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Abstract

We introduce a spatial autoregressive (SAR) model for an origin-destination flow with
the maximum likelihood (ML) estimation method. Each flow y,;; shows a signal from
an origin j to a destination i. A linear SAR model for flows quantifies three channels of
spatial influences on y,;;: (1) effect from j to a third-party unit, (2) that from a third-
party unit to i, and (3) that among third-party units. Motivated by a panel data model],
we accommodate two-way fixed effects for innate characteristics of origin and
destination. For a frequent data environment of flows, we also design a SAR Tobit model
for flows. The ML estimator’s asymptotic properties for the SAR Tobit model are
investigated by the spatial near-epoch dependence (NED) concept. Using our models, we
capture the significant three channels of spatial influences among the U.S. states’
migration flows.
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likelihood estimation, U.S. migration flow
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1. Introduction

This paper develops a spatial autoregressive (SAR) model for an origin-destination flow with
estimation methods. Each flow y,;; canbe regarded as a directed outcome generated from origin unit
j toward destination unit i (hereafter, j denotes an origin while i represents a destination). A
famous example of origin-destination flows is the U.S. states’ migration flows. A traditional SAR model
(e.g., Cliff and Ord, 1973; Ord, 1975; Anselin, 1988; Kelejian and Prucha, 2001; and Lee, 2004, 2007;)
captures the spatial dependence among elements in a univariate variable. As an extension of a univariate
SAR model, a corresponding research question is how to measure the spatial dependence among flows.
A flow variable contains more information relative to a univariate variable in two aspects. First, two
units’ (or more) characteristics might affect a flow y, ;;. Second, a flow y,;; contains a direction of
influence. Hence, a model specification for a flow variable should be more complex than that for a
univariate variable. Relevant works can be found in LeSage and Pace (2008), Fischer and LeSage (2020),
and Lee and Yu (2020).
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for comments.
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Compared to the existing literature, our model has three advances. First, we clarify channels of spatial
influences among flows by specifying a role of each cross-section unit and its position in spatial
networks. Since a flow y, ;; contains directional information (from j to i), our model needs to show
how spatial effects are generated from j toward i through third-party units with spatial network links.
The main issue here is to characterize roles of third-party units in generating spatial spillovers. By
introducing a relevant economic model, those channels will be justified. Second, we develop our SARF
model for a censored flow variable. When a connection between two units is weak, a flow between them
is frequently zero. Also, note that an origin-destination flow y, ;; belongs to a gross flow, which is
necessarily nonnegative. They motivate us to build a SARF model with the Tobit structure (hereafter,
SARF Tobit model). Relevant asymptotic inferences for the SARF Tobit model will be considered. Third,
for an extension of SAR models for flows (hereafter, SARF model), we suggest estimation methods,
which robustly control unobserved heterogeneities. Motivated by a traditional panel data model, we
accommodate a fixed-effect specification for unobserved characteristics of an origin and a destination.>
The asymptotic properties of the MLE for the linear SARF and the SARF Tobit models are studied when
there exist two-way fixed effects.

For the first contribution, we develop a SARF model and its economic foundation. When there exist
n cross-section units in a sample, a set of origin-destination flows can be characterized by an n X n
matrix Yy = [yn,ij] and an N X N link (network) matrix specifies their relations, where N = n?. We
consider directed forces among multiple units: a flow from j to i can be affected by flows involving
third-party units g, h, p,and q (i.e,aflowfrom j to g,aflowfrom h to p,oraflow from g to i).
Relative to the existing literature (e.g., LeSage and Pace (2008)), we have a general model specification
by allowing two n X n spatial weighting matrices W,, = [Wm- j] and M, = [mm-j], which characterize
network relationships among n cross-section units. ® Each element of the ith row of W,
characterizes a relative spatial influence describing an influx into a destination i while an entry of the
jth column of M,, shows a directed influence for an outflow from an origin j. In the aspect of agents’
decision-making, W, gives weights for agent j’s decisions y; 1j,***,Ynn; for j=1,---n while M,
contains weights for agents’ decisions toward i (Y1, Ynin) for i =1,---,n. We will give a
specification example for W, and M,, inthe empirical application.

In consequence, W, and M, can generate three-type spatial influences among y, ;;s via N X N
matrices: (1) I, @ W,, (2) M, ®IL,, and (3) M, ® W, . First, an N XN matrix I, ® W,
characterizes the spatial effect from an origin: a flow from an origin j to a third-party unit g. Second,
M, ® I,, specifies the spatial influence towards a destination: that from other unit g to a destination
i. Last, M, @ W, characterizes the effect among third-party units. Also, univariate exogenous
characteristics of i and j (x,; and x,;) and exogenous distance or flow variables (z,;;1,"**, Zn j 1)
can affect y, ;;. Our resulting model specification can nest the main equation of LeSage and Pace (2008)
(equation (20) in LeSage and Pace (2008)), but we clarify channels of spatial influences via directed

5 Note that a panel data set involves two indexes: (1) cross-section unit i and (2) time-series unit t. This data structure
leads to having individual and time fixed effects.
6 As a special case, we allow M, = W,,. This case can represent the channels (directions) of spatial influences when W, is
a directed network. Another case is the LeSage and Pace’s (2008) specification, i.e, M, = W, with a row-normalized W,,.
Their specification focuses on having weighted averages of flows instead of considering directional spatial influences.
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spatial network links. The first spatial effect arises via wy, ;55 4;. It shows the effect from the flow from
j to a third-party unit g through a network link wy,;,. A chain j —» g - i can represent the first
channel. The second-type spatial influence is represented by y;,;,m,p;, and a chain j+-h—i
describes this channel. The third spatial effect wy, ;5yn gnmy p; characterizes the influence from y, 45
via directed network links wy,;, and m, ;. This effect arises when there exist connections (1) from an
origin j to h,and (2) from g to a destination i. It can be represented by a chain:
j (origin) = h (3rd party I) = g (3rd party II) i (destination).
Mn,hj =flow yn gn Wn,ig

Note that y,;; would not have self-influence as the diagonal elements of W, and M, are zeros (i.e.,

Wi iiVnij = YnijMnjj = Wn,ii¥nijMn,jj = 0).

The designed model can be related to an extended gravity equation and a weighted network
formation model. When there exist n local representative agents, each flow 1y, ;; canbe considered as
an agent j’s decision on signal’s intensity toward agent i. If there is no spatial spillover effect, the agent
j’s optimal decision toward i can be represented by the conventional gravity model, which is a function
of characteristics of i and j. On the other hand, our model allows that third-party regions'
characteristics can affect y,;; when there is a significant spatial interaction effect. Due to the existence
of spatial spillovers, the impacts of characteristics of i and j can be amplified (i.e., multiplier effect).
By identifying the model’s parameters, the multiplier effects can be quantified as subsequent sections
have shown.

Second, in addition to the linear SARF model, we consider the SARF model with a Tobit structure. It
is motivated by a specific data environment for flow variables. In some empirical applications, we
frequently detect zero observations in flows. It is likely to have a zero value for y,;; even if there is a
connection between units i and j. We can observe many zero values when a level of cross-section units
is small (e.g., commuting flows among U.S. counties/cities). This is because a flow outcome between two
small units can less occur due to some budgetary reasons: for example, a flow of two counties is more
likely to be zero compared to that of two states or two countries. Hence, we consider a case that the
range of a flow 1y, ;; is constrained in some way with a modification of the Tobit model, which is a tool
for censored or truncated data. The resulting model is an extension of Qu and Lee (2012), Xu and Lee
(2015b), which concern about outcomes of states but not for flow variables with more complex network
structures. Thomas-Agnan and LeSage (2014) address this issue for flow variables with focusing on
Bayesian estimation procedures (see Section 83.4 in Handbook of Regional Science (2014)).

Third, we suggest methods and their statistical properties for robustly controlling unobserved
characteristics in estimating the SARF model. Instead of identifying the effects of univariate
characteristics (x,; and x, ;) on y,;;, we specify the effects of origin’s characteristics and those of
destination’s characteristics as fixed effects (i.e., two-way fixed-effect specification). The two-way fixed
effects are specified by 2n individual parameters (n parameters for origins and n parameters for
destinations). We can directly estimate the main parameters and fixed effects for both linear SARF and
SARF Tobit specifications. With the linear SARF specification, a concentrated log-likelihood for the main

7 We note that this assumption would exclude trade problems as internal trade is usually allowed in a trading issue. To apply
our model to a trade issue, we then need to allow nonzero diagonal elements of W, and M,,. In this case, the three-type
spatial influences explained above are not able to be separated.
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parameters can be established by using linear parameter properties of fixed effects.

For the two cases, we derive the log-likelihood functions. And then, asymptotic properties of the
maximum likelihood (ML) estimators are studied. For the spatial Tobit flow model, due to its nonlinear
structure, we build a topological structure for asymptotic analysis. On a geographic space, there exist N
pairs of flows. A spatial unit is then a pair (i,j) instead of a single cross-section unit i. Each statistic
(n,i; isoriginated from alocation of flow (i, ), which is generated by two units i and j. Hence, {qn,i j}
will construct a random field on a product space of cross-section units. The spatial near-epoch
dependence (NED) concept (Jenish and Prucha, 2012) is employed to derive the MLE’s asymptotic
properties when the SARF Tobit model is considered.8 Using this device, the law of large numbers (LLN)
and the central limit theorem (CLT) are applied to the main statistics.

We also examine the asymptotic distributions of the MLE for the linear SARF and SARF Tobit models
if there exist the two-way fixed effects. The existence of fixed effects leads to the incidental parameters
(Neyman and Scott, 1948).° For both models, we provide the analytical bias corrections. In the linear
SARF model, we apply the same strategy of deriving the asymptotic distribution of the MLE and its bias
correction as those introduced by Lee and Yu (2010). To derive the MLE’s asymptotic distribution for
the SARF Tobit model, we employ the idea of Fernandez-Val and Weidner (2016): the second-order
Taylor expansion of the concentrated log-likelihood evaluated at the true finite-dimensional parameters.
The source of the asymptotic bias is the usage of estimated fixed effects, whose components have slower
convergence rates than those of the main parameters’ estimates.

By Monte Carlo simulations, we study performance of the MLE and the bias corrected MLE (if we
consider the two-way fixed effects). When one disregards a censoring feature of flows, our simulation
experiments indicate that (1) estimates of the main spatial interaction parameters are biased and (2)
their coverage probabilities are distorted. Under the presence of fixed effects, downward biases in the
MLE:s of the spatial interaction parameters and the variance parameter are detected. The analytic bias
correction procedures for the linear SARF and the SARF Tobit models significantly reduce the
magnitudes of downward biases. In selecting a proper specification of spatial weighting matrices
(W,,, M), our simulations indicate that the Akaike weight based on candidate models’ sample log-
likelihoods is a reasonable measure.

This paper provides an empirical application: migration flows of the U.S. states in the year 2010. We
consider (W,, M,)) = (W,!,M?), where W,/ contains the shares of historical migrations toward
destinations (forces to destinations) and M? consists of those from origins (forces from origins). W,
and MY are directed networks and can show different roles of origins and destinations in propagating
spatial spillover effects. By the Akaike weights, the chosen specification provides a better fit than other

8 Inthe event, there were no censoring, for the asymptotic properties of QMLE for the SARF model, we can apply an extension
of the martingale difference central limit theorem (CLT) for a linear quadratic form (Kelejian and Prucha, 2001). And then,
consistency and asymptotic normality of the QMLE will be provided. For a linear SAR model, the scenario of spatial unit
allocation would not be needed but for the proper rate of convergence of estimator, expanded regions asymptotic is used. It
is for nonlinear spatial models under the spatial mixing or spatial NED frameworks, the location setting is needed as in Jenish
and Prucha (2009, 2012), so expanded regions asymptotic will be used.

9 In a panel data setting with large cross-section and time-series observations, the asymptotic bias exists and can be
corrected. Our setting is similar with the large panel data setting since there exist n origin units and n units for
destinations.
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specifications including that of LeSage and Pace (2008), i.e., (W, M,,) = (W&, W), where W, is
the row-normalized states’ adjacency matrix. We observe significant spatial influences by the three
channels. The estimated average multiplier effect from the linear SARF model is 1.0607, which means
the effects of i and j’s characteristics are amplified by 106.07% in the equilibrium (from the SARF
Tobit model, itis 1.0817). When we control unobservables via fixed effects, the estimates of the spatial
interaction parameters from both linear SARF and SARF Tobit specifications are also significant.
However, their magnitudes become smaller in absolute values (1.0024 from the linear SARF model and
1.0164 from the SARF Tobit model).

2. Model equations

Assume that there exist n cross-section units (e.g, regions) in a sample. That is, one has N = n?
observations in an origin-destination flow variable. Let Yy = [yn_l- j] be an n X n matrix of flows, and
W, = [Wn,l-j] and M, = [mn,l-j] be n X n spatial weighting matrices characterizing relations among
cross-section units i = 1,---,n. As a traditional spatial econometric model, we assume that every spatial
network link is nonnegative; and each diagonal element is zero. Each y,;; can be considered as a
directed outcome from j (origin) to i (destination). For example, on migration data, y,;; is a
migration flow from state j to state i. To explain Yy, one can employ K univariate exogenous
variables X, = [Xp1, -, Xnk| = [Xn1 = %nn] With Xnx = (tn1je = Xnnk) for k=1,--,K and
Xni = (xn,l-,l,m,xn,i,,()' for i =1,---,n; and L exogenous distance or flow variables z,;;; for [ =
1, L.

Two spatial networks W,, and M, allow us to have different sources of spatial influences. The first
network matrix W, characterizes directed spatial influences describing influxes into destinations in
terms of columns while the second network M,, specifies directed influences for outflows from origin
units in terms of rows. An advantage of this specification is that one can clarify the directions of spatial
influences. A SAR model with a flow variable (hereafter, SARF) can be specified as

— L
yn,ij = Qy + AO ZZ:l Wn,igyn,gj + Yo 2;11=1 yn,ihmn,hj + Po ZZ:l ZZ:l Wn,igyn,ghmn,hj + Zl:l .Bl,OZn,ij,l
+ YK (broXnik + CloXnjk) + €nij- €Y

The specification of explanatory variables is similar to that of LeSage and Pace (2008). They will be
introduced later. By aggregation, equation (1) can be consistent with a traditional SAR model for a
univariate variable in some special cases.!0 The orders of wy ;;Vn gy Yn,in™Mnnj aNd Wy jgVn gnMn pj
in (1) are introduced to highlight the directions of spatial effects. The three-type spatial effects
characterize the different roles of third-party units on a flow y,;;. The figure below illustrates an
example of four regions.

10 For example, if y, = p, = 0, equation (1) can be represented by

Yn,i. = Qy + Zﬁ:l Ck.Ofn,k + AO 23:1 Wn,ig)’n,g. + Z%:l .Bl,ozn,i.,l + Zlk(zl bk,oxn,i,k + En,i.'
=1 n .. (average inflows toward i), z,;;sand €,; can be similarly defined, and X, , = 1 X, i If
n& 1y‘n,L} g n,i.,l n,i. y nk n&j=1"njk
Ao = po = 0, we have another SAR representation from (1):

Vn,j = @0 + Liez1 broXni + Vo Zhe1 ManjYnn + 2ie1 BroZn,ji + L1 CoXnjk T Enj»
where =1 n .. (average outflows from j), z, ;;sand €, ; can be similarly defined.
Yn,.] i 1yn,L} g J n,j,l n,j y

5
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Figure 1. Three spatial effects on a flow yy, ;;
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As the first case, we consider M,, = W, which is a directed regional network;, i.e,, w;;; = 1 ifregion
j has an influence in region i’s economy; and wy;; =0 otherwise. For the first spatial effect,
WnigVngj Shows the influences by a flow from j to a third-party g if there exists a connection from
g to i (i.e, an influx into i). Then, this effect can be represented by a chain j » g » i. Second, if a
region h (third-party) and j are linked (i.e., an outflow from j) and y, # 0, the second spatial effect
channel exists (i.e., the effect of a flow from h to i). Then, a chain j = h ~ i canillustrate the second
spatial effect. Similarly, wy, ;;¥n gnWnn; Shows the effect of flows among third-party units when there
exist geographic connections (1) between j and a third-party h and (2) between a third-party g and
i. Achain j » h = g1 can show the third spatial influence.ll Note that this effect is distinguished
from the first two effects since w;,;; = w, ;; = 0.

As a general case, one can specify a different M,, from W, to present different sources of spatial
effects for economic reasonings. Observe that W, characterizes the effect from column sums of Yy
while M, is for the effect from row sums of Yy. Suppose that y,;; is a decision of agent j toward i
(i.e,, a signal). Note that W, provides weights for agent j’s decisions y; 1, -, ypn; for j=1,--,n.
Then, the weighted column sum }.7_; wy,;4y, 4 canrepresent the aggregated signals from j to i.On
the other hand, M, gives weights for agents’ decisions toward i, i.e, Yy 1,"**,Ynin for i =1,---,n.
The weighted row sum }}_; My ;Ynn of the ith row of Yy shows the aggregated signals toward i
via the connections of j. Since W,, and M,, can play different roles in weighting agents’ decisions, a
practitioner can specify proper settings of W,, and M,, which are consistent with his/her purpose. We
will introduce a theoretical model framework for this setting in Section 2.1, and empirical examples for
W,, and M,, in Section 6.

By allowing two spatial weighting matrices (W, M,,), our framework also generalizes the LeSage and

Pace’s (2008) specification. The LeSage and Pace’s (2008) specification can be written with a scalar
notation:

— n n n n L
Ynij = Qo T Ao Zg:l Wn,ig¥ngj t Yo Yh=1 Wn,jhYn,in 1 Po Zg:l Yh=1 Wh,igWn,jnYn.gh t D=1 IBl,OZn,ij,l

+ XK1 (broxnix + Ck,Oxn,j,k) + €n,ij-

The LeSage and Pace’s (2008) specification implies M,, = W, with a row-normalized W,,. Under this

11 Then, X7-1WnigVngjr Zh=1YninMnnj and X7_1 Xh_1 Wn igVn gnMnn; arelocal aggregates with specifying directions of
influences. In contrast to a univariate SAR model, there is no good rationale of considering a row-normalized W,, when

M,, = W,,. This is because the first and third channels of spatial effects involve the column sums of W,,.
6



specification, a flow y, ;; is a weighted average of other flows (i.e., local averages). Moreover, each
spatial network link might not contain directional information of a network.

Figure 2 shows potential channels that flow/univariate characteristics affect a flow y,;;. There exist
two effects from univariate characteristics X,. Since a flow y,;; involves two units i and j,
characteristics of both i and j can affect y,;; with different sensitivities. When y,;; is a migration

flow from state j to state i, population levels and personal incomes of states i and j can be
considered as components of X, . The coefficient by, captures the effect of a destination’s
characteristic x,;, on yy;; while ¢, measures the influence of an origin’s characteristic x, ; on

Ynij-

Figure 2. Potential characteristics affecting a flow y;;
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\ /
"

__/’

[ =)
r'y

bko Em Cko
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One can test the homogenous effect hypothesis, i.e,, by = cxo for some k. Under the hypothesis
byo = cko forall k=1,-,K, for example, each regressor becomes x,;x + xy, k. In this case, the
explanatory variable part of our model can be simplified to Y2 B 02y 151, where zp ;10 = Xpip +
Xn,jk and Brixo = bro for k =1,---,K. As the second-type explanatory variables, additional flows or
distance variables z,;;,**,Z,,j,, can be employed, and the parameters f;,,-,B.o capture the

linear effects of them. For example, one can utilize geographic distances {d;;}.

Using a specific data environment of our model, extra exogenous variations explaining y,;; can be
made. First, one can generate a z-variable using a univariate characteristic {xm-}. For example, an

economic distance can be generated by |incomei—incomej| (or an economic proximity

1 . L . :
— |) where income; denotes the region i’s personal income level. Another example is an
- j

income;

. . income; ) . . , , .
income ratio ———, which captures a relative volume of regions i and j. Compared to a distance
i

variable, a ratio-type variable can capture a variation in y,;; from asymmetric relations. On the other
hand, a z-variable can also generate a x-variable by summation. If W, = [W,‘f,l- j] denotes an adjacency
network matrix, one can generate degrees deg; = Yj-1 Wy j, to examine the effect of j’s network

connectivity on y, ;;. Other network statistics can also be generated from W;;".

