑛,𝑖𝑗 > 0)𝜎

−2𝒛𝑛,𝑖𝑗 , and 

ℎ𝑛,𝑖𝑗
𝜎2𝛼𝑜(𝜔, 𝛼𝑗,𝑜, 𝛼𝑖,𝑑) = 1(𝑦𝑛,𝑖𝑗 = 0)

1

2𝜎3
[
𝜙(𝜖𝑛,𝑖𝑗

+,∗ (𝜔,𝛼𝑗,𝑜,𝛼𝑖,𝑑))

Φ(𝜖𝑛,𝑖𝑗
+,∗ (𝜔,𝛼𝑗,𝑜,𝛼𝑖,𝑑))

+ 𝜓 (𝜖𝑛,𝑖𝑗
+,∗ (𝜔, 𝛼𝑗,𝑜, 𝛼𝑖,𝑑)) 𝜖𝑛,𝑖𝑗

+,∗ (𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)]  

                 −1(𝑦𝑛,𝑖𝑗 > 0)
1

𝜎3
𝜖𝑛,𝑖𝑗
+,∗ (𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑). 

 
Note that  
 
𝜕2 ln 𝐿𝑁

∗ (𝜔,𝜶𝑁)

𝜕𝜆𝜕𝛼𝑖,𝑑
= ∑ ℎ𝑛,𝑖𝑗

𝜆𝛼𝑜(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)
𝑛
𝑗=1 , 

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛾𝜕𝛼𝑖,𝑑
= ∑ ℎ𝑛,𝑖𝑗

𝛾𝛼𝑜(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)
𝑛
𝑗=1 ,  

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜌𝜕𝛼𝑖,𝑑
= ∑ ℎ𝑛,𝑖𝑗

𝜌𝛼𝑜(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)
𝑛
𝑗=1 , 

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛽𝜕𝛼𝑖,𝑑
= ∑ ℎ𝑛,𝑖𝑗

𝛽𝛼𝑜(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)
𝑛
𝑗=1 , and 

𝜕2 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜎2𝜕𝛼𝑖,𝑑
= ∑ ℎ𝑛,𝑖𝑗

𝜎2𝛼𝑜(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)
𝑛
𝑗=1  for all 𝑖 = 1,⋯ , 𝑛. 

 

  For the third-order derivative, define 𝜑(𝑥) =
𝑑(𝜓(𝑥))

𝑑𝑥
 . For 

𝜕3 ln 𝐿𝑁
∗ (𝜔0,𝜶𝑁

0 )

𝜕𝜔𝜕𝜶𝑁
′ 𝜕𝛼𝑗,𝑜

  and 
𝜕3 ln 𝐿𝑁

∗ (𝜔0,𝜶𝑁
0 )

𝜕𝜔𝜕𝜶𝑁
′ 𝜕𝛼𝑖,𝑑

 , the 

relevant terms are  
 
For 𝑗 = 1, … , 𝑛, 
 
𝜕3 ln 𝐿𝑁

∗ (𝜔,𝜶𝑁)

𝜕𝜆𝜕𝛼𝑗,𝑜
2 = ∑ 𝑡𝑛,𝑖𝑗

𝜆𝛼𝑜(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)
𝑛
𝑖=1 , 

𝜕3 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛾𝜕𝛼𝑗,𝑜
2 = ∑ 𝑡𝑛,𝑖𝑗

𝛾𝛼𝑜(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)
𝑛
𝑖=1 ,  

𝜕3 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜌𝜕𝛼𝑗,𝑜
2 = ∑ 𝑡𝑛,𝑖𝑗

𝜌𝛼𝑜(𝜔, 𝛼𝑗,𝑜, 𝛼𝑖,𝑑)
𝑛
𝑖=1 , 

𝜕3 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛽𝜕𝛼𝑗,𝑜
2 = ∑ 𝑡𝑛,𝑖𝑗

𝛽𝛼𝑜(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)
𝑛
𝑖=1 , and 

 
𝜕3 ln 𝐿𝑁

∗ (𝜔,𝜶𝑁)