For statistical analysis, a stacked vector notation is useful. In a matrix form with Yy = [yn,i ]-] as an
n X n matrix of flows,

Yy = aolnly + 2Wo Yy + voYuMy + poWoYa My + Xiey BroZn g + Xk—1(broXniln + CrolnXn i) + €, (2)



where each Zy, = [Zn,ij,l] for [=1,---,L is an n Xn matrix of an explanatory distance/flow
variable, and €y = [en,ij] stands for an n X n disturbance matrix. A univariate regressor matrix
should not contain a constant vector [,, for identification. Then, model (1) can be rewritten as

vec(Yy) = aoly + (oI @ W) + vo(M;, @ I,) + po(My, @ W) )vec(Yy) +
+ X ﬁl,ovec(ZN,l) + YR (bk,O(ln QL) + kol @ ln)) Xnx +vec(ey). (3)

In consequence, equation (3) represents the spatial influences among flow units. Observe that three
N X N matrices I,  W,, M;, Q I,, and M,, @ W,, characterize network relationships among flows,
and they correspond to spatial weighting matrices for a univariate SAR model. Let Wy =1, ® W,
My=M,Q1I, Ry=M, W, and Ay = AWy + YoMy + poRy. Observe that Ry = WyM,. For
each pair (i,j) for a flow, we can find a unique index f = (j — 1)n+i € {1,---, N}. Hence, the spatial
influence between two flows (i,j) and (g,h) (i.e,the (f,f’)-element of Ay, where f = ( —1)n+
i and f' = (h—1)n+ g) can be characterized by

(er,l,j X erll,i)AN(en,h & en,g) =A1( = h)Wn,ig +vol(i = g)mn,hj + PoWn,igMn hj»

where 1(-) denotes the indicator function, and enj = 0,--+,1,--,0)" with only the j component

being one and other entries being zero (which is an n-dimensional unit vector). The below provides a
discussion on the three network structures Wy, My, and Ry.

Remark. For interpretations, suppose that W, and M, are dichotomous networks. Let Cinq, ;j =

i=1Wnij and Cipgmj = Xi=1Mn; for each j (indegrees); and Coutqw,i = 2j=1Wni; and
Coutdmi = ?:1 my;; for each i (outdegrees). By the uniform boundedness assumption for row and
column sum norms of W, and M,, we have Y, cCpngw;=0m) and XY, Cingm: = 0(Mn°m)
where 0 < min{p,,, 0,n} < max{g,,,0,n} < 1. Then, the densities of W, and M, are respectively

Z?=1Coutd,w,i _ O(nQW—Z) and Z?:l Cind,m,i__ O(ngm—Z) 12
n(n-1) n(n-1) )

Note that the three networks Wy, My, and Ry characterize relations among flows. Then, the

!
vectors of row sums of Wy, My, and Ry are respectively L, ® (Coutamw1r " Coutdwn) »

! ! !
(Cind,m,lt Yy Cind,m,n) ® ln' and (Cind,m,l' T Cind,m,n) ® (Coutd,w,li ] Coutd,w,n) ; while their column

sums are l‘;’l ® (Cind,w,l' Y Cind,w,n) ’ (Coutd,m,lf Y Coutd,m,n) ® l7,’l ’ (Coutd,m,l; ) Coutd,m,n) ®

. it . yr.c i
(cmd,w,l, ---,cind’w'n), respectively. The densities of Wy, My, and Ry are respectively % =

ow—3 M: om—3 (., Coutdw,i)(Zies Cindm,i) — ow+om—4
0(n ), n(n?-1) 0(m®m~%), and 2 (1) o(n m~%). We observe that the

three networks for flows are sparser than W, and M, . For R, moreover, we have ||Ryll, <
IWyllollMyllw and ||Ryll1 < [[Wyllil|Myll; by Ry = WyMy and the submultiplicative property of
a norm. For asymptotic analysis, the row and column sum norms’ magnitudes of Wy, My,and Ry are
regulated when W,, and M,, are regulated. m

Let Sy = Iy — Ay be the spatial filter matrix. If Sy is invertible, the unique reduced form of (3) is

n —_ n
12 Note that Yj_; Cinam,j = Xi=1 Coutd,mi-



vec(Yy) = Si* |aoly + Xy Brovec(Zua) + Zhoy (Bieo(n ® 1) + Cieo(ln ® 1)) X + vec(en) |- (4)

. . oyr _ - _ 0¥f 1 -
The model implies that ?f,’l = ﬁl’O[SNl]ff, for [=1,---,L, and Fr e,\,,fS,\,1 (bk,o(ln X en,j) +

Ck,O(en,j X ln)) for j=1,-,n and k=1,-,K, where ey = (o,...,0,1,0,...,0)" denotes the N -

dimensional unit vector with the unit at the f component and zero elsewhere. Hence, the main part of
interpreting our model is understanding the structure of Sy*. We discuss this issue in Section 2.1.

Note that the spatial filter matrix Sy not only characterizes the equilibrium effects, but it also
determines the correlation structure of vec(Yy). From (4), the variance matrix of wvec(Yy) is
Var(vec(Yy)) = 0¢Sy*Sy™* where of isthe variance of €,;;. The variance of y,;; foreachpair (i, )
is ofey Sy Sy eny, where f=(j—1n+i. As n increases, in order for Var(vec(Yy)) to be
bounded, regularity conditions are needed so that Sy will not be explosive. A sufficient condition of
spatial stability is ||[Ayll < 1.1f W, and M, are diagonalizable, an eigenvalue of Ay is Aqwi,; +
Yo@2n,j + Po@1,niW2nj Where @, ,; and w,,; are respectively eigenvalues of W, and M, for i =
1,---,n.13 Then, the parameter space of the stable model can be {(A,y,p):|/161n’i+y62n,j+

pGZn,ja_)ln,i| < 1,foralli,j =1, ...,n}.

The parameter vector of our interestis 8, = (@, 1o, Yo, Po, Bo, b6, ¢, 02)" where By = (Bro, -+, Bro)’
by = (bl,o,-u,bK,O)', and ¢y = (01,0, "',CKIO)'. To estimate 6,, we employ the maximum likelihood (ML)
estimation method. Let 8 = (a, 4,y,p,B’,b’,c',6%)" with B = (By,--,B.), b = (by,,by)’, and ¢ =
(c1,-++,ck)’, be a parameter vector in a parameter space. If €,;;~i.i.d.N(0,0¢), the log-likelihood
function of the observed continuous dependent variables vector vec(Yy) is

InLy(8) = —%ln 21 — %ln o2 + Indet(Sy(1,v,p)) — # vec(eN(G))'vec(eN 6)), (5)
where Sy(4,v,p) = Iy —Ay(4,v,p) with Ay(A,y,p) = AWy + yMy + pRy, and
VeC(EN(H)) =Sy v, plvec(Yy) —aly — 2le1 ﬁlveC(ZN,l) - Zlk(zl(bk(ln Q)+, ® ln))Xn,k-

The maximum likelihood (ML) estimator 8, can be obtained by maximizing In Ly(6). In computing
0y, evaluating In det(SN Ky, p)) might be demanding when n is large. For this issue, we recommend
an approximation method using Chebyshev polynomials (see Pace and LeSage, 2004).1* When ¢€,;; is
not normally distributed, the log-likelihood function (5) will be a quasi log-likelihood function. We will
study the quasi-maximum likelihood (QML) estimator’s asymptotic properties in Section 4.

13 More details on the preceding eigenvalues can be found in Appendix Claim A.1. Due to the Kronecker product structure
in Ay, we note that the above eigenvalues of Ay can be derived even though W, and M, are not necessarily
simultaneously diagonalizable.

14 Compared to a univariate SAR model, Sy(1,¥,p) is an n?-dimensional square matrix. Hence, a computation cost for
In det(S v, p)) exponentially increases when cross-section observations increase. Also, utilizing Chebyshev polynomials
is better than considering the Taylor series expansion. Their simulation results have shown that Chebyshev polynomials
demonstrate robust performance across a range of spatial interaction parameters.
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Since a, B, b, and c are linear parameters of exogenous regressors and ¢ is the variance
parameter of disturbances, we can establish the concentrated log-likelihood function solely relying on
A, v, and p . For notational convenience, let § = (4,y,p)', k= (a,pB',b',c")' , and X, =
[lN, vec(ZNll), O vec(ZN'L), QL)X (I, & ln)Xn]. By the first-order conditions, we have Ky (§) =
Xy X)X Sy (8)vec(Yy) for each 8. By putting £y (8) back into InLy(8), we obtain

InLy(8,02) = —ZIn2m — ZIno? + Indet(Sy(6)) — = vec(Yy)'Sy (5) My, Sy (8)vec(Yy),

where My, = Iy — Xy(XyXpy)'X}. Using 65(6) = %vec(YN)’S,’V(6)MXNSN(5)17€C(YN), we obtain the

concentrated log-likelihood function:
InLy(8) = — g (In2r+1) — gln 62(8) + Indet(Sy(8)),
which can be used for the optimization search on § for estimation.

2.1. Economic foundation

The purpose of this section is to provide economic reasonings of model (1). With this point, we will
investigate the structure of Sy!. An economic foundation of the process (4) can be a set of optimal
outcomes of representative regional agents. We suppose that there exist n representative agents and
each agent j can choose n actions, yyij,'*,¥Ynnj. Since this problem is choosing the signals’

intensities from J, it can be related to weighted network formation. That is, a matrix of flows Yy can
be considered as a weighted network. A recent theoretical work on weighted network formation is
Baumann (2021).1> In the Baumann’s (2021) concept, y,j; is j’s self-investment while 1y, ,; for

k # j is an amount of investment from j to k. We can relate this signal choice problem to an optimal
resource flow model.

For illustrative purposes, let y,;; be the logged resource flow from j to i (denoted by
In(rflow;;)), zn;; =In(1+d;;) and x,; = In(pop;), where d;; denotes the geographic distance
between i and j and pop; denotes the region i’s population level (mass). Thatis, L =1 and K =
1. For interpretations, we consider the log-transformed variables to have the same framework with
McCallum’s (1995) gravity model: rflow;; = rflowexp(e;)(1 +dij)ﬂ°popf°pop;°, where 7rflow
denotes the baseline of rflow;;. Then, the coefficients Sy, by, and ¢, represent elasticities and their
expected signs are By, <0, by>0, and ¢y >0 .1 For the case of i=j, rflow;=
Wexp(eii)popf"ﬂ", which indicates that the i’s self-investment rflow;; is only affected by the i’s
characteristics. The pop;-elasticity of rflow;; is by + cy.

15 Baumann (2021) establishes an incentive structure of forming {yn_l-j}. Her model has a restriction on the agent’s utility
function, e.g, yn;; =0 if and only if y,; =0 for j# i. Even though our model does not rely on her theoretical
assumptions, her interpretations on a weighted network link can be applied to a flow y,, ;;.

16 A similar structure can be found in estimating the Cobb-Douglas production function. Refer to Section 1.3 in Wooldridge
(2010).
10



Let Ny = (nn,lll o lnnt i Mnin nn,nn), where Nnij = Bo (Zn,ij - Z_n) + by (xn,i - JE‘n) +
Co (xn, i~ fn) + €,;; be a vector of exogenous characteristics. Note that Zz, and X, denote
respectively the averages of {Zn,i ]-} and {xn,i}. To justify equation (4), a utility of a representative agent
for region j from his/her relation with that for region i is

. r 1 2
U](l) = en,iSinv.jnNyij - E(yn,ij - yne San]l ) ’

!

where Sy =[Sty Sinvzr = Sinwnl’ (i€, Sinyj is an n X N submatrix of Sy', so ey ;Siy; is the
(j — 1)n + i-th row of Sy') and 3, denotes the social norm/guideline in selecting y, ij- Each Sjpy
shows the externalities from spatial influences; and — % (yn,ij — Vne, va]lN) represents a quadratic

cost of sending a signal to i.

If 49 = yo = po = 0, there is no spatial influence (no externality). In this case, U;(i) = 1y, ¥n,ij —
%(Yn,ij — yn)z with ¥, = oz, + (by + co)X,, which implies that there is no incentive to consider the
effects of a third-party unit. On the other hand, characteristics of a third-party unit can affect a signal

) Then,as yy,;; =

ynl-j if some of Ay, yp,and p, arenonzero.Let e ;Sip, ; = (va 117 mv21,~- mvnn

eniSinv.jYnly + My), the optimal resource flow can be characterized by

ij

- ym n i Sinw,
rflow,; = rflow 6=+ Zhessiman [[1_, T2 _, (exp(egn) (1 + dgn) “poppopopse) ™"

Then, the optimal resource flow rflow;; is also affected by characteristics of third-party units through
ij

Sinv,gh* Also, the effects of i and j's characteristics on rflow;; (represented by the coefficients S, by,

and c,) are amplified by ,Bosmv ij» boSip,j»and cosmv ;- The remark below describes the structure of
ij

Sinv,gh'

Remark (Structure of Sy1). First, consider the case of p, = —Ayy, (LeSage and Pace’s (2008) special
case) to provide intuitive explanations.l” By having separable spatial filters (destination-based and
origin-based), this case can highlight the roles of the two spatial networks W,, and M,,.

Consider the case of (i,j) = (g, h) to study the spatial multiplier effect. If p, = —Aoyo with spatial

stability, we have Sy! = (IN + 30,45 (I, ® Wp)) (v +X5-1vd (M' @1,,)) and smv ;; isadiagonal
element of Sy*. Then, the (f,f)-elementof Sy! with f=(G —1n+i is

[Sv'1sr = (en; ® en,i) (IN + X140 (I ® Wnp)) (v + 2oz v (M ® 1)) (en; ® eni)

17 A similar parameter restriction can be found in a dynamic spatial panel data model (see Section 12.2.2 in Lee and Yu
(2015)). In a spatial dynamic panel data model, a similar restriction leads to separable space and time filters. Similarly, the
parameter restriction p, = —A,y, separates the spatial dependence among flows into (1) origin-based dependence M, ®
I, and (2) destination-based dependence I, ® W, (see Section pages 952-954 of LeSage and Pace (2008)). Even though
LeSage and Pace (2008) discuss the special case (M,, = W, with a row-normalized W,,), the same idea of separable space
filters can be applied.
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where Wn,ii = mn,ii = 0.

For the above, note that [M,'lq]jj = e, Myle,; = e, Mie,; = [Mﬁ]jj. Hence, [Sy']ss isacombination
of the feedback effects (1) from i to i,and (2) from j to j,ie, i --+—1i and j+- -+ j for p,q =
pth—order qth—order

1,2, -+, 00. For the feedback effect from i to i, note that the middle links might not include i for some
order p, even though some mightinclude i.18 The same logic can be applied to the feedback effect from
j to J.

To illustrate the roles of third-party units, we secondly consider the structure of siif;v‘gh when
@ j) # (g, h):

o (816 = WP, +¥816 = MR, )+ Zom Zima Ay (W], ],

We observe that siif;u gn consists of (1) chains from third-party g to destination i (i.e., g~ - =i

via [Wnp]ig) and (2) those from origin j to third-party h (i.e, j = -+ h via [Mﬁ]hj)- From the

gl
structure of s;,,, -,

describing influxes into destination units while the second network M,, specifies directed influences
for outflows from origin units.

Second, if there is no restriction on Ay, ¥y, and p,, Syt =1Iy + Z;le(/lo(ln QW) +voM, & I,) +
po(M;, ® Wn))p. Then, the (f,f’)-element of Sy* with f=(G—1)n+i and f'=(h—Dn+g is

we verify that the first network matrix W, characterizes relative spatial influences

oo p! P1,,P2 P p1+p p2+p
szo 2p1+p2+p3=p p1|p2|p3|101)/0 2p03 [Wn ! 3]lg [an 3]h]

by the trinomial expansion formula. Then, the p-th order effect contains (1) the p; + p3-th order
effects from g to i originated from Wnplﬂ’3 and (2) the p, + p3-th order effects from j to h by
MP?™P3 suchthat p; +p, +ps =p. ®

2.2. Fixed-effect specification for unobserved characteristics of both origin and
destination

In this subsection, we introduce an alternative linear SARF model specification with a fixed effect for

each origin unit, and a fixed effect for each destination unit, which can robustly control unobserved
characteristics. Consider an extension of the linear SARF model:

— n n n n
Ynij = /10 Zg:l Wn,igVn.gj + %Yo Zh:l Vn,inMn,hj + po Zgzl thl Wn,igYn,ghMn,nj

18 For the second and third order effects (i.e, p = 2,3), paths are i =» k +— i for some k (when p=2)and i » k; »
k, » i for some k; and k, (when p = 3). Since we exclude self-influence, note that k, k,, and k, do not contain i.
From the fourth order effect (p = 4), the middle links can contain i since a possible pathis i = k; » k, = k3 = i forsome
k4, k,, and k5. By the same logic, potential k; and k; do not include i. However, k, can contain i if there exist paths
ky—iand i+ ks.
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+2yijBo + Aiao + Qoo + €ij, (6)

4
where z,;; = (zn,ij'l, ---,zn’l-j,L) , @iq,0 denotes a destination i's fixed-effect component, and «;,, is
an unobserved fixed-effect component of origin j due to the presence of unknown fixed effects.1® Let
wo = (84, Bs,02)" be the true parameter vector for model (6) and w = (8',5’,62)" be a vector of

!/ !/
possible parameter values. Let a,,¢ = (al,o,O"":an,o,O) and ay g0 = (al,d,o, ---,an,d,o) be vectors

! !/
of the true fixed-effect componentsand @, = (@1, ", @no) and @ng = (@14,**, anq) be possible
vectors of fixed-effect components. The vector/matrix notation of (6) is

vec(Yy) = (AWy +voMy + poRy)vec(Yy) + Zyfo + Ao o®ly + 1, Q0,40 + vec(ey), (7)

where Zy = [vec(ZN,l), T vec(ZN,L)]. The reduced form of (7) is

vec(Yy) = Syt (ZNﬁO + Ay 0 0®ly + 1, Q0 g0 + vec(eN)).

To effectively estimate w,, we need to remove the incidental parameters a,,, and a, 4, from the
log-likelihood function. The log-likelihood function for estimating w, is

InLy(w, ey, ang) = — gln 2T — gln o? + Indet(Sy(8))

1 + ' +
— o vec (eN (w, @, an,d)) vec (eN (0, @n,, an,d)),

where vec (eﬁ(w, Ao an,d)) = vec(ey (w)) — @y, ®l, — 1,®@a, 4 and

vec(efi(w)) = Sy(8)vec(Yy) — X, Bivec(Zy,). Observe that a,, and a,, are linear parameters.
By the first-order conditions, we then obtain

an,o ((1), an,d) = %(In®l;1) (vec(el-\ll-(w)) - ln®an,d): and ]nan,d(w) = %(lg@jn)vec(fﬁ (w))

Note that we need to impose a normalization restriction J,@,;(w) = @, 4(w) for identification.20

Hence, vec <6,$ (w, @0 (a), @ (w)),&n_d(a))>> = (Ju®/J)vec(ef (w)). Then, the concentrated log-

likelihood function for estimating w is

InLy(w) =— %ln 2m — gln o2 + Indet(Sy(8)) — ﬁvec(ei& (w))’(]n@)]n)vec(e{, (w))

19 Also, equation (6) is an extension of the gravity equation with the two-way fixed effects and assuming 4y =y, =p, =0
(see Chapter 5 of Feenstra (2003)).

Under specification (6), identifying the sensitivity effects for x,; and x,; will not be possible via the estimation of (6),
but however, it can be done by a two-step method (Hausman and Taylor, 1981). We might estimate the coefficients of x,, ;
by a regression of estimated constantterm «a, on x, if x,, were exogenous, butby an IV approach in the presence of valid
IVs for x,, when x, is endogenous.

20 Under the restriction J,&,4(w) = @, 4(w), we have

@y (@ @a(@)) = = (1 ®L) (vec(6§ (@) = L@ (@) ) = 5 L BL)vec(e ().
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with @y = argmax|In Ly(w), where 0, denotes a compact parameter space for w.

WEB,
. al . ~ . . .
Since E (%M#(MO)) — 0 as n — o, we have consistency of @,. However, the direct estimation
N ~ . al
approach leads to an asymptotic bias of @y since E (\/LNM*(%)) = Ay # 0 for some Ay = 0(1).

Hence, a bias correction for @, is needed. In Section 4.2.1, we introduce the asymptotic properties of
@y and a bias correction method by analytically evaluating the form of Ay.

3. SARF Tobit models

In some application, a flow variable matrix Yy contains many zero values. For example, a flow
outcome between two regions can less occur due to some budgetary reasons if cross-section units are
small. Also, an origin-destination flow y,;; is a gross flow, which is necessarily nonnegative. This

section extends the linear SARF model to a model with the Tobit structure (see Tobin (1958)).

We consider the simultaneous SAR Tobit model for a flow variable (hereafter, SARF Tobit). Refer to
Qu and Lee (2012), Xu and Lee (2015b), Xu and Lee (2018) for univariate SAR Tobit models. For an
N x 1 real vector x = (x1,-+.xy)’, let F(x) = (max(0,x,), -, max(0,xy))"?! Observe that F(-) is a
non-decreasing, convex, and Lipschitz function (since |F(x;) — F(x;)| < |x; — x3|). The SARF Tobit
model equation is

vec(Yy) = F(Ayvec(Yy) + Xyko + vec(ey)),

where Xy =[x}, -, xy]" with %ni = (1, Znij,1 ) Znijn Xnits Xk Xn j1s "> Xn jx)  for each
(i,j) (e, xn;; =2xyp with f=( —1Dn+i isthe fthrow of Xy), and k, = (ag, By, by, ¢)'. Using
a scalar notation, the model can be written as

yn,ij = F(/lo ZZ:l Wn,igyn,gj + Yo Z;ll=1 yn,ihmn,hj + Po 23:1 22=1 Wn,igyn,ghmn,hj + xn,inO + En,ij)- (8)

Or, ¥nij =0 if y,;; <0 and yy;; = yp;; if yn;; >0, where y,;; is the argument inside the F(:)
above. Let vec(Yy) be an N X 1 vector whose elements are inside of F(-) of the right-hand-side of
(8). Then, the model can be rewritten as vec(Yy) = F(vec(Y,(})).

Now we consider conditions for model’s stability and coherency. Recall that a model can generate a
manageable covariance structure under spatial stability. Since the SARF Tobit model involves a
nonlinear transformation F(-), a stability condition might be different from that of the linear SARF
model. The model’s coherency is required to guarantee a unique solution of a nonlinear equation system
vec(Yy) = F(vec(Y,(;)). The below assumption states a sufficient condition for the two issues.

Assumption 3.1. Assume that Sy = Iy — Ay is a strictly dominant diagonal matrix. Let { =
sup,||Ayllw, and it is assumed that { < 1.

21 AsXuand Lee (2015b) mentioned (see Section 2 in Xu and Lee (2015b)), this framework can be extended to the case that
censoring points are known and nonzero.
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Assumption 3.1 means that Z}V,=1| [AN]ffr| <1 for all f=1,---,N (Note that Ay has zero
diagonal elements due to excluding self-influence). Then, ||Ay|le < { <1 forsome 0 < { < 1. Under
Assumption 3.1, the system has a solution to a contraction mapping. The condition in Assumption 3.1 is
also employed in asymptotic analysis. The detailed arguments can be found in the Appendix.

Yy 1,N1>

YN,
where the first N; observationsin y, y are zeros while the remaining N, = N — N; observations are

To derive the log-likelihood function, we rearrange a set of observations such that vec(Yy) = (

€n,ij

positive. Assume €, ;;~. 1. d.N(0, 002), so we have ~i.i.d.N(0,1). For notational convenience, let

4]
f:l,ij 0) = (yn,ij - /122=1 WhigYngj —V Yh=1 YninMpnj — P ZZ=1 Yh=1 WhigYnghMnhj — xn,in)/Cf

be the normalized residual evaluated at 6. Then, the log-likelihood function for estimation is

InLy(0) = X =4 1(yn,l-j = O) In ® (e;kllij (0)) — %ln 2mo? Zli\,]j=1 1(yn,ij > 0) + Indet (S,’(,Z (6))

2
—%23j=1 1(Ynij > 0) (E:L,ij(e)) :

where Sy, (8) is the submatrix of Sy(6) corresponding to y,;; > 0. For notational convenience, let
Sn,(8) = Iy, — AWy —YMoyn — pRy;y where Wy, M,y , and Ry, are respectively the
submatrices of Wy, My, and Ry corresponding to positive flows. Note that the number of positive
flows (i.e, elements of y,y,) and their positions W, y, M5, y, and R,y in the whole spatial

relations in a sample are stochastic.

The asymptotic properties of 8y rely on stochastic properties of In det (S N, (5)) and its derivatives
with respect to & . Define Gy(Yy)= diag}vzll(yn,ij >0withf =G —Dn+ i) , Wy=
Gy(YWW NGy (YY), My = Gy(Yy)MyGy(Yy), and Ry = Gy(Yy)RyGy(Yy). For f=1,--,N and for
each &, let 7y ;,(8) = [WNgﬁl(S)]ff, vy (8) = [IWNgﬁl(d)]ff, and 1y ,(8) = [§N§,§1(6)]ff,
where Sy(8) = Iy — AWy — yMy — pRy. Then, we have

l
In det (5;\;2 (5)) e <tr((GN(YN)A1\l,(6)GN(YN)) ))

tr (WaznSi,(8)) = tr (WS (8)) = 117y, p.a(8) = Ty 1o ia(8),
tr (Mo Si, ™ (8)) = tr (MySy*(8)) = BNy 1y (8) = o1 iy (8) ,and
tr (RazwSi, ' (8)) = tr (RuSv*(8)) = o1 ,p (8) = T2y Ty o ().

At 8y, we define 75,54 = 13,ij,2(80), Tnijy = Tnijy(Go),and 15, = 1,ij,,(8) foreach (i,)).

If one wants to control unobservables via the fixed-effect specification, the following log-likelihood
function can be utilized:
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In Ly (w, @, @ng) = XFj=y 1(yni; = 0) lnCID( nl](a) a; O,ald)) — —ln 21102 X} i21 1(yn; > 0)

+lndet(SN (6)) l] 11(y‘nl] > 0)( nu((‘) a]mald)) __(Z] 1 ]0 _Z?=1ai,d)21

n n n
Ynij—AXg=1Wnig¥ngj~Y Lh=1YninMnhj=P Xgh=1Wn,igVnghMnhj—ZnijB—Aj0o—Aia
ag

and

where en i (a), @0 aid) =

{ is an arbitrary positive constant. The penalty term —= (Z Ty @ — Xy ai,d)z imposes Y}, a;, =
Yiia;q for identification.?2 This setting is consistent with that of nonlinear panel models with
individual and time fixed effects with the large n and T setting (Fernandez-Val and Weidner, 2016).23
Compared to the linear SARF model, the fixed-effect components {ai,o} and {aj,d} are no longer linear
parameters. We will study the asymptotic properties of the MLE in Subsection 4.3.1.

4. Asymptotic properties

In this section, we provide consistency and asymptotic normality of the MLE. Based on moment
properties of {en,i j}, we study the QMLE’s asymptotic properties for the linear SARF model. But later
on, for the SARF Tobit model, the distribution of €nij will be assumed to be normal.24

4.1. Topological specification and regularity conditions

To establish the asymptotic properties of the MLE (QMLE) 8, , we provide the topological
specification for a cross-section unit i.

Assumption 4.1. In a sample, there exist n cross-section units. A cross-section unit i is located in a
space D, c D, which is a subset of R% (d > 1). We assume lim card(D,) = oo, where card(D,) is
n—oo

the cardinality of D,,. Let d(i,j) be a distance between i and j. Assume mind(i,j) = 1.
Lj

By Jenish and Prucha (2009, 2012), this setting was introduced to establish the stochastic properties
of spatial mixing and spatial near-epoch dependent (NED) processes. The set D is an irregular lattice
containing all potential locations of cross-section units {i}.25 Then, we define the location function,
i~ l(i)eD for any i, and d(i,j) = ||l(i) — l(j)|lo. The minimum distance assumption leads to
avoiding an extreme influence between two cross-section units. Based on Assumption 4.1, the next step

22 Among possible restrictions, we follow the Fernandez-Val and Weidner’s (2016) setting. We solve an unconstrained
optimization problem with keeping smoothness of the statistical objective function InLy(w,ay). One can impose an
alternative restriction on {ai‘o} and {aj_d}. In the linear SARF model, for example, recall that we need to impose a restriction
on a,, foridentification,ie., Y-, a;4 = 0. The same restriction on the time fixed effects is imposed in Lee and Yu (2010).
23 The incidental parameter problem with the large-T panel data becomes an asymptotic bias problem since the order of
bias is O (%) =0(1) when n and T are both large. In our case, the same logic is applied, i.e., the order of bias=
0 (# of incidental parameters=2n

) =0 (i) Relevant reviews can be found in Arellano and Hahn (2007) and Fernandez-Val and

# of observations=n2

Weidner (2018).

24 For a parametric model, a specific distribution will provide a proper parameter censoring probability. It might be possible

to use a nonparametric sieve approach without the normality assumption as in Xu and Lee (2018). But we shall leave that

nonparametric approach in this paper because of its complexity in theory and estimation.

25 The space D can be a combination of geographic/demographic/economic spaces (i.e., characteristic space for a unit i).
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is to characterize a distance measure for the two flow outcomes. In contrast to a traditional spatial
econometric model, a flow outcome y,;; involves the two cross-section units i and j. Then, a flow

(i,j) canbelocated at a product space D X D, which is a subspace of R?%.

Using d(i,j), we define the distance function for flows (i,j) and (g, h):

de((i,)), (g, h)) = max{d(i, g), d(j, h)}.

Thatis, dp(--) takesthe maximum value of the distance between origins and that between destinations.
This metric satisfies the basic properties: (1) identity of indiscernibles, (2) symmetry, and (3)
subadditivity. By the maximum norm’s property with Assumption 4.1, dz((i,j),(g,h)) =1 when
(i,j) # (g, h). Then, Jenish and Prucha’s (2009) Lemma A.1 implies card({(g, h): dF((i,j),(g, h)) <
m}) < Cm?? for some constant C > 0, i.e, there exists an upper bound of the number of flow units
around arbitrary (i,j) . The purpose of introducing this metric is to generate a device that
Cov(qnij ngn) = 0 as dr((i,j),(g,h)) > o, where q,;; and g4, are respectively components of
a random field originated from pairs (i,j) and (g, h). This device will be employed if a statistic g ;;
is a nonlinear function of {En,ij} (SARF Tobit model case).2¢ The remark below illustrates the idea of
this metric specification for flows.

Remark. Consider the covariance Cov(yn,ij,yn,gh) for (i,j), (g,h) € DxD. The figure below
illustrates the topological specification for flows when each cross-section unit is located in R.

Figure 3. Topological specification for flows

Destination I
g

— de((@.)), (g, M) = d(i, 9)

i h Origin

If po = —A¢Yo, Wwe have the separable spatial filter, i.e.,, Sy = (IN -1, ® Wn))(IN —vYoM), & In)).
As we mentioned, this case can highlight the roles of W,, and M,, with intuitive manners. Under spatial
stability, we have

Cov(Ynijs Yngn) = 0&(en,; ® e5,:)Sv Si* (enn ® eny)
= o2 (z;;; Lo T2 o AR [Wnplwnm']ig) (23‘;:0 Yo ova MM j)-

=sumaA =sumB

Observe that the two infinite sums are well-defined under the spatial stability condition. Under the NED

26 Refer to Proposition 1 in Xu and Lee (2019). For the linear SARF model case, q,;; takes a linear-quadratic form of {en,”}.

Then, a martingale difference central limit theory can be applied. See the supplement file.
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framework for a univariate SAR model, the first summation becomes smaller when d(i,g) increases.
It implies that Cov(yn,l-j,yn,gj) decreases when d(i,g) becomes larger. The second summation can
be also interpreted similarly. By this setting, we then verify that Cov(yn,ij,yn,gh) becomes smaller
when d(i,g) or d(j,h) increases. m

Here are additional regularity assumptions for asymptotic analyses.

Assumption 4.2. (i) Denote c,, . = sup,|[|Wpll1, cme = suppliMplli, cwr = sup,llWylle, and ¢y =
sup,lIMplle . The sequences {W,} and {M,} satisfy max{c, c Cmc CurrCmr} <, ie, they are
uniformly bounded in both row and column sum norms.
(ii) ®5 denotes a compact parameter space for §. We assume §, belongs to the interior of 5. The
sequence {Sy'(8)} satisfies maxsee,{sup,llSy*(8)lle, sup, ISy (&)1} < co.
(iii) wy,;; and m,;; satisfy one of the two conditions:
(iii-1) wy;; > 0 and my,;; > 0 onlyif d(i,j) < d forsome d > 1; otherwise w,,;; = 0.

(iii-2) wyy < %

_Co _Co
a(ije agne
[Aolew,r + [Yolemyr + IpolcwrCmy < & if cyc > cypy there exist at most Ky, (K = 1) columns of W,

and m,;; < for some Cy, >0 and a > 2d. In this case, we assume

that the column sum exceeds c,, ,, where Ky, isa constant that does notrely on n.?’
Assumption 4.3. (i) Elements of X, have uniformly bounded constants.

. . . 4+n
Or, if one wants to assume that X, is stochastic, o max supn_ijE|xn ijk| < o forsome 1 > 0;
=1,--, +L+ [t

and, Xy and ey areindependent.

Ly 1 .1 : : :
(i) lim EX;VXN or phm;X}VXN exists and is nonsingular.
n—->oo

n—oo

Assumption 4.4. The parameter space ©® of 6 is compact. The true value 6, belongs to the interior of
0.

Most assumptions are traditional, but the condition in Assumption 4.2 (iii-2) is introduced to
characterize the maximum column sum (and those of its powers) of Ay for the SARF Tobit model if

wpi; and m,;; are geometric decaying functions of d(i, j). Under this condition, we obtain ||A§\,||1 <
IKT{"! for | € Z,, where K is a positive integer that does not depend on n (see Lemma C.1).28 It
implies that X2,[|4y||, < KTX{2,1{'"" < oo . Assumption 4.3 gives regularity conditions for

exogenous variables {xn,i j}k}, which provide guidance of generating a z-variable from an x-variable (or

. . . o 1
generating an x-variable from a z-variable). When a practitioner generates z,;; = for some

|xn,i,k—xn,j,k|

k, sufficient cross-section variations of {xn,i,k} are required to avoid extremely large value of z, ;;. If

Xn,jk . . i
Znij = x"’ for some k is defined, {xn,i,k} should be bounded away from zero. On the other hand, if
nik
one generates an x-variable from a z-variable, it involves summation, i.e,, xp;; = X7-1 Zy;;, forsome [,

To satisfy the regularity conditions, for example, one can assume that }.7_; z,;;, is uniformly bounded

27 Recall that [|[Aylle < 14¢lcwr + [YolCme + 1polcwrCme < ¢ <1 by Assumption 3.1. Hence, the additional condition
implies maX{|/10|Cw,r + |y0|cm,c + |p0|cw,rcm,cr [Aolew,r + |V0|Cm,r + |polcw,rcm,r} <d.

28 To regulate ||A§\,||1 for | € Z,, it suffices to introduce the column sum restriction on W, provided in Assumption 4.2

iii-2) since an upper bound of ||A%||. can be characterized by |[W?*"||. and [|M, || where p + q + r = I. The column
Nllq n 1

sum restriction on W, is employed to have an upper bound of ||Wnp+r||1 (see Lemma C.1).
18



in i and n (if {Zn‘ij,l} are non-stochastic).
4.2. Asymptotic properties of the QMLE of the linear SARF model

In this subsection, we study the asymptotic properties of QMLE for the linear SARF model. Detailed
proofs for this subsection can be found in the supplement file. Let Qy(0) = E (% InLy (0)) foreach 6 €

0. For consistency, we establish the uniform convergence of %ln Ly(6) — Qyn(6) to zero on O, and

uniform equicontinuity of {Qy(6)} on 0. The two objects can be similarly verified by the traditional
techniques for linear SAR models (see Theorem 3.1 in Lee (2004)). The assumption below is a regularity
condition for disturbances {e,;;}.

4+
Assumption 4.5. €,;;~i.i.d.(0,0¢) with o >0 across pairs (i,j), and sup,E|e ]| "< o for
some 71 > 0.

The identification uniqueness condition finalizes the argument for consistency. Here are sufficient
conditions for identification derived by the information inequality.

Assumption 4.6 (Identification for the linear SARF model). At least, one of the two conditions holds: (i)
Sy1'Sy(8)Sy(8)Sy?! is not proportional to Iy when & # §,.
(i) Let Gy = WySy"', G, = MySy',and G, = RySy'. Then,

1 ,
rlLl—I)l(}O N [G}LXNK(), G)/XNK(), GpXNKO] MXN [G}LXNK(), G]/XNKOI GpXNKO]

exists and is nonsingular.

The first identification condition comes from the model’s correlation structure. The second
identification condition guarantees sufficient variations in the generated regressors
[G;LXNKO, G, Xyro, G X Ko, XN] (see Assumption 8 in Lee (2004)). Then, we have consistency of .

Theorem 4.1 (Consistency). Under Assumptions 4.1, 4.2 (i), (ii), 4.3 - 4.6, Oy 5 0,.

The asymptotic distribution of 8y can be obtained by the Taylor expansion argument: VN (éN —

60) = (_lazlnLN(gN))_lLalnLN(Ho)
0/ =\ N a6d6 VN 96
the asymptotic distribution, we introduce the following assumption.

,where 8y lies between 8y and 6,. To have well-definedness of

_ lazln LN(BO))

Assumption 4.7. ¥g = rlll_r)l;lo Zg,n is nonsingular where Xq y = E( ~ 2000,

. . e A dInLy(8) . .
To finish deriving the asymptotic distribution of 8y, observe that \/%%(0) is a summation of

martingale differences of a linear-quadratic form. By extending the Kelejian and Prucha’s (2001)
1 dlnLy(6y) @

framework (see Section 1.2 in the supplement file), we derive N T N(O, ng), where Qg =
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1 91nLy(8p) d1nLy(6y)
N 08 EY L

€n,ij (seethesupplementfile). When e, ;s follow the normal distribution (Assumption 4.3 (ii)), Qg, =

). Note that €y, depends on the 34 and 4 moments of

Al—l;lgo QGO:N and QGOrN = E(

2501. By applying the Slutsky’s lemma, we obtain the following result.

Theorem 4.2 (Asymptotic normality). Under Assumptions 4.1, 4.2 (i), (ii), 4.3 - 4.6, and 4.7, we have
) d -1 -1
\/N(QN - 90) - N(O, 290 990290 .

4.2.1. Asymptotic distribution of the QMLE for the linear SARF model under the two-way fixed effect
specification

In this part, we study the asymptotic properties of @, if one estimates the model (6). First, observe
that the first-order conditions at w, are

Ania@o /ey (WySy?) + % (Wyvee(Yy)) Un@JnIvec(en)
Znbnlon) || —r(MySit) + 2 (Muvec () Un®JnIvec(en)
91nLy(wo) 21;(‘"0) =| —tr(RySyH + aig (Ryvec(ty)) Un®Jn)vec(en)
d1n g,;;(wo) oigzj\, (J,®J,)vec(ey)
0 lnggz(wo) - % + %veC(EN)’Un®]n)vec(eN)

Then, a component \/iﬁal%zz)(wo) takes a LQ form: for [ = 4, y, p, By, -+, B, and a2,

77 vec(C)' Un@®ln)vec(en) + 7oz (vec(en) G Un®fu)vec(en) — a3 tr(Gy),

where Gg, =0 for k=1,-,L, G,z = #IN, vec(C) = G(ZyBo + Ao o®ly + [,®Vnap) for 1=
0
A, v, and p, and vec(C) =Zy, for By, -+, B, and vec(C;) =0 for [ = ¢?. Observe that

E (\/iﬁ ”ec(cz)'Un®]n)veC(6N)) =0 but E (\/LNU%(vec(gN)'G{(In®]n)vec(eN) — a&tr(GQ)) =

1 dlnLy(wg) _ 1 alnL%‘)(wo) 1 6lnL%)(w0)

1
\/—N(tT(Un®]n)G1) — tT(Gl)) # 0. We have N \/NT_AN , Where i ™
takes a form of

T 7ec(C) Un®ln)vec(en) + 7o (vec(en) GiUn®)nIvec(en) = 0§ tr((n®)n)G1)) tobe
(w
E (ﬁw) =0 and
Ay = 7 (o (U = Un®I)62) tr (v = Un®1))Gy ) o7 (I = Un®In))Gp ), 00,57
Note that Ay = 0(1) because N =n?, and tr ((IN - (]n®]n))Gl) = 0(n) where [ =41, y, and p.

. al . . - . ~
Since E (%M#(wo)) =0 (%) — 0 as n — oo, there is no problem in achieving consistency of @y.

The remaining issue is a correction of the asymptotic bias in @y. Let Ay(w) be the asymptotic bias
term evaluated at w € 0. Then, the asymptotic distribution of @, can be characterized by
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N _ _ al (w) d
\/N((UN - (1)0) + zak’NAN = ZAl LM - N(OI Z(:)(:EQ(UOZZ):; Y

oNN N ow

1 9%InLy(w)

N Odwiw'

_ lalnLN(w)alnLN((u) . )
Qun =E (N o S’ ) The bias corrected QMLE can then be specified by

where X,y = E( ), Yo, = rlll_{go ZpoNr Lo, = 7111_{1010 QN and

Juy

Oy = Oy + ;ZE,,IV,NAN(@N),

d
so we have VN(@§ — wo) - N(0,2510,, Z51).

Using @y, one can obtain @&, 4 = @&, 4(&y) = J, &, 4(&y) due to the identification restriction (i.e,,
~ o~ (A A 1 ~ ~ .
Yiiaia=0) and @,, = a,, (a)N, an,d) = ;(In®l§l)(vec(6,$(w,v)) — ln®an,d) . For each i, the
d
asymptotic distribution of the ith element of \/ﬁ(&n,d — an,d,o) is %Z}Ll €n,ij T 0p(1) > N(O, a?) as

n—-o. For j=1,---,n, the asymptotic distribution of the jth element of \/ﬁ(&n,o —an’o’o) is
1

d
NG i=1€nij +0,(1) = N(O, 0¢) as n — oo. Details can be found in the supplement file.

4.3. Asymptotic properties of the MLE of the SARF Tobit model

Note that the asymptotic analysis for the MLE 8, will be based on normally distributed €n,ijS Since

the SARF Tobit model comes from the distributional specification. Since 8y is a highly nonlinear
function of {e,;;}, we will employ the spatial near epoch dependence (NED) concept introduced by
Jenish and Prucha (2012). Let ||x||Lp be the L,-norm of a random variable x.