𝜕𝜎2𝜕𝛼𝑗,𝑜
2 = ∑ 𝑡𝑛,𝑖𝑗

𝜎2𝛼𝑜(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)
𝑛
𝑖=1 ,  

 

where 𝑡𝑛,𝑖𝑗
𝜆𝛼𝑜(𝜔, 𝛼𝑗,𝑜, 𝛼𝑖,𝑑) = −1(𝑦𝑛,𝑖𝑗 = 0)𝜎

−3𝜑 (𝜖𝑛,𝑖𝑗
+,∗ (𝜔, 𝛼𝑗,𝑜, 𝛼𝑖,𝑑)) (∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔𝑗

𝑛
𝑔=1 ), 

𝑡𝑛,𝑖𝑗
𝛾𝛼𝑜(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑) = −1(𝑦𝑛,𝑖𝑗 = 0)𝜎

−3𝜑 (𝜖𝑛,𝑖𝑗
+,∗ (𝜔, 𝛼𝑗,𝑜, 𝛼𝑖,𝑑)) (∑ 𝑦𝑛,𝑖ℎ𝑚𝑛,ℎ𝑗

𝑛
ℎ=1 ), 

𝑡𝑛,𝑖𝑗
𝜌𝛼𝑜(𝜔, 𝛼𝑗,𝑜, 𝛼𝑖,𝑑) = −1(𝑦𝑛,𝑖𝑗 = 0)𝜎

−3𝜑 (𝜖𝑛,𝑖𝑗
+,∗ (𝜔, 𝛼𝑗,𝑜, 𝛼𝑖,𝑑)) (∑ 𝑤𝑛,𝑖𝑔𝑦𝑛,𝑔ℎ𝑚𝑛,ℎ𝑗

𝑛
𝑔,ℎ=1 ), 

𝑡𝑛,𝑖𝑗
𝛽𝛼𝑜(𝜔, 𝛼𝑗,𝑜, 𝛼𝑖,𝑑) = −1(𝑦𝑛,𝑖𝑗 = 0)𝜎

−3𝜑 (𝜖𝑛,𝑖𝑗
+,∗ (𝜔, 𝛼𝑗,𝑜, 𝛼𝑖,𝑑)) 𝒛𝑛,𝑖𝑗, and 

𝑡𝑛,𝑖𝑗
𝜎2𝛼𝑜(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑) = −1(𝑦𝑛,𝑖𝑗 = 0)

1

2𝜎4
[

2𝜓 (𝜖𝑛,𝑖𝑗
+,∗ (𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑))

+𝜑 (𝜖𝑛,𝑖𝑗
+,∗ (𝜔, 𝛼𝑗,𝑜, 𝛼𝑖,𝑑)) 𝜖𝑛,𝑖𝑗

+,∗ (𝜔, 𝛼𝑗,𝑜, 𝛼𝑖,𝑑)
] + 1(𝑦𝑛,𝑖𝑗 > 0)

1

𝜎4
. 

 
For 𝑗 = 1, … , 𝑛 and 𝑖 = 1, … , 𝑛, 
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𝜕3 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜆𝜕𝛼𝑗,𝑜𝜕𝛼𝑖,𝑑
= 𝑡𝑛,𝑖𝑗

𝜆𝛼𝑜(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑), 
𝜕3 ln 𝐿𝑁

∗ (𝜔,𝜶𝑁)

𝜕𝛾𝜕𝛼𝑗,𝑜𝜕𝛼𝑖,𝑑
= 𝑡𝑛,𝑖𝑗

𝛾𝛼𝑜(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑),  

𝜕3 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜌𝜕𝛼𝑗,𝑜𝜕𝛼𝑖,𝑑
= 𝑡𝑛,𝑖𝑗

𝜌𝛼𝑜(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑), 
𝜕3 ln 𝐿𝑁

∗ (𝜔,𝜶𝑁)

𝜕𝛽𝜕𝛼𝑗,𝑜𝜕𝛼𝑖,𝑑
= 𝑡𝑛,𝑖𝑗

𝛽𝛼𝑜(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑), and  

𝜕3 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜎2𝜕𝛼𝑗,𝑜𝜕𝛼𝑖,𝑑
= 𝑡𝑛,𝑖𝑗

𝜎2𝛼𝑜(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑). 