Note that the NED concept relates two random fields. Let q = {qn,ij: (i,j) € D, X Dp,n = 1} and € =
{en,ij: (i,j) €Dy X Dp,n = 1} be two random fields. 2 A random field g is L, -NED on € if

Supn,i,j”Qn,ij”Lp < oo and ”Cln,ij - E(Qn,ij|Tn,ij(S)>||Lp < cpiju(s) , where p=1, Fup;(s)=

o(€ngn:de((i,)), (g, 1)) <'s), {cnijin = 1} isanarray of finite positive constants (NED scaling factor),
and v(s) is asequence such that v(s) 1 0 as s T o (NED coefficient). Note that q is a uniform NED
random field if sup,sup( jyep,xp,Cnij < ©; and q is a geometric random field if v(s) = 0(z®) for
some 0<7<1.

To show the NED properties of {1(yn,ij = O)}, the normality assumption is used by showing the
uniform boundedness of the essential supremum of y; ;’s densities (see Proposition 2 in Xu and Lee
(2015b))r where yz,ij = AO ZZ:l Wn,igVn,gj + Yo ZZ:l YninMn,hj + Po 22:1 Zﬁzl Wn,ig¥n,ghMn,hj +
XnijKo t €nij-

Assumption 4.8 (Normal distribution assumption on the disturbances). €, ;;~i.i.d.N(0, o) across

29 If {xn‘ij} is stochastic, € = {(xn‘ij,en‘ij): (i,j) € Dp X Dp,n = 1}.
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pairs (i,j).

The main point of showing 8y 5 6, is uniform convergence of the sample average log-likelihood
function, i.e., supgee % [InLy(8) — E(In Ly (8))] 0. Observe that In Ly(8) consists of {y,;;} and its
transformations on €. Propositions C.1 and C.2 show the L,-NED properties of them. Then, we apply
the law of large numbers (LLN) for each 8 € ® (Theorem 1 in Jenish and Prucha (2012)) and the
compact parameter space assumption (Assumption 4.4) finalizes the proof. The conditions below

provide sufficient conditions of identification uniqueness based on Rothenberg (1971). The derivation
can be found in the last step of consistency proof.

Assumption 4.9 (Identification for the SARF Tobit model). Assume Assumptions 3.1 and 4.3 (ii) hold.

@ LW,+W), My+Mp)QIL,, MW, + M, QW , My QW, + M, QW,,, (M, +
M) @ W,W,,and M, M; @ (W,, + W,,) are linearly independent.

(b) Forall g =1,---,N, a set of vectors {wj,mf,,n‘;} is linearly independent, where wg, mg, and
r§ are respectively (N —1)Xx 1 vectors consisting of Y¥_,([Wy1%, — [Wy1%,), ZF-1(IMyl7, —
[MN]/Z’h)r and 2?1:1([RN]%9 - [RN]/%h) for h # g.

(c) XyXy isinvertible with probability 1. Then, 6, isidentified.

Condition (a) is for identifying &y, (b) is for of, and K, can be identified via (c). If needed, this
identification condition can be replaced by a high-level assumption such as limsup[Qy(8) — Qy(6,)] <

n—-oo

0, where Qn(6) = % E(InLy(6@)) foreach 6 # 6.3 Then, we have consistency.

Theorem 4.3 (Consistency). Under Assumptions 3.1, 4.1 - 4.4, 4.8 and 4.9, Oy 5 0,.

Next, we consider the asymptotic distribution of 8. Note that the asymptotic distribution of 8 is
dlnLy(6)
00

mainly characterized by the score at 6,. For each (i,j) and each 6, where we have
?:12}'1:1 Qn,ij(e) with

_ o _1 #(6.8)) (=1 Wnig¥ng))
1y = 0)o HNETQ)

_ o -1 ‘1’(5:1,1'1'(9))(22:1 Yn,inMn,hj)
1 = 0 AL

(5;1]'(9))(2;,};1 Wn,ig}’n,ghmn,hj)

®(5,41(0))

_1(yn,ij = O)O'

—7i7.2(8) + 1(ynij > 0)a e ;;(0) (X1 Wnig¥ngj)

— Tijy (8) + 1(ynij > 0)o 7 e (O (Zhey YninMunj)

19 .
Qn,ij(g) = _1(3’n,ij = 0)0 ! - rn,ij,p(‘s) + 1(Yn,ij > 0)0 lfn,zj(Q)(ZZ,h=1 Wn,ig)’n,ghmn,hj) .

-1 w
(€0,41(6))

¢(€Z,ij(9))€:1,ij(9) _ 1

@(€ni(©)) 207

+1(yny > 0)a e, (0) Xy

~ = 1(¥nij = 0) 1(ynij > 0) + 55 1(yni; > 0)er, ;(6)?

The main issue is to check the NED properties of a random field {HQn,ij(eo)”} to apply the CLT

30 If both W, and M, are symmetricc M, Q@ W, + M, ® W,, and M, Q W,, + M, ® W,, would not be linearly
independent (Condition (a) in Assumption 4.9 is violated). In this case, we might need to introduce limsup[Qy(8) —

n—oo
Qn(6y)] <0 for 8 # 0,.
22



(Corollary 1 in Jenish and Prucha (2012)). The conditions below are introduced for this issue.

Assumption 4.10. (i max Sup; i 1%, ;4 < o forsome n > 0.
p () k=1,-,2K+L+1 plr]rn” n’l]'k||L8+T] n

(i) {xnix} Is an a-mixing random field with spatial a-mixing coefficients a(u,v,7) < (u +

_n_

v)*&(r) for some T > 0; and for some 0 <7 <2+ %, @(r) satisfies %2, r2d@+D-1 5 ()27 < oo,
where 1, = ﬁ—TN

247
Assumption 4.11. X, = 711_1)1;10 Xy, is nonsingular and positive definite, where X5 y =
1
N Var(2?=1 Z;'l=1 n,ij (90))-
Assumption 4.12. a > d-max(14 +48n~1,10 + 64n~* +128n72) , where a is in (iii-2) of
Assumption 4.2.

Assumption 4.10 are the same as Assumption 3 in Jenish and Prucha (2012). Here, the key is to have
the uniform L,,5-integrability. Assumption 4.11 is for well-definedness of the asymptotic variance.
Assumption 4.12 is introduced for the specification in Assumption 4.2 (iii-2). To apply the CLT to an
NED random field, we need to check the summability condition for the NED coefficient of {”‘In,ij (90)”}
(see Assumption 4(c) in Jenish and Prucha (2012)).31 Thatis, Y2, s2¢ 1u(s) < co. Assumption 4.12
yields v(s) = 0(s™®) where b > 2d satisfying Y2524 u(s) < 32,5 1"" <o where 7>0.
Details for the CLT can be found in Propositions C.3 and C.4 in the Appendix.

Theorem 4.4 (Asymptotic normality). Suppose Assumptions 3.1, 4.1 - 4.4, 4.8, 4.9 and 4.11 hold. Under
the specification provided in Assumption 4.2 (iii-2), Assumptions 4.10 and 4.12 are additionally

. d
required. Then, we have \/N(HN — HO) - N(O,Z;;l) as n — oo,

4.3.1. Asymptotic distribution of the MLE for the SARF Tobit model under the two-way fixed effect
specification

With a direct estimation approach, the MLE under the two-way fixed-effect specification is defined by

(Op, @y) = argmax,,ee,, ay In Ly (0, ay),

where ay is a vector containing identifiable elements of a,, and a, 4. Thatis, ay = (“%,o»“%,d),-
Let a¥ = (“;1,0,0; a;l,d,O)’ be the true parameter vector. The main purpose of this subsection is to
examine the asymptotic properties of @y. For this issue, we define @y(w) = argmaxg, InLy(w, ay)
for each w. Then, we have @y = argmax,ce, InLy(w), where InLy(w) =InLy (w, ay (a))) denotes
the concentrated log-likelihood function. For the discussion in this subsection, we will use the notations
based on double indexes. For example, we denote In Ly (w, ay) = Xio1 Xz fn; (w,a;,,a;4) for each
(a), aj'o,ai'd), where #:m-j(w, ajlo,al-,d) denotes the (i,j)-component of the log-likelihood.32

31 For the LLN, it suffices to show v(s) 1 0 as s T .
32 Note that

f;,ij(w' aj,o'ai,d) = 1(yn,ij =0)In® (Ez,'i?(w’“j,o,ai,a))
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Our goals are to verify (i) &)\Ngwo and (i) VN(®y — wy) —Z:;;}VA}‘V hd N(O,Zz;gl) as n - o,
where Z;, denotes the limiting variance of VN(@y — w,), Xy, N is a matrix satisfying Zj, =
lim Soony and Ay (w, ay) with Ay = Ay(wg,af) is an asymptotic bias term originated from the
ex1stence of fixed effects. We will derive X, y, Zi,, and Ay later. Due to the presence of possible

asymptotic bias of @, because of the many individual effects, in a subsequent section, we consider an
asymptotic bias adjustment procedure and a bias-adjusted estimator for w,.

Here, we will provide basic ideas of showing the two objects. Detailed discussions and proofs can be
found in Appendix D and the supplement file. By Proposition D.2 (ii), the first-order conditions around
wo give

_ 1 dlnLy(@nay) _ 1 dInLy(wo@n(wo)) N ~
0= N e - YN e z:ouo,N VN (@y — wy) + Op(l):
where
-1
1 921In Ly (wq,ad 1 182 1n Ly(wq,a 102 1n Ly(wg,al 102 1n Ly(wq,al
Ty = E(—— n( 0 N)) _1 E(— n( 0 N))E(__ n( 0 N)) E(— n( o N))  and
oN N Jwiw n n Jdwday n danday n danidw

@y = ay(@y). Let @y = ay(wy), @%o = @yo(wo), and @y 4 = @3 ;(wy). Elements of those vectors

are similarly defined. To study the asymptotic distribution of VN (@y — w,), therefore, the main issue
1 81nLy(wo.an(wo)) 1 dlnLy(woay)

i xamine — . By th nd-order Taylor expansion of — round th
s to exa e = o y the second-order Taylor expansion o N 0 around the
true parameters a3, Proposition D.2 (ii) yields
1 dlnLy(woay) _ 1 dlnLy(we.ay) 9)
VN dw ~ VN dw
1an 02InLy(woad) /A0 n 02InLy(woal) 7 ~0
+22] dwdaj, %o ~ Ho 0) ta Z dwda; 4 Aia — ai'd'o)

_I_ZLZ 3" a3 lnLN(wo,aN)(

j=1 dwdaj,0ay, - aj,o,o)(&lg,o - ak,0,0)

izn_ yn 23 lnLN(wO'aN)

=1 300, g9ary (@4 = @1a,0)(@Ro — Xk00)

6 lnLN((})o,aN) A0
+. Z D X1 dwda; 0y ( ~ @00)(@a — t1a,0)

33 InL; (w a) 7 ~0 ~0
+ZZ?=1 Lim1 awaczdall‘;v @l — @ia0)(@a — @a0) + 0p (D).

Note that the first term of the right-hand-side above has zero mean and characterizes the asymptotic

1 dlnLy(woay) @
m—l\(’aw" N N(O z ) as n—-o. By the 2rd ~ 7th terms above,

is not centered at zero even for a large n. Those components would give some possible

variance ZZ,O . That is,
1 dInLy(weay)
VN ow

asymptotic bias terms. First, it comes from the usage of @3 instead of a3, whose components have

slower convergence rates than VN = n that is the convergence rate or @y.33 Second, the correlation

1
~1(yny > 0) {%ln 2m6? + [E?‘;l <(G”(Y”)A”§5)G”(Y”)) )] ~ 1y > 0) (€5 (@, @00 01))
(-Dn+i,(j-1n+i
2
(Z] 1% — Xy ai,d)

33 Indeed, we have \/r_l(c’fﬁo — aj,o,O) =0,(1) for j=1,--,n and \/ﬁ(o?gd —Qiqp) = 0,(1) for i =1,-+,n by Lemma
D.2 in the supplement file. This v/n-convergence rate is the same as that of the fixed-effect estimates in the linear SARF

model.
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between &ﬁo (and &gd) and the second and third order derivatives of the log-likelihood, which are
related to @y. Third, the variances of c?]?o and &&i form the asymptotic bias term.34

To represent the asymptotic bias terms, the following notations are employed:

1 [Higpam Hiapagin

— 1 021nLy(wg,aX
Let H, = E(———N( 0 N))
n danday

:]-_[(,aoad)n }_[(Ofd“d).n ’
it = Fasamly Bnis = Fnznl,y a0 ents = Fagapnl,

dlnLy(woay) _0InLy(woay) _

iy for j=1,,m; =N1qng; for i=1,-m;

o0aj, daiqg
8%2InLy(wo.ay) wa, . 921In Ly (wo.ak) poa
— NV ON % for j=1,--,n ——————F = 4 fori=1-,n;
dwdaj, = Liz1 hing; J =5 dwda; g Lj=1hnij v
8% InLy(wo.ay) n 0% g 1,- 8% InLy(wwo.ay) n $O%d o 1
6w6a12-,0 tn 93] J= dwda?, ty Jij n,
93 In Ly (w,ay) n +%0 93 1In Ly (w,ay) n_ 4%
Tj"o_ tij for j=1,--,n;and T—Z- tni fori=1,--,n,
where _ 1f”n,ij(a’o"?‘j,o,or‘%i,d,o) ag _ 9nij(@oajo0ido0)
qn l] 6(1,-10 ’ Tlij aald ’
hwao _ 0 f’n,ij(wo:aj,o,o:a’i,d,o) _ 0% nz](wo’“joo’aldo) hwad
n,ij dwdaj, dwdaiq nij’
twao _ aS[Zij(wo,aj,o,o,ai,d,o) _ 331?:”](wo,a],o‘o,ai,dlo) _ twad and
nij dwda?, dwdaly nij’
838y i i(wo,@jo0digo) 035 ;:(00i00ido)
a 1 @0,2,0,0.%i,d,0 1j(©0,5,0,0,%i,d,0 . . .
t00 = T IR0 Ol — RN e B0 — t%4. We provide the forms of them in Appendix D.
n,ij da?, da3, nij*

Using the notations above, we represent components characterizing the asymptotic bias of @y:

IN = 2 7 1anu,11 k=12i= E( ff?cjh%"):

E,N = Zn 1Cn, iy, 12 E(qn lzh;)?]d

E,N = l j=1 An,jj (l —1E(h1(fz),z;)) E(hn l]vao:nj)'
fl-,N = ,11 :l 1cnu( E(hral)(i);d ) 1E(hn l]vadnl)

A*5:N__ZJ 1 On,(@,a0).jj nunzk 1 27 1E(an1qnl]) and

*

6,N __Z 1wn(adad)u nu Zn 1Z E(qnlkqnll

where Vagmn,j = n 12p 10an ]kqn pk +- Z 12 nqug?q,

571,(“0“0)]7 :% ?=1E(tr(2iajo)+;nao,nj2' E(tn l]) + - Zl 1agn,i (tfl!fiij)'
Taon,j = l "—122—1 anjkE(h;fgz) + - Z 123 1bn]lE(h1(;)?qd) for j=1,--,n,
Vagmi = 1Zp 1bnqunpk+ Zl 1Zq 1CTlllqnlq'

an,(adad),ii =% ?=1E( Z)Zd) +ta Z] 17ay, nJE(tn U) 5 ”adnlz ( if‘?j)' and
Tayni = %Z;cl=1 Yp=1 bn,sz(hZ’,Z,‘i) + ;Z?q Yg=1 Cn,ilE(h,(f,?qd) for i=1,-n

10%1n L}‘\,(wo,a?\,)) -
n  dayday

By Proposition D.1, E (— can be approximated by a diagonal matrix and its off-

34 Those three points are raised by Hahn and Newey (2004). Refer to Section 2 in Hahn and Newey (2004).
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diagonal components of are of O ( ) Then, the second term in (9) can be approximated by Aj y + A3 y;

the third term’s approximation in (9) is A3y + A} y; the fourth term is approximated by Ajy; the
seventh term’s approximation is Ay y; and the fifth and sixth terms are stochastically negligible (see
Proposition D.3). Note that A} y, A3y and Ajy are originated from the estimators of the origins’ fixed
effects &2’0 while Ajy, ALy, and Ay, comes from &?Ld. This additive separation is originated from
the additive separability of @;, and «; 4. For the following result, we define

[ Saan(6) * * * * ]
Say.N (6) Syy,N (6) * * *
SZ,(w,w),N(s) =\ Sap,N (6) Syp,N (6) Spp,N (6) * * ,for 6 € @8:
0 0 0 0 *
_SAGZ’N(6) S]/O'Z,N(6) Spaz’N((S) 0 Sazaz’N(a)é‘)_

where s, 5(6) = tr (W NSN22(6)) S)Ly,N(5) =tr (sz,NMzz,NSXrgz (5)),

Sppn(6) = tr (sz NR22,N513;2 (5)) , Sagzn(8) = —tr (sz NSXI_I((S)) —tr (WZZ,NS;\EZ (5)AN(5))
Syy, n(6) =tr (Mzzzv ;2(5)) SypN(6) =tr (Mzz nR22, NSN 2(5)) yaz,N(S) = —tr (MZZ,NSITI_I((S)) -
tr (MaonSi2OAn®) 5ppn(®) = tr (REnSi;2(O) o 52w (8) = —tr (ReanSi; 1 (8)) -
tr (R22N5N22(6)AN(6)), and s,2,2 y(8) = 2tr (5 1(6)AN(6)) + tr (S3;%(8)43(8)) . The theorem
below states the asymptotic properties of @y.

Theorem 4.5. Suppose Assumptions 3.1, 4.1 - 4.4, 4.8, 4.10 and 4.12 hold. In addition, we assume that
(i) each element of ey isabounded constantin R forall N, (i) X, = lim X}, y isnonsingular and
n—->oo

10%InLy(wo.af)

5, >0, (iil) Sywen() =0 for §€0;, and (iv) E(—-

n  dayday
10%1InLy(wo.ay)
E{- T A AT
n Jdanday

) is nonsingular and
P " ~

)> 0 under a large n. Then, we have (i) @y—w,, and (ii) VN(@y — w,)

d

> N(Z5. A%, 251) as n— oo, where Al = rlll_r}go Ay with Ay =Ny +A v+ A5+ Ay F ALy +

6N

1 dlnLy(®y.an)
VN dw
. Condition (i) Theorem 4.5 is for

Showing Theorem 4.5 is based on deriving the asymptotic expansion of under

1 dln LN((J)N ay)
VN ow
consistency of @y and @y. Then, all components of InLy(w) (ie., {{’n ij (a))}) satisfy the NED
properties using the same arguments in Theorem 4.3. For well-definedness of the asymptotic variance

of @y, Condition (ii) is introduced. Condition (iii) leads to strict concavity of In Ly (w, ay).3> Under a

. . : - 8% 1n Ly (wg,ad
large n, Condition (iv) guarantees for invertibility of E (—EM
n danday

regularity conditions for the Taylor approximation of —

) whose inverse is a

1 dlnLy(way(w)) 36
VN ow ’

can establish consistency of @y and the asymptotic expansion of

component of the Taylor approximation of With Conditions (i), (ii), and (iii), we

1 dInLy(woaR)

Wi ™ . It implies

35 Under this condition, the log-likelihood function under the Olsen’s (1978) reparameterization becomes strictly concave
in the transformed parameters. The reason for having this condition is that Jacobian term under the transformation relies
on the spatial interaction parameters as well as variance parameter. This condition can be removed when all eigenvalues of
W, and M,, are real-valued. For this issue, refer to Lemma 2 in Liu, Xu, and Lee (2021) and our supplement file.
36 In detail, the diagonal components 7{,, are one of the main components of {&ﬁo — ajlo_o} and {&Sd — ai_dro} in (9).
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1 dlnLy(wo.ay) @

VN(@y — wo) — T Ay = 2o} > N(0,%;') as n - oo.

woN N dw

Based on the results of Theorem 4.5, we can define a bias corrected MLE
~ ~ 1 Qs ~ -~ A*
Oy = Oy — ;Zwo,lzv (@O, ay)Ay,

where X, y(@y,@y) denotes the asymptotic variance matrix evaluated at (@y,@y), and Ay, is a

consistent estimator of A%, with employing (@y,@y). To obtain A}, we can apply the similar idea of
getting a truncated sum of sample covariances in time series literature.3” Note that A}y, A3y, and

Ay take a form of A}y =% ;‘lzldn,j% i Yro1E(An;jBnyj) while Ahy, Ahy, and Ay, take

.1 1 . :

an =21 dni= X Y 1E(An;iBnix) where {d,;} are non-stochastic bounded weights, and

{An;;} and {B,;;} are random components. For consistent estimators of A}, = lim A}, and
n—-oo

1o = lim A y, we design
: a0 R,

- lan 5 1

A~ ~ o~ 1 A 1
— n * _ n
oN — ; j=1 dn.j ;Zi=1 ZkEnbd(i,sn) An,ijBn_kj and Ad,N = -

. I,
~Xic1 i~ i1 Ykenbd(isy) An,ijBn it

where nbd(i,s,) denotesthe i's s,-th order neighboring units induced by spatial weighting matrices,
and 4,;;, B,;; and d,; are respectively A, ;;, Bn;;, and d,; evaluated at (Dy,@y).38 If s, >
sup card({k:k€nbd(i,sn)})

and ~ — 0,wehave Ay~ Ay and Ay~ Ay, as n— 0039

The asymptotic property of the bias corrected estimator @y is stated in Theorem 4.6.

Theorem 4.6. Assume that the conditions of Theorem 4.5 hold. If IA\”,‘V 5 N, as n — oo, we have
d
VN(@§ — w) > N(0,25:1) as n - .

Theorem 4.6 can be verified by showing X, y(@y, @y) 5 2%, as n — oo, The result follows by the

. . . ~ P N P
continuous mapping theorem with ||@y — wo|| >0 and ||@y — a¥|lc = 0 as n — o.Compared to the

bias correction for the linear SARF model with fixed effects, we need to employ the estimates @y in

# of origin units n .
,g, — = — =1, there is no
# of destination units n

evaluating X, y(@y,@y) and Ay . Since our model implies
restriction on a sample size n as Lee and Yu (2010).40

5. Monte Carlo simulations

37 In a nonlinear panel setting with time-dependent but cross-sectionally independent observations, Hahn and Kuersteiner
(2011) and Fernandez-Val and Weidner (2016) apply the truncation idea.
38 For example, consider W, is a sparse adjacency matrixand M, = W,.Then, k € nbd(i,s,) if [W}!]; # 0 forsome [ €
{0,1,---,s,}.
39 Note that card({k: k € nbd(i,s,)}) corresponds to the trimming parameter for the time dimension in Fernandez-Val and
Weidner (2016). To show K”;'N iAz‘m and IA\*,}_N E)A*,}_Do as n — oo, hence, we can apply the similar strategy of the proof of
Theorem 4.3 in Fernandez-Val and Weidner (2016) (see Part II of the proof of Theorem 4.3 in Fernandez-Val and Weidner
(2016)).
40 To have the asymptotic normality of the bias corrected MLE for spatial dynamic panel data models, Lee and Yu (2010)
verify that Tn—3 - 0 and % — 0 are required. Those conditions are introduced to achieve the asymptotic equivalence of the
infeasible bias corrected MLE and the feasible bias corrected MLE.
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5.1 Finite sample performance

In this subsection, we conduct Monte Carlo simulations to study the finite sample performance of the
MLE 8y. Also, we investigate misspecification errors when one uses the linear SARF model but the true
data generating process (DGP) is the SARF Tobit model. Two DGPs are considered:

DGP 1. Linear SARF model: equation (3); and DGP 2. SARF Tobit model: equation (6)

In generating the data, we utilize the same X,,; and Zy; in Section 6. Thatis, n =48, K =1, and
L = 1. We consider an adjacency matrix of states’ borders (denoted by W,?) and suppose M,, = W,? in
this subsection: W,‘f‘ij =1 if states i and j with j# i are bordering states; and W;ll’ij =0
otherwise. Both W, and M, are symmetric spatial weighting matrices. For the first experiment, we
consider 6, = (1, 0.02, 0.02, 0.01, —4, 1, 1, 1)’, which satisfies the spatial stability and model
coherency. Simulation results for additional parameter sets are provided in the supplement file. The
disturbances €,;;s are independently drawn from the standard normal distribution.#! For the SARF
Tobit model (DGP 2), we generate vec(Yy) by the contraction mapping with a tolerance 107°.

In order to evaluate finite sample performance of 8y, we consider three criteria: (i) empirical bias,
(ii) empirical standard deviation (STD), and (iii) 95% coverage probability. The number of sample
repetitions is 1,000 for each experiment.

Table 1. Simulation results for the linear SARF and SARF Tobit models
DGP 1 (Linear SARF). 8y = (g, A0, Yo, Po» Bo» bo, €0, 68)' = (1, 0.02, 0.02, 0.01, —4, 1, 1, 1)’

) Ao Yo Po Bo by Co ag
Bias 0.0001 -0.0003 -0.0004 0.0000 0.0001 0.0014 0.0014 0.0005
STD 0.0001 0.0014 0.0014 0.0004 0.0008 0.0015 0.0015 0.0001
95% CP 1.0000 0.9980 1.0000 0.9620 1.0000 1.0000 1.0000 1.0000

DGP 2 (SARF Tobit). 6, = (@g, Ao, Yor Po» Bo» Po» Cor 08)" = (1, 0.02, 0.02, 0.01, —4, 1, 1, 1)’
% of nonzero observations (average): 83.38%

) Ao Yo Po Bo by Co a¢

Bias 0.0002 -0.0014 -0.0015 0.0002 0.0011 0.0032 0.0032 0.0005
STD 0.0001 0.0015 0.0014 0.0004 0.0007 0.0013 0.0013 0.0001
95% CP 1.0000 0.9960 0.9990 0.9510 1.0000 1.0000 1.0000 1.0000
Misspecification from assuming the linear SARF model

Bias 0.0011 -0.0081 -0.0081 0.0013 0.0090 0.0158 0.0159 0.0015
STD 0.0007 0.0011 0.0010 0.0004 0.0093 0.0033 0.0022 0.0091
95% CP 1.0000 0.0200 0.0130 0.1560 0.9970 0.9990 1.0000 0.9970

For both cases, we observe reasonable performance of the MLE in terms of biases and CPs. Under the
larger spatial influence case, biases become slightly larger (in absolute values) while there is no
significant change in STDs. In Ay and 7y, we detect downward biases. On the other hand, upward
biases are observed in BN, ¢y, and G2

#1 In the supplement file, we provide additional simulation results for non-normally distributed ¢,;;s: (1) uniform, (2)
Logistic, (3) Gamma, (4) Beta, and (5) mixed normal distributions. We observe that the MLE performs well except for
estimating the variance parameter ¢Z with the case of the mixed normal distribution.
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Table 1 also shows the simulation results under DGP 2 for the SARF Tobit model. By adjusting f3,, we
can control a proportion of nonzero observations. We provide average percentages of nonzero
observations. For misspecification analyses, we also report the estimation results using the SARF model.

When the model is correctly specified (i.e., SARF Tobit model), the MLE performs well and overall
performance is similar with that provided, which is for the linear SARF model in Table 1. For all cases,
biases increase when we do not consider the Tobit structure. By observing the estimates’ low levels of
CPsfor Ay,yo,and p,, we observe that statistical inference for the spatial interaction parameters would
be invalid under the misspecification. Under the model misspecification, we detect large biases in
estimates of the linear sensitivity parameters S, by, and c,. Misspecification biases increase when a
percentage of zero observations increases. Under larger spatial influences, misspecification biases tend
to be larger (except for estimates of b, and cg).

As the second issue, we estimate the parameter wy = (4, Yo, Po, Bo)’ When there exist two-way fixed
effects. We investigate the finite sample performance of the MLE and the bias corrected MLE. We
consider n = 25 in the main draft for computational tractability.#2 We consider the LeSage and Pace’s
(2008) specification with a row-normalized rook matrix as for a chess board, i.e, (W, M,) =
(W, Wi, where W, = [wh j] with wg ;i = nW% We utilize the first 25 states’ geographic

k=1"n,ik
locations for constructing Zy; while X,; is excluded. For this experiment, wy=
(0.1,0.1,0.05,-0.15,0.8)" and wy, = (—0.1,—0.1,—0.05,—0.15,0.8)" are considered. For the fixed

effects, we draw «;, from N(1,0.01%) andset a;4 = a;, for i =1,---,n. The trimming spatial order

s, forall i =1,--,n is defined by k € nbd(i,s,) if [(Wgn)l] # 0 for some [ €{0,1,-:+,s,}. We
0 ik

report the bias corrected MLE for the SARF Tobit model with s, =1 and 2.43

Table 2. Simulation results for the linear SARF and SARF Tobit models with fixed effects

Case 1:
DGP1 (Linear SARF). n = 25, wy = (Ao, Yo, Po» Bo, )" = (0.1,0.1,0.05,—0.15,0.8)’

| Ao Yo Po Bo a¢
MLE
Bias -0.0660 -0.0664 0.0071 0.0009 -0.0700
STD 0.0515 0.0491 0.0880 0.0244 0.0456
95% CP 0.7480 0.7620 0.9500 0.9420 0.5880
Bias corrected MLE
Bias -0.0070 -0.0072 -0.0009 0.0011 -0.0148
STD 0.0534 0.0510 0.0948 0.0243 0.0490
95% CP 0.9320 0.9340 0.9360 0.9380 0.8660

DGP2 (SARF Tobit). n = 25, wy = (Ao, Yo, Po, Bo, 02)’ = (0.1,0.1,0.05,—0.15,0.8)’
% of nonzero observations (average): 92.22%

| Ao Yo Po Bo g
MLE
Bias -0.0704 -0.0706 0.0066 0.0009 -0.0704
STD 0.0553 0.0528 0.0956 0.0245 0.0481

42 Since we employ the direct estimation method for the SARF Tobit model with the fixed effects, alarge n leadsto alinearly
increasing parameter space. We observe that the case of n = 25 not only provides a sufficient sample size (i.e, N =n? =
625), but it also takes a reasonable time for sample repetitions. In the supplement file, we provide the simulation results for

asmaller n = 16 and alarger n = 36.
43 The average value of card({k: k € nbd(i,s,, = 1)}) is 4.2 while that of card({k: k € nbd(i,s,, = 2)}) is 9.16.
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95% CP 0.7440 0.7560 0.9460 0.9440 0.6160
Bias corrected MLE with s, =1

Bias -0.0118 -0.0120 0.0120 0.0024 0.0193
STD 0.0543 0.0519 0.0936 0.0246 0.0546
95% CP 0.9360 0.9520 0.9540 0.9340 0.8820
Bias corrected MLE with s, = 2
Bias -0.0204 -0.0203 0.0136 0.0021 -0.0027
STD 0.0569 0.0541 0.1009 0.0249 0.0537
95% CP 0.9040 0.9400 0.9340 0.9360 0.8840
Case 2:
DGP1 (Linear SARF). n = 25, wy = (Ao, Yo, Po, Bo, 0¢)" = (—0.1,—0.1,—0.05,—0.15,0.8)’

Ao Yo Po Bo s
MLE
Bias -0.0554 -0.0553 -0.0054 0.0022 -0.0793
STD 0.0499 0.0482 0.0851 0.0242 0.0456
95% CP 0.7880 0.7960 0.9560 0.9340 0.5180
Bias corrected MLE
Bias -0.0036 -0.0033 0.0026 0.0013 -0.0155
STD 0.0522 0.0505 0.0924 0.0243 0.0495
95% CP 0.9420 0.9240 0.9340 0.9340 0.8680

DGP2 (SARF Tobit). n = 25, wy = (dg, Yo, Po, Bo, 02)’ = (—0.1,—0.1,—0.05,—0.15,0.8)’
% of nonzero observations (average): 79.36%

| Ao Yo Po Bo s

MLE

Bias -0.0691 -0.0696 -0.0056 0.0023 -0.0836
STD 0.0619 0.0601 0.1060 0.0245 0.0521
95% CP 0.7840 0.8040 0.9560 0.9380 0.5380
Bias corrected MLE with s, =1

Bias 0.0052 0.0044 0.0386 0.0059 0.0246
STD 0.0623 0.0604 0.1066 0.0247 0.0609
95% CP 0.9460 0.9460 0.9460 0.9240 0.8680
Bias corrected MLE with s, = 2

Bias -0.0135 -0.0138 0.0240 0.0050 -0.0029
STD 0.0650 0.0624 0.1136 0.0250 0.0594
95% CP 0.9280 0.9360 0.9420 0.9320 0.8720

Downward biases in the MLEs of 4,, y,, and ag are detected for both models. Those downward
biases for the SARF Tobit model tend to be larger than those for the linear SARF model. Magnitudes of
those biases decrease when n increases. These results are consistent with estimating the
contemporaneous spatial effect, dynamic effect, and the variance parameters in a spatial dynamic panel
data model (Lee and Yu, 2010). We do not capture a significant bias in estimating p, and pS,. After
correcting the asymptotic biases, the magnitudes of the biases in the MLEs of 1,, ¥,, and ¢ are
reduced and the CPs of them increase to be more adequate. For the bias correction of Ay and Py in
case of the SARF Tobit model, choosing s, = 1 significantly reduces the downward biases in 1y and

?x; and choosing s, = 2 performs well for the bias correction of 3.
5.2 Selecting spatial weighting matrices (W,, M,,)

In this subsection, we consider the model comparison issue in selecting W, and/or M, . If a
practitioner wants to select a proper (W, M,,) among various possible spatial weighting matrices, a

statistical criterion can be a reasonable guidance for this issue. To generate asymmetric spatial
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. 1 Inincome
influences, we construct Wy = [wg ], we; = ( .

) and its row-normalized

| income;— mcome] | Ini income;

version, and income; denotes the state i’s real personal income level in the year 2010. We will use
W,? in the application part, and provide a justification on its specification.

From W,¢, three specifications are considered: (1) Case 1: (W, M,,) = (W,Z,W,¢), (2) Case 2: LeSage
and Pace’s (2008) specification: (W, M,) = (Wne,Wne'), and (3) Case 3: LeSage and Pace’s (2008)

specification with row-normalization: (W, M,,) = (W§,,, Wg,,), where W§,, = [Wg’n,ij] with wg, ;=

we .
"” . By considering an asymmetric spatial weighting matrix, we make a difference between the
s y g y p g g
k=1 nLk

case of M, = W,¢ and the LeSage and Pace’s (2008) specification (i.e, M, = W,¢"). We measure the
lla-4"l,
2|lAll2
measure evaluates the normalized distance between A and A’ and is located in [0,1]. We observe

degree of matrix’s asymmetry using , where A is a square matrix. Using a matrix norm, this

[[wit-wi'll, W8 Wl . .
= 0.0001 and ————2=0.2349.% [t implies that the row normalization for W,
20wl 2[|wgnll,

generates a relatively high level of asymmetry. We generate the data for the three cases by considering
6, = (1,0.02,0.02,0.01,—4,1,1,1)" since this parameter vector provides the representative simulation
results in Section 5.1 by generating sufficient zero values (about 17%). We estimate the model using the
three candidate specifications.

For model comparison, we consider a measure based on the sample log-likelihood. The theoretical
foundation of this model framework is the Akaike information criterion (AIC) (see Akaike, 1973). AIC
measures the Kullback-Leibler divergence, which captures the distance between the (unknown) true
model’s distribution and that of a candidate model. For each DGP, we consider the quantity A;=
exp((AICyye — AIC)/2), where AICi.,. denotes the AIC evaluated at the true model and AIC; is the
AIC evaluated at Case [ = 1,2, and 3. This measure is the relative likelihood of the model [ capturing

the information loss from using the model [. The Akaike weight defined by A;= SE o , where R
r=1 T

denotes the number of candidate models, represents the probability that model ! minimizes the
information loss among candidate models.#> The Akaike weights are valuable indices in empirical
applications as the true unknown AIC;,,, will be canceled from the numerator and the denominator.
The figures below show how this measure is reasonable in determining a proper specification. We only
report the results when the SARF Tobit model is taken. The simulation results for the linear SARF model
are similar with the below.

wig-wie’
44 A baseline matrix norm can be replaced by other norms. For example, % = 0.0001, ” Wele ” = 0.0001,
nil1 0
P P 1 7 IO
2[wgall, ' 2[wgall, ’ ’

45 For details, refer to Section 2.9 of Burnham and Anderson (2002).
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Figure 3. Akaike weights

Akaike weights Akaike weights Akaike weights 100

50.0015 49.9985 - 49.9354 50.0646

0 0 p [1]
se. Case Case, Case. Case Case. Case.
3 2 3 2

True DGP: Case 1 True DGP: Case 2 True DGP: Case 3

Case Case. Ca
2 3

The numbers in the bar graphs show the averages of Akaike weights (multiplied by 100). In terms of
average, the Akaike weight takes the highest value at each true model. When Case 1 or Case 2 is true,
the Akaike weights from Cases 1 and 2 are similar while those of Case 3 are close to zeros. If the true
DGP follows Case 3, the Akaike weights for Cases 1 and 2 are almost zeros. Those results imply that the
Akaike weight is a reasonable measure in selecting a proper specification on (W, M,,) when each
candidate specification generates distinct spatial influences.

6. Application: States’ migration flow

In this section, we consider the migration flows among the 48 U.S. contiguous states (excluding Alaska
and Hawaii) as an application. For each pair (i,j), y,;; denotes the logged migration flows (added 1)
from state j in year 2010 to state i in year 2011 (i.e, y,;; = ln(mflowij + 1) ). As univariate
explanatory variables {x,;}, we consider the states’ (1) logged population levels {x,;,}, (2)
percentage growth rates of per capita real personal incomes {xn,i,z} in year 2010, (3) insured
unemployment rate {xnm} in year 2010, (4) 5-year average housing burden ratios {xn,H} from year
2006 to year 2010, and (5) the logged degrees of nodes in the states’ adjacency network {xni‘s}.% For
Zn ij1, the logged (kilometer-based) geographic distances (d;;) added 1 is employed. In addition to d;},
demographic and/or economic distances are considered as z-variables. For this, we consider the income
growth differential |x,;, — Xn ;2| as 2, insured unemployment rate differential |x,;3 — x, 3| as
Zp ij3, and housing burden ratio differential |xn,i,4 — Xp, j,4| as Zzp;j4-*’ Allvariables are collected from
the U.S Census. For details of variable specifications, refer to the supplement file.

For combinations of spatial weighting matrices, six specifications are considered. First, we consider
the shares of historical migration influxes and outflows (from 2009 to 2010). An n X n matrix W, =
[W,Iu- j] is designed to present forces toward destinations. Each entry W,IM- ; Is the share of migration

flow from j to i among migration influxes to i. To represent forces from origins, we consider an n-

46 Since the states’ adjacency matrix is symmetric, its outdegree is the same as its indegree. Hence, it is a degree.
47 Taking the absolute value on x,;, — x, jx generates additional variations relative to x,,;, and x, . Other types of z-

Xn,ik

variables can be considered to show an incentive of migrations (e.g., Xp;x — X5 jx OF )- In our estimation results,

Xn,jk
however, it is difficult to identify the relevant sensitivity parameter due to small variations in an alternative z-variable.
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dimensional square matrix Mg = [mg’ij] whose (i,])-element mg‘ij is the share of migration flow

from j to i among migration outflows from j. Those two matrices are directed networks and can
show different roles of origins and destinations in spreading spatial spillover effects. For alternative
specifications, we consider the states’ adjacency matrix W,* and a matrix constructed by their
economic relations W,S. We construct W, by the economic distance |incomel— — incomej| and its

In(income;) In(income;)

product with The weight generates asymmetric influences. If income; >

In(income;) In(income;)

income;, a signal from j to i (wy ;) is larger than that from i to j (i.e, alarger effect from a higher
income region). From W,*, W,?, and their row normalized versions, e.g., W,%n = [Wf;,n,ij] with

w.

ch?l,n,ij = nL we have six specifications: (1) (Wp, M,,) = (Wnl; M,‘-L)), (2) W, My,) = (W, Wit), (3)

a )
k=1Wn,ik

(W, M) = (W&, W) (e, LeSage and Pace’s (2008) specification), (4) (W, My,) = (Wg, W), (5)
W, M) = WE,W,E'), and (6) (W, My,) = (WReln, Wgy) . In the supplement file, we report the
estimation results when (W,, M,,) = (W,Z,W,¢) and (W, M,) = (W,2,W,E"), i.e., the cases (4) and (5).

Then, we estimate the resource flow model discussed in Section 2.1. When A5 # 0 or y, # 0 or
is the (G—Dn+

ij
inv,ij

ij

po # 0, there exist effects from third-party’s characteristics. Then, s;, .,

i,(h—1n+ g)-element of Sy' which characterizes the spatial spillover effect. The weight s

usually takes a number greater than one and shows how the spatial spillovers work to amplify the
characteristics’ effects (i.e., intensity of the multiplier effect). If there is no spatial spillover effect,

sii,];v,ij =1 forall (i,j) and sii,{v'kl =0 for (g,h) # (i,j) (i.e. the conventional gravity model).48 For

example, note that f;, presents the elasticity of geographic distance d;;. Then, ﬁl’osiiiv‘ij > f1o)

ij
inv,ij

ij ij
i inv,ij

where El,osmv,ij is the amplified elasticity of d;;, if s > 1 since s is a diagonal element of

Syt If (g, h) # (i, )), siir];v’gh represents how much the third parties (g, h)’s characteristics affect

ij

inp gh} after providing the estimation results.

mflow;;. We will report {s

Table 3. Descriptive statistics: States’ migration flows

Variables Mean Std. dev. Minimum Maximum
Migration flows (X 10%) 1.9253 17.4002 0.0000 527.1168
Geographic dist. (km) 1662.0418 957.1254 60.9591 4283.9987
Population (x 10°) 6.3887 6.9237 0.5644 37.3277
Personal income growth (%) 1.4545 1.5102 -1.2748 7.2790
Insured unemployment rate (%) 3.3831 0.8768 1.2346 5.2431
Housing burden ratio (%) 33.8697 4.8457 26.3536 49.1117
Logged degree of W2 1.4204 0.4151 0 2.0794

48 In the McCallum's (1995) gravity model framework with L =1 and K =1 for simplicity, we have
mflow;; = mflow(1 + dij)ﬁl'opopfl'opopfl'oexp(Eij),

where mflow is absorbed in a constant term for estimation.
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Figure 4. Heatmap for the U.S. state level migration flows

Heatmap for the U.S. migration flows
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Table 3 shows the descriptive statistics. From the heatmap of the U.S. migration flows (Figure 4), we
observe two features: (1) intrastate migration flows {yn,ii} are dominant over interstate ones {yn,l- J-}
(i #J); (2) 93.88% observations are nonzero, there exist unignorable zeros of the states’ migration
flows. For the first feature, the traditional logistic specification (e.g., Sasser (2010)) is weak in
explaining the dominating intrastate migration. It assumes that economic conditions in a state other
than a given origin and destination pair have no impact on the migration choice. On the contrary, our
model suggests that the impact of the characteristics of the origin and destination pair can be amplified
by the third-party’s characteristics via spatial spillover effects. We propose that local moves are more
intense for three possible reasons: (1) the relocation costs, including the moving cost (measured by d;;
and the information cost (by the demographic and economic distances), (2) the larger impact of a state
i's kth characteristics x,,;x on y,;; (i.e, by + cxo); and (3) the amplified effects of (1) and (2) by
the spatial multiplier effect (sii,iw‘gh) characterized by the feedback effects i+~ --- = i via spatial
networks. For the second feature, a migration flow mflow;; is the aggregation of individuals’
relocation decisions. An individual chooses to migrate to places only in the case that her utility is
maximized by balancing the benefit to move and the cost to migrate. As a result, zero values of migration

flows (about 6%) can occur when we aggregate individuals’ choices. It motivates us to consider the
SARF Tobit model.