 
For 𝑖 = 1,… , 𝑛, we have 
 
𝜕3 ln 𝐿𝑁

∗ (𝜔,𝜶𝑁)

𝜕𝜆𝜕𝛼𝑖,𝑑
2 = ∑ 𝑡𝑛,𝑖𝑗

𝜆𝛼𝑜(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)
𝑛
𝑗=1 , 

𝜕3 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛾𝜕𝛼𝑖,𝑑
2 = ∑ 𝑡𝑛,𝑖𝑗

𝛾𝛼𝑜(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)
𝑛
𝑗=1 ,  

𝜕3 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜌𝜕𝛼𝑖,𝑑
2 = ∑ 𝑡𝑛,𝑖𝑗

𝜌𝛼𝑜(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)
𝑛
𝑗=1 , 

𝜕3 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛽𝜕𝛼𝑖,𝑑
2 = ∑ 𝑡𝑛,𝑖𝑗

𝛽𝛼𝑜(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)
𝑛
𝑗=1 , and 

𝜕3 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝜎2𝜕𝛼𝑖,𝑑
2 = ∑ 𝑡𝑛,𝑖𝑗

𝜎2𝛼𝑜(𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)
𝑛
𝑗=1 .  

 

  For 
𝜕3 ln 𝐿𝑁

∗ (𝜔0,𝜶𝑁
0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ 𝜕𝛼𝑗,𝑜

  and 
𝜕3 ln 𝐿𝑁

∗ (𝜔0,𝜶𝑁
0 )

𝜕𝜶𝑁𝜕𝜶𝑁
′ 𝜕𝛼𝑖,𝑑

 , the relevant terms (see the derivation of second order 

derivatives above) are  
 
𝜕3 ln 𝐿𝑁

∗ (𝜔,𝜶𝑁)

𝜕𝛼𝑗,𝑜
3 = ∑ 𝑡𝑛,𝑖𝑗

𝛼𝑜 (𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)
𝑛
𝑖=1  for 𝑗 = 1,… , 𝑛; 

𝜕3 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛼𝑗,𝑜
2 𝜕𝛼𝑘,𝑜

= 0 for 𝑘 ≠ 𝑙; 

𝜕3 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛼𝑗,𝑜
2 𝜕𝛼𝑖,𝑑

= 𝑡𝑛,𝑖𝑗
𝛼𝑜 (𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑) for 𝑗 = 1,… , 𝑛 and 𝑖 = 1,… , 𝑛;  

𝜕3 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛼𝑖,𝑑
2 𝜕𝛼𝑗,𝑜

= 𝑡𝑛,𝑖𝑗
𝛼𝑜 (𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑) for 𝑗 = 1,… , 𝑛 and 𝑖 = 1,… , 𝑛;  

𝜕3 ln 𝐿𝑁
∗ (𝜔,𝜶𝑁)

𝜕𝛼𝑖,𝑑
2 𝜕𝛼𝑙,𝑑

= 0 for 𝑖 ≠ 𝑙; and 
𝜕3 ln 𝐿𝑁

∗ (𝜔,𝜶𝑁)

𝜕𝛼𝑖,𝑑
3 = ∑ 𝑡𝑛,𝑖𝑗

𝛼𝑜 (𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)
𝑛
𝑗=1  for 𝑖 = 1,… , 𝑛, 

 

where 𝑡𝑛,𝑖𝑗
𝛼𝑜 (𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑) = −1(𝑦𝑛,𝑖𝑗 = 0)𝜎

−3𝜑 (𝜖𝑛,𝑖𝑗
+,∗ (𝜔, 𝛼𝑗,𝑜 , 𝛼𝑖,𝑑)). 
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