—/

Table 4. Estimation results I: States’ migration flows

Linear SARF SARF Tobit
Parameters\Specification Wi m?) s W) (W, W, (W, W wlm9) w2, wa) (W, W, (W, Wi,
Constant -9.0100*** -15.3024*** -16.5112%** -9.1665*** -9.5311*** -15.7306*** -7.9918*** -19.2525%*
[1.2075] [0.8087] [0.8475] [0.9905] [1.2565] [0.8622] [0.9046] [1.0438]
0.5725*** 0.0545*** 0.2516%** 0.1961*** 0.6044*** 0.0556%** 0.3532%** 0.1177***
[0.0400] [0.0045] [0.0228] [0.0249] [0.0410] [0.0048] [0.0236] [0.0268]
Yo 0.6221*** 0.0520%** 0.2910%*** 0.1436*** 0.6250%** 0.0498*** 0.3875%** 0.0538**
[0.0385] [0.0046] [0.0228] [0.0253] [0.0406] [0.0050] [0.0234] [0.0271]
Po -0.3283*** -0.0028** -0.1004*** -0.4127*** -0.3194*** -0.0018 -0.2677*** -0.2487***
[0.0848] [0.0011] [0.0326] [0.0361] [0.0833] [0.0012] [0.0340] [0.0386]
Bro (dij = Yni) 0.6910%*% 07214 -0.6876%*  -1.0709%* | -0.6926%*  -0.7140%*%  -0.7441%* -1.0093%+*
[0.0249] [0.0273] [0.0293] [0.0267] [0.0261] [0.0290] [0.0313] [0.0282]
Boo (Xniz = Xnj2l = Ynip) 0.0113 0.0302 0.0135 0.0100 0.0124 0.0169 -0.0235 0.0486*
[0.0209] [0.0222] [0.0220] [0.0240] [0.0223] [0.0236] [0.0236] [0.0254]
Bao (Xnis = Xnjz| = Ynip) 0.0577 0.0800%* 0.0573 0.0234 0.0524 0.0484 0.0473 0.0514
[0.0377] [0.0401] [0.0396] [0.0440] [0.0401] [0.0427] [0.0424] [0.0465]
Bao (Xnis = Xnja| = Ynif) -0.0234%%  -0.0409%*  -0.0326**  -0.0185%* | -0.0231%*  -0.0361***  -0.0113 -0.0373%*
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[0.0073] [0.0077] [0.0077] [0.0084] [0.0078] [0.0082] [0.0082] [0.0089]
bio (tmin = Vui) 0.4325%* 0.8414% 0.7805%* 0.8344%* 0.4587+*  0.8926**  0.5355%* 1.1341 %
[0.0550] [0.0422] [0.0424] [0.0502] [0.0584] [0.0451] [0.0449] [0.0535]
boo (tmiz ™ Vi) 0.0419%* 0.0509%* 0.0445%* 0.0020 0.0448** 0.0396* -0.0038 0.0321
[0.0206] [0.0218] [0.0217] [0.0234] [0.0219] [0.0232] [0.0233] [0.0248]
by iz = Ynij) -0.0152 -0.0384 -0.0557 -0.0262 -0.0130 -0.0407 -0.0606 -0.0148
[0.0377] [0.0389] [0.0389] [0.0425] [0.0400] [0.0415] [0.0416] [0.0450]
bao (nia = Ynij) 0.0029 0.0200 0.0099 -0.0030 0.0007 0.0104 0.0054 -0.0029
[0.0083] [0.0089] [0.0088] [0.0097] [0.0088] [0.0095] [0.0094] [0.0103]
bso (nis = Ynij) -0.0108 -0.9941 %+ -0.0118 -0.1415 -0.0134 -1.1996%** -0.1532 -0.0091
[0.0740] [0.1375] [0.0777] [0.0853] [0.0786] [0.1465] [0.0833] [0.0901]
o Cinja ™ i) 044847+ 0.7771%* 0.7762%* 0.6990%** 0.4374%*  0.7836**  (.5332%* 0.9865%**
[0.0550] [0.0417] [0.0420] [0.0491] [0.0572] [0.0444] [0.0446] [0.0522]
oo (Xnjz ™ Ynij) 0.0537** 0.0525%* 0.0561%* 0.0029 0.0556%* 0.0391* 0.0162 0.0424*
[0.0209] [0.0218] [0.0217] [0.0234] [0.0222] [0.0232] [0.0233] [0.0248]
Cs0 (njz ™ Ynij) 0.0233 0.0139 -0.0107 0.0500 0.0314 0.0366 -0.0160 0.0695
[0.0371] [0.0389] [0.0389] [0.0423] [0.0394] [0.0414] [0.0416] [0.0448]
Cao (Xnja ™ Ynij) 0.0137 0.0399%#* 0.0273%* 0.0200** 0.0121 0.0406%* 0.0203** 0.0216%*
[0.0084] [0.0089] [0.0088] [0.0096] [0.0089] [0.0095] [0.0094] [0.0102]
Cso (Xnjs ™ Ynij) 0.2114** -0.6951 %+ 0.2125%* 0.1451* 0.2334%*  .0.7289%* 0.0708 0.3125%
[0.0754] [0.1357] [0.0783] [0.0855] [0.0801] [0.1446] [0.0838] [0.0906]
ol 1.5960%+* 1.7990%** 1.7622%%* 2.1139%* 1.7963%%  2.0268%* 20097 2.3533%
[0.0488] [0.0533] [0.0529] [0.0627] [0.0582] [0.0635] [0.0643] [0.0739]
Log-likelihood -3867.5132  -3977.4477  -39643566  -41354614 | -3969.7881 -4078.7266 -41149061  -4218.8884
Akaike weightx 100 100.0000 0.0000 0.0000 0.0000 100.0000 0.0000 0.0000 0.0000

Note: Theoretical standard deviations are in parenthesis. Estimates that are significant at the 10%, 5%, and 1%
levels are respectively marked by “*”, “**”, and “***”.

Table 4 reports the estimation results for the linear SARF and SARF Tobit models. The Akaike weights
suggest that the first setting (W, M,) = (W[, M?) is the best for both models. We observe that the
estimates from the SARF Tobit model tend to be larger than those from the linear SARF model (in
absolute values). However, the two models (linear SARF and SARF Tobit) yield the same sign and similar
significance of estimates. For interpretations, we focus on the estimates from the SARF Tobit model.
First, by the estimates for 4, and y,, we detect significant positive spatial effects from flows y, ,; (for
g #1) and yp;, (for h # j) on y,;;. It implies that the overall inflow (to destination i) or outflow
(from origin j) tendency has a positive influence on y, ;;. For example, the migration flow from Ohio
to Indiana increases if that from Ohio to a third-party connected state (e.g., Kentucky) or that from a
third-party state to Indiana increases. Second, for the parameter p,, a negative effect of migration flows
among third-party states on y,;; is captured.* Third, the geographic distance has significantly
negative effect on a state’s migration flow y, ;;. The geographic-distance-elasticity of the migration flow
is —0.7030. The effects of the income growth difference (z,,;;,) and relative labor market condition
(2n,ij3) on yn;; are notsignificantly captured. The housing burden ratio differential (z, ;;+) negatively

affects y, ;.

Fourth, the estimates for by, byo €10, and ¢, show that the logged population levels and the
personal income growths of both origin and destination significantly positively affect y,,;;. The effect
of origin’s population is larger than that of destination’s population. The importance of the origin state’
network connections on a migration flow is significantly identified (the estimate of c5 ). Last. we reject

49 In the supplement file (Section 3.2.1), we report the estimation results when the averages of inflows and outflows (y,, ;.
and y, ;) are considered as dependent variables (with the conventional SAR model). We do not capture significant spatial
influences among those averages of flows. It seems that the aggregation leads to losing information in spatial influences

among the origin-destination flows.
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the hypothesis Hy: by = cxo for k =5 (logged degrees of W,*).

Table 5. Estimation results II (with the fixed-effect specification): States’ migration flows

Linear SARF SARF Tobit
Parameters\Specification !, M9) Wa, w8 (W}gn, wg, (Wwa WR%) wl,M9) Wa, w8 (Wél,n' wg, (W;’n, wgn
Ao 0.1505%*** 0.0377**%* 0.1299*** 0.0685*** 0.2198*** 0.1237*** 0.1377*** 0.0484*
[0.0567] [0.0052] [0.0262] [0.0267] [0.0599] [0.0121] [0.0278] [0.0282]
Yo 0.1448*** 0.0417*** 0.2157*** -0.0084 0.5059%** 0.1317*** 0.2249%** -0.0417
[0.0552] [0.0053] [0.0254] [0.0269] [0.0554] [0.0113] [0.0271] [0.0283]
Po -0.2287*** 0.0026** 0.1338*** -0.1920%** 0.8670*** -0.0102*** 0.1506*** -0.1712%**
[0.0733] [0.0012] [0.0401] [0.0546] [0.1312] [0.0003] [0.0427] [0.0571]
Bro (dij = Yni) -0.7870%*  -0.8051%*  -0.7458**  .1.1089** | -0.7693***  -0.0091 -0.7315%* -1.1708%+*
[0.0253] [0.0292] [0.0313] [0.0259] [0.0260] [0.0205] [0.0332] [0.0275]
Bro (niz = Xnjz| = Vi) 0.0299 0.0327 0.0201 0.0650** 0.0229 0.2282%%* 0.0150 0.0761%*
[0.0299] [0.0306] [0.0303] [0.0321] [0.0316] [0.0370] [0.0323] [0.0342]
Bo (Fnis = Xnjz| = Ynip) -0.0185 -0.0188 -0.0257 0.0014 -0.0247 0.0426 -0.0397 0.0056
[0.0464] [0.0475] [0.0470] [0.0498] [0.0488] [0.0563] [0.0499] [0.0529]
Buo (Xnis = Xnjal P Yni)) -0.0191* -0.0215%  -0.0189%*  -0.0218** 00139 -0.0421%**  -0.0223* -0.0271%+
[0.0091] [0.0094] [0.0092] [0.0098] [0.0096] [0.0110] [0.0098] [0.0104]
0'02 1.5315%** 1.5454*** 1.5103*** 1.7084*** 1.6674*** 2.0201*** 1.7429*** 2.0501***
[0.0422] [0.0440] [0.0430] [0.0484] [0.0489] [0.0574] [0.0509] [0.0575]
Log-likelihood -3697.0327 -3741.8366 -3717.7547 -3842.8731 -3790.7025 -5270.1536 -3828.8817 -3950.8906
Akaike weightx 100 100.0000 0.0000 0.0000 0.0000 100.0000 0.0000 0.0000 0.0000

Note: Theoretical standard deviations are in parenthesis. Estimates that are significant at the 10%, 5%, and 1%
levels are respectively marked by “*”, “**”, and “***”".

Also, we consider the SARF model with the fixed-effect specification. The bias corrected ML estimates
are provided in Table 5. Even for the specifications with fixed effects, we observe that (W, M9) is the
best. After controlling for some time-invariant state characteristics, the estimates of 1y, ¥, and pg
tend to become smaller in absolute values. Significant negative impact of the bilateral distance on y,, ;;

is found. When the difference between the housing burden ratio of the origin state (j) and the
destination state (i) increases, the linear SARF model with fixed effects captures that the outflow of
migrants from j to i decreases. We do not detect significant effects of other characteristics.

Table 6. Equilibrium effects

Linear SARF Linear SARF Linear SARF + Fixed-effect Linear SARF + Fixed-effect

silfw_ij si’fw'yh with (g,h) # (i,)) sil,jwlij sil,jwrgh with (g,h) # (i,))
Mean 1.0607 0.0028 1.0024 0.0002
25th-percentile 1.0416 0.0003 1.0017 0.0000
Median 1.0556 0.0008 1.0023 0.0000
75th-percentile 1.0739 0.0019 1.0030 0.0000

SARF Tobit SARF Tobit SARF Tobit + Fixed-effect SARF Tobit + Fixed-effect

Silr]w,ij sl.lfw'gh with (g,h) # (i,)) Sil‘r]w,ij silfw‘gh with (g,h) # (i,))
Mean 1.0675 0.0044 1.0164 0.0000
25th-percentile 1.0454 0.0007 1.0098 0.0000
Median 1.0615 0.0016 1.0161 0.0000
75th-percentile 1.0828 0.0039 1.0245 0.0068

Table 6 reports the statistics of {s

ij
inv,g

.} showing the equilibrium effect under (W, M,,) = (W, M2).

The multiplier effects from the SARF Tobit models ({s.ij }) are greater than those from the linear

inv,ij

specifications. When we include fixed effects in the models, the multiplier effects become smaller. The

off-diagonal elements of Sy! (i.e., {s

ij

mv,ght (g,n)=(i,j)

) are much less than the diagonal elements of Sy?
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({Sii,];v'ij})- It implies that only a small number of third-party units have significant influences on

mflowl-j .
7. Conclusion

We develop a spatial autoregressive model for an origin-destination flow dependent variable (SARF)
with estimation methods. Using a similar structure of flow data with a panel data set, our model
accommodates the two-way fixed effect specification. For a specific data environment of a flow variable
with possible zero flow, we also consider the SARF Tobit model. We study the asymptotic properties of
the maximum likelihood (ML) estimator (quasi-ML estimator for the linear SARF model). To establish
the asymptotic properties of the MLE for the SARF Tobit model, the near-epoch dependence concept
developed by Jenish and Prucha (2012) is employed. Monte Carlo simulation results are provided to
deliver finite sample properties of the ML and QML estimators. Last, we apply our models to the U.S.
states’ migration flows. We detect significant spatial influences from neighboring migration flows.

Appendix. Mathematical proofs

Throughout this section, we will use the following notations. Recall that c,,; = XL wy,;; and
Cmye,j = Di=1Mn,j foreach j;and cy,; = XjoqWnij and Cpp; = Xj=1My,; for each i. Note that all

elements wy;; and m,;; are nonnegative by construction. Then, Cw,c:SUpnj[ﬂlaXnCw,c,j:

suppllWally » cme = SUpn IMAX Cmc,j = SuppllMully » cwr = sup, max c,,; = sup,|Walle , and

Cmyr = SUPp rrllaxn Cmri = Supn”Mn”oo-

A. Spatial stability

Here we introduce more details about spatial stability for the SARF model. Note that the cross product
(I,  W,)(M,, ® I,) = M;, ® W,, by Kronecker mixed product rule. We assume that W,, and M,, are
diagonalizable, i.e, W, = [1,A1,I¢ and M, = T Ap,I5,), where A;, = diag(@jn1, ., @jny),j = 1,2
are diagonal matrices of eigenvalues and corresponding [}, are eigenvector matrices. As My =

(TonAonTnd) = Ty 1A, T, S0 M;, has the same eigenvalue matrix but its eigenvector matrix is T, 1.
The eigenvalues of A(I,, ® W,,) + y(M;, ® I,,) + p(M;, ® W,,) are in the subsequent Claim A.1.

Claim A.1. An eigenvalue of A(I, ® W,,) + y(M;, @ I,,) + p(My, @ Wy) is AW1p; + YWon,j + pWop,j01n,
for i,j=1,..,n

Proof of Claim A.1. Let x;,; be the ith eigenvector corresponding to @;,; of W,, and x,,; be the
jth eigenvector corresponding to @y, ; of My. Forarbitrary i and j,

(A, @ W) +y(My, @ 1) + p(My, @ W) 1(x2; @ x4;)
= A(xZn,j ® anln,i) + V(MrlzxZn,j ® xln,i) + p(M;zxZn,j ® anln,i)

= (Aaln,i + yaZn,j + paZn,jaln,i)(xZn,j X xln,i)
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Thus, we have the claimed result. m
For spatial stability, the parameter space of the stable model can be
{(/'l, v, P): |/161n,i + y@on,; + p@Zn,jﬁlnﬂ < 1,foralli,j =1, ...,n}.

This implies that, with § = (4,y,p)" in this parameter space,
det(SN(5)) = [1Iij=1 (1 - (Aaln,i +ywan,; + P52n,j51n,i)) > 0.

When p= -1y, Sy(8)=Iy— AU, @ Wo) —y(My @ I) — p(My @ Wy) = (Iy — AU, ® Wi))(Iy —
y(My, ®In)). This would be a separable spatial filter case (LeSage and Pace, 2008). Then the
eigenvalues of Sy(6) can be factorized into (1 — mm)(1 — 52n,j): i,j=1,..n and det(SN(S)) =

H?j:l(l - /151,“-)(1 - yaZn,j)'
B. Model’s coherency

Now we consider model’s coherency for the SARF Tobit model. Note that Ay has zero diagonal
elements due to excluding self-influence, i.e, w,; =0 and m,;; =0 for i,j =1,..,n, and under

Assumption 3.1, ||Aylle = m;lXZ?/:l aspr < ¢ <1, where a;p denotes the (f,f’)-element of [Ay].

By spectral radius theorem, for any r Xr principal submatrix Ay, of Ay, we have
max|p;(Ay ;)| < |[An-|| . < lAxllw < ¢, where ¢;(Ay,) is the ith characteristic root of Ay,. For
i o ’ !

each 7, let g;, = ¢;(I, — Ay,) denote the ith eigenvalue of I, — Ay,. Then, ¢;, =1 — ¢;(Ay,). If
(pi(AN,r) isreal, 0;, =1— <Pi(A1v,r) >1—{.If g;, iscomplex (i.e., <Pi(AN,r) = Cry; t1-c;,; where

CrriCrri € R,and i = v—1),its conjugate 0;, isalso an eigenvalue of I — Ay ,. Then,

— . _ . _ _ 2 2
00 =(1—cpri—icrri)(1—crrit+i-cpi)=1—2cpr;+ Cryri Tt Ciri

>1-2 fcfmi i it Chr

2
> (1 — miax|(pi(AN,r)|) > (1-29)?
since |¢;(Ay.)| = ’c,%,r,i + c2,.; < {. Thus, we have the corresponding principal minor |I, — Ay | >
(1-07>0.
C. Asymptotic properties of the MLE for the SARF Tobit model
C.1. Consistency of the MLE

To prove consistency, the following propositions will be employed. First, consider the sequences
{yn,ij}r {ZZ:l Wn,ig)’n,gj}' {Z;lelyn,ihmn,hj}: {ZZ:lZﬁ:l Wn,igyn,ghmn,hj}' {E::L,ij(e)}r and {y;;,ij}'Where
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yr*l,ij = AO ZZ:lwn,igYn,gj + Yo Zﬁ:l yn,ihmn,hj + Po ZZ:l ZZ:l Wn,ig)’n,ghmn,hj + xn,inO + En,i]' as in (6)
inside F() ’ Er*l,ij(g) = (yn,ij - /122!1 Wn,igyn,gj - yz,f}:l yn,ihmn,hj - PZZ=1 Zﬁ:lwn,igyn,ghmn,hj -
Xnik)/0, and Xy = (1 Znijne 0 Zngjo Xnigs = Xnigr Xnjar - Xnjk) (1€, Xnij =Xy, with f =
(j—1n+i isthe fthrowof Xy).Forthe propositions below, the notation A <* B, where A = [affr]
and B = [bffr] means |affr| < |bffr| forall f,f"=1,:--,N, and the notation |A| for a matrix A =

!

Before establishing Proposition C.1, we introduce the following lemma.

[a75] means |A] = [|ag

Lemma C.1. Let a, j)4n be the (f,f')-element of |Ay|, where f=(G —1)n+i and f' = (h—
1)n + g. Assume that the model’s spatial stability and coherency hold. Under Assumption 4.2 (iii-1),
as >0 can be only if de((i,)),(g,h)) <d and @ (ij)gn =0 otherwise. Then,
N 00 1 00 l S . . . .
Zf’:lZl:l[lANl ]ffr < 21:[5/(1]“{ — 0 as s — o, where [ /&] is the biggest integer that is less or
equal than S/J. Under Assumption 4.2 (iii-2), @ j)gn < Codr((i,)), (g, h))_a for some C, > 0.

Moreover, %52, [|Ay|"1sp < Cde (), (g, h))_a for some C; > 0.

Proof of Lemma C.1. Note that (e;,; ® e;,;)(n @ W) (enn ® eng) = ey, j€n Wnyigr (€7 @ €5,;) (M5, ®

In)(en,h X en,g) = mn,hjeé,ien,gi and (erll,j ® erlll)(Mr’L X Wn)(en,h X en,g) = Wn,igMn,hj- Then,
A i) g.n) = 12ol1G = Wwyig + Vol 10 = g)my pj + |po|WrigMppjs

so there exist four cases for a,, (; jy g,n)- The column sum vector of Ay is

AOI;'L ® (Cw,c,l' Y Cw,c,n) + VO(Cm,r,lf Y Cm,r,n) ® l;l + Po (Cm,r,lr ) Cm,r,n) ® (Cw,c,l; ) Cw,c,n);

so ||Anlly < Aolewe + 1Yolemyr + |polcw,cCmy = I < 0o, Note that there exist the n same column sum
components in the first part.

Case 1, Assumption 4.2 (iii-1): Suppose Assumption 4.2 (iii-1) holds. First, if i = g and j = h, we have
Qn,ij)gn) = 0. Second, when i # g and j = h, @y j)gn) = |Ao|Wnig > 0 only if de((i,)), (g, ) <
d since dp((i,j),(g,h)) = max{d(i,j),d(g,h)} =d(i,g) <d . Third, when i=g and j#h,
An,i,j), (g0 = |YolMnpj >0 only  if de((i,)), (g, h)) <d since de((i, ), (g, ) =
max{d(i,g),d(j,h)} = d(j,h) < d. Fourth, when i # g and j# h, ) gn = |Po|WnigMnnj >0
only if dr((i,j),(g,h)) < d, because both wy,;; >0 and m,p; >0 only if both d(i,g) <d and
d(j, h) < d, then dg((i,)), (g,h)) = max{d(i, g),d(j,h)} < d. Hence, we can show that @y (i j)(gm) > 0
only if dp((i,/),(g,h)) <d and @, jygm =0 otherwise.

For some large s > 0, we observe

Z%:l Zi.il[lANll]ff’
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) n
le[s/a] 29 h=1 211 j1=1 le J2=1""" Ziy_q,jim=1 On,(0,)),(i1,j1) On,(i1,71),(i2.d2) *" O, (ig—1,1-1) (g 0)

: Z?i[s/a]’“l(

The first equality comes from Claim C.2.3 of Qu and Lee (2015). By Assumption 3.1, the following
inequality holds because

n
DG h=120,j,=1 21, 2= 17 Ry g jiea=1 O, (i), (i1,70) A (ig i), (iz,2) " B (igey i), (9,0

n n
= Xl ji=1 Dy " Blenjior=1 M (i) (in) ** On (i) (iresrfi—) 2gh=1 Ay, i) (g )

Pr
n n
S O =17 By jia=1 An, (i) dn) " On(iig fiea) (iizji—2) Dbt jio1=1 A, (izfi-2), (1111
<<

Then, Y _; X1 [l1An1pr < Z;’o[ t<(1-0"1¢li>0 as s> .

= S/&]H

Case 2, Assumption 4.2 (iii-2): Consider the case of Assumption 4.2 (iii-2). First, @y jygn =0 if i =

IA

g and j=h. Second, @, j)gn = |dolWnig if i# g and j=h. Then, a, ) gn = [1olWng
A0l Codr (i), (g, 1)) ™" since dr((i,)), (g9, 1)) = max{d(i, 9),d(j, )} = d(i, g). Third, @njcgn) =
[Yolmpnj < I]/OICOdF((i,j), (g, h))_a if i=g and j#h. Last, if i#g and j#h, @y gn <
1PolWn,igMans < 1po|C3d (G, 9)70d(j, )™ < |pol|C3dr((i, ), (g,h)) " since d(i,g) =1 and d(j,h) =
1 with a > 1. Hence, we have a, j)n < Codr((i,)), (g, h))_a for some C, > 0.

As the next step, we will show ||A§\,||1 < IKT{""! for | € Z,, where K is a positive integer that does
l
not depend on n. First, if ¢, . < ¢y, ||A§\,||1 < (M-Olcw,r + volemr + |p0|Cw,rCm,r) < {'. Consider the

case of ¢, . > ¢, . Then, we have ||Wnp||1 < pc‘,\,,cKWcf,"i,__r1 for p € Z, by Claim C.1.2 of Qu and Lee
(2015). For [ = 2,3,4, -+, by the triangle inequality, we have

4k |, < Zprqer=i5 120 lPIvol ool [W T || IMANIET

+r-1_q+
1201P1¥ol?1pol” (P"‘T)chwccp " anrr

p! qlrl

< 2p+q+r lp q'r'

_ + + _
< lKWC 2p+q+r | A—— I Olplyolqlpolrcvz;,rrcgl,rr < lKF(l 1;

p! qlrl

l
=(|/10 lew,r+volemr+1po |Cw,rcm,r)

where K is a positive constant satisfying Ky,c{ < KT' and ¢ > 1 such that ¢, . = Ccy,- The second

and third 1nequa11t1es hold since ||Wp+r|| < (p + )Kpyey et ™t = (p+r)Kyccht’, and

(»+

Iqlrl

r) <l

for p,q,r €Z, suchthat p+q+r=1€Z,.

plq!r!

40



For any [ € Z,, we construct two matrices A,y = [aln‘(i,j),(g‘h)] and A,y = [aZn,(i,j),(g,h)] as

~ (dr(GD.gm)\ ¢
follows: A1 (i,j),(9.0) = A, g * 1(@nij,gn) < Co (y) ) and Aon,(i,).(g.h) =
~ (dp(G@gm)) ¢
an‘(i,j),(g,h) . 1(an‘(i,j),(g,h) > CO (—F( . )) ) , then |AN| = AlN + AZN and
Ain,(i,),(g.h) A2n (i), (g ) = 0 - At least one of the items @iy j) » @nliyjy),Gajy) » -+ a0d

dr(().(g.m)) " “ '
(M) , because there exists at least two

@ iy_,ji-0.gk) would be less or equal to Co
neighboring points in the chain (i,j) — (iy,j;1) = - (i;—1,Ji—1) = (g, h) such that their distance is at

dr((L.).(g.0)

least . Hence,

L — ) , x (dr((Dgm)\ ¢
[Azzv]ffr— fin=1 " Bl i =1 D ) T i) (G ) 1(3“‘15 > Co (f) '

and we have
[y = [lAN]Y = Aby] .0 < 1Ainlmax Dol Ao IR IHAN ™M,

=
~ (dr(GDgGm)\ ¢, - _
< Cp (LRI " ik it — m — 1)

L —-a

where C; = C,KT. The first inequality follows by Lemma A.3. in Xu and Lee (2015b) and ||A§\,||1 <

-1 . : = (ar(GD)(gm)\ ¢
IKT'¢(*™* for | € Z, by Assumption 4.2, all elements in A,y are less or equal to C, (f) ,

and iﬁ:lo(l -m-1) = iﬁ:llm = 1(12;1) < [?. Then,

Zi‘il[lANll]ff’ = Zi‘il 2?1']'1=1 23—1’1'1—1:1 A, (0,1, (i1,J1) " O, (ig=1,J1-1).(g.0)
~ —a
< Cdp (de(G), (g, 0))) ~ T7H B, 1249
—-a
< Codp (e (G, (1))

where C, = 3¢ 1Y 2, 1?7 < 0. =

Proposition C.1. Assume that the model’s spatial stability and coherency hold.

(i) If supn,i‘jE|en‘ij|p <o for some p=1, we have uniform L, -boundedness of {yn,i]-},
(X521 WnigVngib (Zhe1 VninManih (Zhe1 Xhe1 WnigVngnMunj} 1€n:;(0)} and {y;. ;).

(ii) Under Assumptions 4.1, 4.2 (iii-1), 4.3, and 4.4, {Yn,ij}' {Zgzlwn,igyn,gj}, {Z’,}:lyn,ihmn,hj},
{Zzzlzﬁzl WrigYn.ghMnnj b {e;';,ij(é?)}, and {y;‘l,ij} are geometrically L,-NED on €. For example,

||3’n,ij —E(yn,l-jU-"n,ij(s))” < C{S/a where C is a constant, and d is a constant defined in
Ly
Assumption 4.2 (iii-1).
(iii) Under Assumptions 4.1, 4.2 (iii-2), 4.3, and 4.4, {yn,ij}, {ZZ=1 Wn,igyn,gj}, {Zﬁzlyn’ihmn’hj},
{Zgzlzﬁzl Wn'l-gyn’ghmn'hj}, {e;;’ij(e)}, and {y,*l’ij} are uniformly L,-NED on €. For example,
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”yn'ij —F ()’n,ij|7:n,ij(5))” < Cs?4~% where C is a constant, and both d and a are constants
Ly

such that a > 2d in Assumption 4.2 (iii-2).

Proof of C.1 (i). Recall that
vec(Yy) = F(vec(Yy)) = F(Ayvec(Yy) + Xyko + vec(ey)).

Under the model’s coherency (Assumption 3.1), vec(Yy) can be represented by a unique explicit
function of Xyk, + vec(ey) . Denote the unique solution of wvec(Yy) = F(Ayvec(Yy) + Xyko +

vec(ey)) as yy(Xyko + vec(ey)) with fth element Yn,s = ens¥n(Xnko + vec(ey)). By the mean
value theorem for a convex function (see Wegge (1974)), we have

yn Xnko + vec(ey)) —yn(0) = VF x [Ayyy (Xyiko + vec(ey)) + Xyko + vec(ey) — (Ayyn(0) + 0)]

where VF = diag(VFy, -, VFy), VFs (f =1,-+,N) is a subgradient of F(-) ata point lying between
ey rAnyn(Xnko + vec(ey)) and 0.50 Note that for the Tobit model, yy(0) = 0 and the sub-gradients

of F(-) lie between 0 and 1. Under spatial stability, we have a Neumann series expansion of yy(Xyko +
vec(ey)), ie, yy(Xyko + vec(ey)) = (Iy — VFAy) "IVF (Xyk, + vec(ey)). Since

(Iy — VFAN)TYVF = 32 (VFAW)'VF <* T2 lAn] = My = [mN,ff’];

where A = [affr] <*B= [bff/] indicates |aff/| < |bffr| for all f and f’. Then, we have
|yN,f(XNK0 + vec(ey))| < Z%zlm,\,’fﬂx,\,’f«o + EN_f,| . By the Minkowski’s inequality, we have
||yN,f(XNK0 + vec(eN))”Lp < Z}szlm,\,’ff,“x,v,f/;co + EN,f,”Lp < oo uniformly in n. Hence, {Yn,ij} is
uniformly L,-bounded. Using the same strategy, we can show that {Zgzl Wn,l-gyn,gj}, {Zﬁ:ﬁ’n,ihmn,hj}’
{01 X1 WnigYngnMnnj}and {y,;;} areuniformly L,-bounded.For {e;,;;(6)}, we can employ that
6 belongs to a compact parameter space 0.

Proofs of (ii) and (iii). Consider the NED properties of {Yn,ij}- Choose two possible bases 61(\,1) and 61(\,2),

which generate YA(,l) and Y,§2) , respectively. That is, vec(YA(,j))=F(ANvec(YA(,j))+XI(\{)KO+

vec(e,ﬁ,j))) for j = 1,2. Using the same way in the proof of (i), we obtain

vec(YI\(,l)) — vec(YI\SZ)) =(Iy - VAFS,AN)AVAF;, X [(X,(Vl) = X](VZ))KO + (vec(el(vl)) — vec(e,(vz)»] and

(Iy — mAN)_lm <" My, where VTy is a diagonal matrix containing the sub-gradients of F(-)
evaluated between the two points. Note that E ()’n,ijw:n,ij (s)) is an approximation of y, ;;, which is a

function of {(xn,gh, en,gh): de((i,)), (g, 1)) < s}. Then, we have

50 The mean value theorem is applied to each element of F(ANvec(YN) + Xy + vec(eN)).
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|5 = B (y0,i1Fnis () | L S T nan(@nom)>s Mn i gn |1 %n.gnico + €ngnll,

< SuPn,g,h”xn,ghKO + En,gh” L, SYPngn Zg,h:dp((i, N,.(g,1)>s Mn,(i,1),(g,h)
where my, ; jy gn) =My (e, f=(G—Dn+iand f'=(h—Dn+ g).

Note that supn,g,h”xn,ghko + En'gh”Lz < oo by Assumptions 4.3 and 4.5. To show the NED properties of

{yn,ij}, we need to show sup, g5 Zg,h:dF((i,j),(g,h))x my, ; iy g — 0 as s — oo. Using the results from

Lemma C.1 with the similar argument of Proposition 1 in Xu and Lee (2015), we finish the proof. The
details can be found in the supplement file. m

Next, we consider the NED properties of 1(y,;; > 0), which is a component of In L} (8). Before
discussing this issue, an additional condition is needed. The normality assumption (Assumption 4.8)
helps to restrict an upper bound of probability densities of {y,*l’i j}.51 Here are relevant lemmas and

proposition. Ideas of the proofs are the same as Xu and Lee’s (2015) Lemma 2 and Proposition 2.
Modified proofs for our framework can be found in the supplement file.

Lemma C.2. When M,, is an n-dimensional symmetric matrix, x, M, x, = i Irllinn o;(M,,) x5, x,, where

X, isanonzero n-dimensional vector.

Lemma C.3. Assume that the model’s spatial stability and coherency hold (Assumption 3.1). Under
Assumption 4.8, the essential supremums of densities of {y;,;} are uniformly bounded in i, j, and n.

Proposition C.2. Assume that the model’s spatial stability and coherency hold.
(i) Under Assumptions 4.1, 4.2 (iii-1), 4.3, and 4.8, {1(yn,l-]- > 0)} is uniformly and geometrically L,-

NED on e. That is, ||1(yn,ij >0)—E (1(yn,ij > O)|:Fn,ij(s))||L < C75/34 where C is a constant, and
2

d is a constant defined in Assumption 4.2 (iii-1).
(ii) Under Assumptions 4.1, 4.2 (iii-2), 4.3, and 4.8, {1(yn,l-]- > 0)} is uniformly L,-NED on €. That

is, ||1(yn,l-j >0)—E (1(ym-j > 0)|Tn,ij(s)>“L < €s(24-9)/3 where C is a constant, and both d and
2

a are constants such that a > 2d in Assumption 4.2 (iii-2).
Here is the proof of consistency.

Proof of consistency. Under the unique identification condition, for consistency, it suffices to show (1)

uniform convergence supge@%[ln Ly(0) — EInLy(6)] %0 and (2) the uniform equicontinuity of

{%E In L}*\,(H)}.

Step 1 (Uniform convergence): Note that

51 Note that the event of {ym-]- > 0} is the same as that of {y,*l'ij > 0}.
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~lIn Ly, (6) = E(n Ly (0)] = £ 2321 [1(ms; = 0) n @ (€5,(8)) = E (1(ynsy = 0) In @ (5,(9)) )]
——ln 210% X1 21 [1(ynij > 0) — E1(yn; > 0)]
v, (&) = v, (8]

l] =1 [1(yn ij > 0)( Tll](e)) El(yn,ij > 0) (E:l,ij(e))z]- (C- 1)

First, note that %ln 2102 X721 [1(Vnij > 0) — E1(yp; > 0)] % 0 uniformly in © since each o2

is a positive constant due to the compact parameter space assumption. Second, consider the last term

2
of (C.1). Observe the components of {(E;‘LU (9)) }:

(E;,ij(e))z = i23’13 ij T E(ZZ-l Wh, igyngj)z + ﬁ(Zﬁq Yn, ihmnhj)2 + p—z(ZZ h=1 Wn,ig)’n,ghmn,hj)z
2 (n k) = Z i (B0t Wi ignos) — 22 Vs (Bier Vi inMans)
Zpym,(Zgh \ WnigVngn i) = = Ytj (¥n i) + 2 (Zhma W igYng)) (Sher Y inTin 1)
ZAP (Zg 1Wnlgyng])(2g 1Wnlgynghmnh])
2”’ 2 (Zho1 Yninn ) (ZG he1 WaigYn.gn i nj)
; (23:1 Wi, igVn.gj) (Xnijkc) + 0—)2/ (Zh=1Vn,intmn ;) (Xn,ijkc)

+ j_g (ZS:l Wn,igyn,ghmn,hj)(xn,in)-

2
By Proposition C.1 and using the compact parameter space assumption, {(6:1,”(9)) } for each 6 is
uniformly L,-NED on ¢, and uniformly L,,, -bounded for some 7 > 0. Since {1(y,;; > 0)} is also

2

uniformly L,-NED on e by Proposition C.2, {1(yn_ij > 0) (€,;(0)) } is uniformly L,-NED on e.
2

Hence, it satisfies the conditions for the WLLN: supQE@%ZQjﬂ [1(yn,ij > O) (6:”-]-(9)) — El(ym-j >

0) (e;;l-j(e))z] %0,

Third, we will consider
SupBEGlZ?j—l [1(3’n ij=0)In® (6:1 ij(g)) —E (1(yn,ij =0)In® (Gz,ij(g)))] 20 . Let t1n(0) =
i=1 [1(yn ij=0) lnCD( nu(g)) (1(yn,ij =0)Ind (e;;,ij(e)))] for each 6. Observe that 0 is

compact by Assumption 4.4 and ¥, 5(6) 50 for each 6 € 0. By Theorem 1 in Andrews (1992), it
suffices to check the stochastic equicontinuity of {{’LN(H)} as Xu and Lee’s (2015) proof of Theorem 1.
Observe that

In® (E:l,l'j (9)) = ln[l - (D(j- ZZ:l Wn,igyn,gj + ]7 Zﬁ:l yn,ihmn,hj + ﬁZZ,h=1 Wn,igyn,ghmn,hj + xn,ij’%)]

— yn ~\n P Aw =
=In CD(_A Zg:l Wn,igVngj — Y Zh:l YninMnnj — P Zg,h=1 Wn,igVn,ghMnnj — xn,in)r
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where 1= A/0, ¥ =y/o, p = p/o, and & = k/o located at a close and bounded subset of R3*L+2K
(due to the compact parameter space assumption). By Lemma A.9 of Xu and Lee (2015b),
In®(x;) —In®(x,)| < 2|x1| + 2|x5| + C3) * |x; — x,| for some C, > 0. For two sets of parameters

(11,171,;”)1,12{)’ and (12,172,;32,125)' and for some C, > 0, then,

. 1(yn = ) [ In (I)( Al Zg 1 Wn,igVn,gj Vi Zﬁ:l Yn,inMn,hj — ﬁizrgl,h=1 Wn,ig¥n,ghMn,hj — xn,ij’zl)
In (I)( AZ Zg:l Wn,igyn,gj Y2 Zﬁ:l yn,ihmn,hj — P2 Zg,h=1 Wn,ig)’n,ghmn,hj - xn,inZ)
Z?J [ 2~|Al Zg:l WnigYn.gj ‘|: Y1 ZZ:l Yn,ihMn,hj ‘I: P1 Zg,h=1 Wn,igYn,ghMn,hj + xn,iNj’z1| ]
+2|AZ 22:1 Wn,igYn.gj t+ 72 Zﬁ:l Yn,ihMn,hj + D2 Zg,h=1 Wn,igYn,ghMn,hj + xn,in2| + CZ
|(’11 - /‘IZ) ngl 1 Wn, igYngj + ()71 - )72)2;: 1Vn, ihmnhj + (.51 - .52) ZZh 1 Wnig)’nghmn hj + Xn, ij(’zl - 'zz)|

< : lJ 1 [4Am|2g 1 Wn, ngng]| + 4'Vm|2h 1Yn, lhm‘nhjl + 4'pm|2gh 1ngyghmh]| + 4'|xn l]|Km + CZ]

<

2|

=terml

X (lzgzlwn,ig:)"n,gjl + |Z;zl=1 Yn,ihmn,hj| + |Z7gl,h=1 Wn,ig}’n,ghmn,hjl + |xn,ij|lL+2K)
=term?2
X (|/11 —/12| + |71 — V2l + 11 — P2l + IRy — ’22”),
where A,,, ¥, Pm, and &,, are respectively the supremums of A, ¥, p, and K, and ||-|| denotes the

Euclidean vector norm. By the compact parameter space assumption, they are finite. By Proposition C.1,
the components in termi and termZ2 above are uniformly L4, -bounded for some 7 > 0. Then,

||term1 - termZIIL 2 < ||terml||L4+77 . IItermZIIL,W7 by the generalized Holder’s inequality. By applying

Lemma 1(a) in Andrews (1992), {¢,,(6)} is stochastic equicontinuous and { Tic1 (1(yn =
0)In® (6;'1-]-(9)))} is equicontinuous.

Last, we will show supgee % [ln det (S;(,Z (6)) — Elndet (S,’\‘,2 (6))] 5 0. Let Ay(8) =AWy +yMy +
pRy for each § and its (f,f')-element be @, j)gn(8), where f=(G—1n+i and f' = (h—
1)n + g. Then, by the Taylor expansion,

In det (5;;2(6)) = =323t ((Gy () AN )G (1))
= = a1 1y > 0) [E2: 3 o ((Gu (AN (B)Gy () )|

== Xij=1 1(yni; > 0) X024 1211 j 7 B gjics O, G (6) = @ngiy i) (6)
X 1(NrZi{minjn > 0})

(-Dn+i,(j-1)n+i

For each (i,j) and q € Z,, define B ;=X bln” with

binig = 1(Wnij > 0) Xy gy = Dirervjis an.(i.j).(il.jl)(‘s) (i) () 1(NEZ Wi, > 0}) and

q
BZTLL]

= Zf‘;qﬂ%bl_n,lj. By using Lemma A.8 in Xu and Lee (2015b), {bl,n,ij} is uniformly L,-NEDon €
for | € Z,. For each [, we have %Z{‘Fl(bl’n’” - Ebl,n,ij) 5 0 by applying Theorem 1 in Jenish and
Prucha (2012). By the compact parameter space assumption, we obtain

SUPseo, | ZU 1(Blnl] - EBgnU |£> 0 for q € Z,. Using the same expansion technique in Lemma

C.1,
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<q+1
Sup6605| Zl] 1BZnU| —Zl q+1l

- (q+1)(1 9}
qet+1
Take a positive integer q. such that ((1le0<_ for an arbitrary small ¢ > 0. It implies
1 c . e .
SUPseos |ﬁz§f 1Bgnu and  supsee; Zl} 1EB§,“]| <3 - Then, supsco, |EZ?J'=1(BgnU
& 3 & & p
EBgnU)|<£ . By combining (1)  supsee, |ﬁZi,j=1(B(1]nu_EBgnu)|_’0 and (2)

SUPseoys | Yti-1(B35, — EB3S, U)| < &, we obtain the desired result.

Step 2 (Equicontinuity of {% E(InLy (6))}): Recall that

ZEnLy(0)) =381 E (1(yni; = 0) In@ (€5,/(8))) — =10 2702 57y (v > 0)

+2EIndet(5i,(8)) = 252121 E1(yngy > 0) (63,5(0))

By Step 1, we have verified that a family of functions {%Z?}':lE (1(3’n,ij = 0) In ® (e;;,ij(e)))} is
equicontinuous. By the compact parameter space assumption, {%ln 2mo? ZﬁjzlEl(yn,ij > 0)} is

equicontinuous. Consider %E In det (S,’(,2 (6)). Since

G
SUP,SUPseo, |:—6%Eln det (5§2(6))| = SUP,SUPsco; |% tr (IVIN.§,§1(5))| <= ( Cm.c ) < oo,
~ o~ CMLTCHLC
|2 er (RaSi*(®))|

{%E lndet(S,’(,Z(6))} is equicontinuous. For the last component, observe that {El(yn,ij>

2
0) (e;“u-j (9)) } is a sequence of uniformly L,,, -bounded components for some 7 > 0 by Step 1. With

the compact parameter space assumption, the last component is also equicontinuous.

Step 3 (Identification uniqueness): In this part, we will derive the identification conditions provided in
Assumption 4.9. Those also come from Rothenberg (1971): 6, is uniquely identified if and only if there
is no observationally equivalent 6 € ©.Suppose InLy(6,) = InLy(6;) forsome 6; € @ with 6, # 6,.
Consider a specific event ﬂ” 1{yn ij > 0} and note that P(ﬂu 1{yn,ij > O}) > 0. In this case,

InLy(6y) = InLy(6,) isequivalent to

Yinog —Indet (53,80)) + 2301 (65,4 (00)) = 2inof — Indet (53,6)) + 27, (61,4 (6)

Since yy;; >0 forall i,j =1,---,n, we differentiate the above with respect to Yn.gh (for some g,h €

{1,"',71})!
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2= 1(nij (erll,j®erll,i)AN(60)veC(YN) - xn,ino)(91'1,]'®31’1,i)141v(50)(9n,h®9n,g)
+J—§ (yn,gh - (erll,h®erll,g)AN (60)17€C(YN) - xn,ghKO)
1

= _G_%Zgjﬂ()w,f - (erll,j®e7,’L,i)AN(61)veC(YN) - xN,f’Cl)(erll,j®erll,i)AN(61)(en,h®en,g)

+ Jig (Yn,gh - (e1lq,h®erll,g)AN (61)veC(YN) - xn,ghkl)- (C- 2)

Let f=(—1n+i and f' = (h— 1)n + g. By differentiating both sides of (C.2) with respect to
Yn,gh» W€ have

1 1 1 1 . . .
(ng?ﬂ["‘fv (60)]]27, + z= G—%Z’fvﬂ[AN (61)]127, + = which is equivalent that

e ) L CIV M R N
A2 1 6

- (Z B _) ZfaWnlgpr + (y - _) Zf=alMyTpp + ( 5_2) ZfalRulyy

+(M_Ao)’o)z 2[W ] [My], e + (A1P1_lopo)z 2[Walse [Ry]esr
p 2 ) Zr=12lWinlpe lMnlss o7 op Jer=teUTNIr LN S

+ (18— ) B 2[My ][Ryl

(B A2 v v 2 SN ARY 2

= (U_% - a_g) Wy, + (0—% - a—%) Yo [My17 .+ (0—% - 0_2) r-1[Rnlpr

for all f'=1,---,N. The above holds since [WN]]ZCf, =1( =Rwg ;. [MN];f, =1(i=g)m;y;,

[RN]ff’ = Wn lgmn hj [WN]ff’[MN]ff’ =1(i=g,j= h)Wn,igmn,hj =0 , [WN]ff’[RN]ff’ =
1G = h)Wn,ig WhigMnnj =0, and [MN]ff’[RN]ff’ =10 = g)mn,hj Wh,igMnpj =0 . For all f'=
=[WN]ff’ Z[RN]ff’ =[MN]ff’ =[RN]ff’
1,---, N, note that a set of vectors {w;,,m;,,n“]f/} is linearly independent, where w]f,, m]f,,and 11*;, are
respectively consist of Yf_ 1([WN] WN]jZCfu ), Z?zl([MN]jch, — [MN]]ZCfn), and Z?zl([RN];f, —
17 I : s : . /1% /1(2) V12 V(% P% p(z) 1 1 2
[Ry]% u) for f" # f'. This condition implies — ==, = ==, = = =, and — = —;, sowe have o{ =
rf of § of a5’ of $ 1 0

03, |/10| = |41, [yl = |V0|: and |P1| = |,00|-

By differentiating both sides of (C.2) with respectto y, ,; with (k,1) # (g, h), we have

_([AN(50)]f”f’ + [AN(50)]f’f”) + Z?=1[AN(50)]ff”[AN(SO)]ff’ (C.3)
= —([AN(51)]f”f’ + [AN(51)]f’f”) + Z¥=1[AN(51)]ff”[AN(51)]ff’,

where " = (I — 1)n+ k, since o = . First, we consider the first part of (C.3):
0

[AN(SO)]f”f’ + [AN(SO)]f’f” - [AN(51)]f”f’ - [AN(51)]f’f”

= (4o — /11)([WN]f”f’ + [WN]f’f”) + (o — V1)([MN]f”f’ + [My]prpr
+(po — pl)([RN]f”f’ + [RN]f’f”)

= (o —A)1(h = l)(Wn,gk + Wn,kg) + (Yo —v)1(g = k)(mn,hl + mn,lh)

+(,00 - pl)(mn,hlwn,kg + mn,thn,gk)
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_ / ’ (/10 - /11)171 ® (Wn + Wn’) + (VO - Vl)(Mn + Mrll) ® In
= (et @ <to) (oo — P (M, @ Wy + My, ® W) ) (en @ ene)

Consider the second part of (C.3) XY_1[An(80)15[An(80)] 557 — XF=1[An(81)] 55 [Ay(8:)]5 5. Then,
we have

YF-1[An ()] nlAN (8] rg — XF-1[AN (61)] n[AN(81)] g
(A5 — A%)[WN]ff”[WN]ff’ + (5 - Vf)[MN]ff”[MN]ff’ + (p§ — p%)[RN]ff”[RN]ff’
+(Ao¥o — )11V1)([WN]ff”[MN]ff’ + [MN]ff”[WN]ff’)
+(Aopo — Alpl)([WN]ff”[RN]ff’ + [RN]ff”[WN]ff’)
+(YoPo — V1P1)([MN]ff” [Rylrpr + [Rylfpr [MN]ff’)
= (AoYo — /11)/1)(Wn,gkmn,hl + Wn,kgmn,lh) + (Aopo — )11P1)(mn,hz + mn,lh)(Z?:l Wn,ian,ik)
+Yopo — V1P1)(Wn,gk + Wn,kg)(2?=1 mn,hjmn,lj)
(Ao¥o — My) (M, @ Wy, + M, @ W)
= (enn Qeng)| +(Aopo — Aip) (M + Mp) @ W) (ent ® eni)
+opo — Y1P1)(MnMr'1 & (W, + Wnl))

since A2 = 1%, y2 =y¢,and p? = p3.Since I, @ W, + W), (M,, + M) ® I,,, M}, @ W,, + M,, @ W,,,
M, QW,+M,QW,, (M,+M,;)®W,W,, and MM, @ (W,, +W,) are linearly independent,
relation (C.3) implies 4y = A4, Yo = Y1, and py = p;.

By putting Ay = 14, Yo = ¥1, Po = p1,and d¢ = o2, (C.2) becomes

¥ [An(Bo)] s prxn pico — Xy p1¢o = D F=1[An(80)]fp1Xn s — Xy p1ic; . which is  equivalent  to
ey s (AN (60) — In)Xnko = ey ¢1(AN(80) — Iy)Xyky for an arbitrary f'. It implies SyXyko = SyXyky,
so Xyko = Xyk; due toinvertibility of Sy.By multiplying X}, onboth sides, Xy Xyko = XyXyk;. The
invertibility assumption for XX, yields k, = k;. Under the conditions in Assumption 4.8, we cannot
have 6, # 6,. =

C.2. Asymptotic distribution of the MLE

To prove the asymptotic normality, we need to show the following properties. Recall that 7,,;;; =
[WNgﬁl]ff = [ZﬁoWszv]ff v Tnijy = [MNgﬁl]ff = [Z%, Mszv]ff ,oand Ty, = [ﬁNgﬁl]ff =
(220 szfv]ff- Define 7,52 = [W%vgﬁz]ff» Tnijyy = [Mzzvgﬁz]ff, Tnijpp = [ﬁzzvgﬁz]ff; Tnijiy =
[WNMNSEZ]H, Tnijip = [WNﬁNfﬁz]ff, and Ty iy = [IVINﬁNf,;Z]ff, where f = (j—1)n+i. Note

that each term in the above can be represented by a Neuman series expansion and an indicator function.

Proposition C.3. Assume that the model’s spatial stability and coherency hold.
(i) Under Assumptions 4.1, 4.2 (iii-1), 4.4, and 4.5, {rn,ij_l}, {rn,ij_y}, {rn_ij,p} are uniformly and
geometrically L,-NED on € with the NED coefficient 555/3&' where d is a constant defined in

Assumption 4.2 (iii-1). Moreover, {T”n,ij,u}» {rn,ij,w}, {rn,ij,pp}, {rn,ij,ly}' {Tn,ij,zp}. and {rn,ij,yp} are
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uniformly and geometrically L,-NED on e with the NED coefficient s2¢5/34,
(ii) Under Assumptions 4.1, 4.2 (iii-2), 4.5, and 4.5, {rn,ij‘,l}, {rn,ij,y}, {rn,ij‘p}, {rn,ij,ll}: {rn,l-jw},
{rn‘ij,pp}, {rn,ij,,h,}, {rn,ij,,‘lp}, and {rn,ij,yp} are uniformly L,-NED on € with the NED coefficient

s(4-a)/3 where both d and a are constants such that a > 2d in Assumption 4.2 (iii-2).

The proof of Proposition C.3 can be found in the supplement file. For example, the idea of proving the
NED properties of {r,,;;1} istorepresent r,;;, asa Neumann series expansion, i.e.,

Tija = Mizo By gy 2ipjy 10 = JO) Wity @n, iy, j2) Gaa) ™ O G j), )
X1 ({yn,ij > 0} 0 (Nh=s{Ynins > 0}))-

Then, we decompose 1,;;, as a finite member of terms (i.e., [Z{Zo szfv]ff for a finite integer m)
and a remaining infinite sum (i.e., [Z?‘;mﬂ WNZfV]ff). For the finite summation term, we can show its

NED properties by applying Propositions C.1 and C.2. The remaining infinite summation term is small
under a large m (i.e, [Z[“;mHW,\,ZfV]ff - 0 as m - o),

Note that deriving the asymptotic distribution of 8y relies on the Taylor expansion argument:

N 2 *x (A —1 * ~ ~
\/N(BN - 90) = (—lw) iM, where 6y lies between 6y and 6,. After establishing

N 0606 VN 96
~ D . . . 19%In Ly(Bn) _ 10%InLy(60)) _
Oy — 6, , our direction of proof is to show Ty E (N ST ) =0,(1) and
d
\/iﬁzzjzl Gn,ij(80) = N(0,25 ), where q,,;;(6) denotes the (i, j)-component of the score evaluated at
. d1n Ly (6y) ¥ . ¥ . * 1
0 (ie., % = XYij=19n,ij(00)) and Zp = rlll_r)go TN With Zg = EVar(Z’i"jzl qn’l-j(é?o)). In the

supplement file, we provide the first and second order conditions. The set of first-order conditions can
be written as the summation of g,;;(6) for each 6 € ©. The next proposition characterizes the

asymptotic distribution of \/iﬁzgszl qn,ij(Bo)-

Proposition C.4. We additionally assume Assumptions 4.10 and 4.11. Under Assumption 4.2. (iii-2),
d
Assumption 4.12 is additionally needed. Then, J%Zﬁjzl qn,ij(0o) — N(O,Zgo), where Xy = 713_{{)1() oo N

. * 1
with ZQO,N = EVaT(Zgjzl qn‘ij(eo)).
Proposition C.4 is the application of Corollary 1 of Jenish and Prucha (2012). Assumption 4.10

corresponds to Assumption 3 in Jenish and Prucha (2012). Hence, the remaining point of proving
Proposition C.4 is to have the uniform L, ,5-integrability of {”qn,ij (60)|]} (Assumption 4 in Jenish and

. . o . 19%InLy(On) L (10%InLy(60)) _
Prucha (2012). Proving asymptotic normality is showing ~ 008 (N a0 ) = 0,(1) and
. , . o . 19%InLy(On) L (18%InLy(60)Y _
applying the Slutsky’s lemma with Proposition C.4. For having ~ 2000 E (N 000, ) = 0,(1),

we then need to check regularity conditions (Assumption 2 in Jenish and Prucha (2012)) to apply
Theorem 1 in Jenish and Prucha (2012). The detailed proofs of Proposition C.4 and Theorem 4
(asymptotic normality) can be found in the supplement file.
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D. Asymptotic properties of the MLE for the SARF Tobit model with the two-way fixed
effects

Fernandez-Val and Weidner (2016) study the asymptotic distribution of parameters in nonlinear
panel models with individual and time effects when n and T are large (i.e., large-T version of the
incidental parameter problem). To derive the asymptotic distribution of @y, we will employ the notions
established by Fernandez-Val and Weidner (2016) due to some similarities in terms of the framework.

First, they consider the case 0 < lTim ¥< o (Assumption 4.1 (i) in Fernandez-Val and Weidner
n,l —oo

(2016)). It corresponds to our case since we always have the same number of units (n) for origins and
destinations.>2 Second, our fixed-effect specification belongs to the additive separable two-way fixed-
effect specification (Assumption 4.1 (iii) in Fernandez-Val and Weidner (2016)). Third, our statistical
objective function InLjy(w,ay) is infinitely differentiable, so it satisfies smoothness conditions
(Assumption 4.1 (iv) in Fernandez-Val and Weidner (2016)). The strict concavity of In Ly (w,ay) in
Assumption 4.1 (v) in Fernandez-Val and Weidner (2016) can be achieved by the reparameterization
(Olsen, 1978). The difference comes from the dependence concept among observations. Their
framework allows a general type of time dependence with cross-sectionally independent samples. On
the other hand, our setting considers the weak cross-sectional dependence (characterized by the NED
concept) across origins and destinations.

In the main draft, we provide the brief description of the arguments for consistency and asymptotic
normality. The supplement file contains the arguments in detail.

_19%In Ly(wo.a%)

-1
; ) . Note that the diagonal terms
n Jdayoay

The proposition below shows the structure of E (

10%1InLy(wo.ay)
n  dayday

of E(— ) are of O(1) , and its off-diagonal terms are of 0(%) When

19%In Ly(wo.a%)

E (_162 In Ly (wo.a)
n  dayday

n  dayday
diagonal matrix.

-1
) is invertible under a large n, E (— ) can be approximated by a

10%In L*N(wo,a?\,))_l — Hiapap)m }[(aoad)rn

Proposition D.1. We denote E (—n =H, = l a block matrix.

dayday

ﬂ(laoad)_.n Hagagm

Under the same regularity conditions for Theorem 4.5, (i) a,;; = [}[(aoao):n]jj for j=1,---,n and
— , — ~ 1

Cnii = [}[(adad),n]ii for i=1,---,n are of 0(1); and ||7-[n —f]-[n”max =0 (;), where ||A;llmax =

maxi,j|[An]l-j| and #,, = diag ({an'jj}7=1’ {cn,l-i}:;l) is an approximation of H,.

Note that the dimension of @y(w) (and a%) is 2n, which grows as n increases. In order to
10%InLy(we.ay)
n  Odayoal

norm |||l for 2 < q < .53 To characterize parameters near the true ones, we define the closed balls
of radius r = 0: (i) for wy, let B(wy, 1) = {w:|lw — wyll <7}, and (ii) for a}, let B,(ay,r) =

{aN: llay — ag]”q < 7"}-

evaluate an 2n X 1 vector, an 2n X 2n matrix (e.g., — ), and so on, we consider the g-

Step 1: As the first step to show the asymptotic distribution of @, , we need to have Taylor

. # of origin units
52 In our setting, we always have PO onEmINE .
# of destination units

53 The g-norm for a matrix and/or a tensor is defined the induced vector norm. Details can be found in the supplement file.
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ialnL}‘v(w,&N(w))
VN ow
them, some regularity conditions should be checked (see Lemma D.1 in the supplement file). Those

conditions are the counterpart of Assumption B.1 in Fernandez-Val and Weidner (2016).

approximations of @y(w) — a% and for given w. To obtain the Taylor expansions of

The implication of the proposition below gives bounds of Taylor approximations’ (@&y(w) — a% and

1 dlnLy(w,ay(w) . . . . ~ ~ o~
M) the remainder terms if one takes 7,-consistent estimator @y for @y(@y) — a% and

\/_N w
1 dln L;V((T)N'&N(E’N))
VN w '

Proposition D.2. Assume the results in Lemma D.1 in the supplement hold and sup,ep(w,r,)ll@y(w) —

a,?,llq=op(ra). Let q=4+n for some n >0 and 0£e<%—%. For w € B(w,,1,) and ay €

1
B,(ay,1,) where 1, =0(n™®) and 1, =0 (n q S), we have the two results below:

(i) For a given w € B(7,, w,), the Taylor expansion of @y(w) around a¥ is

19%In L}‘V(wo,a?v)) 191nLy(woay) n ( 132 1InLy(wo, aN))
n

ay(w) —ad = (__ _19%InLy(woaf))” 10%InLy(woaR) (@ — wy)

n  dayday day n  dayday n dayow’
n 1 ( 162%In L}‘V(wo,a?v))_l n 193 1InLy(wo.af) ( 10%In L’;\,(wo,a?\,))_l 101nLy(wo.af)
2\ n  Odayday J=1 " %) v gaydayoaj, n  daydal n day

N 1( 1 621nL}V(a)0,a?\,))_1 n a31nL}‘V(w0,a§’v)( 1 62lnLy\,(wo,a?v))_1 1o Ly(woad)) | pa ()
2 n  dayday dln daydayda;q n  dayday n day N !

101nLN(w0,aN) 1 alnLN(wo,aN)

where u, ; is the jth element of an n X 1 vector H(aoao)n Py + f]-[(aoad)n e
n,0 n,d
dlnL , dlnlL )
Uq,; denotes the ith element of Hg,q,)n 1W+H(aaaa)n 1%"““), R (w) denotes

1

1
the remainder term.5* Note that [[Ry(w)ll, = 0, (n 1+q) + 0, (nq Nw = w0||) for w € B(wg, 7).

(ii) For a given w € B(r,, w,), the Taylor expansion of L 9Inty(w@n()

N e can be represented by

IOt ) W@ = @0) + U + U + Ry (@),

VN dw

where

5+ _F ( 1 621nL*N(w0,a?V)) g (1 621nL7\,(w0,a?\,)) E ( 1 621nL}*\,(w0,a?\,))_1 E (1 azlnL}},(wO,a?\,))
wo,N ™ N dwdw' n n  dwdda)y n  dayday n  daydw’ ’

U(o) _ 1 dInLy(wo.af) s (1 821n Ly (wo, aN)) E (_ 1621nL’I‘V(wo,a?V))_1 _19InLy(woaf)
VN dw dwday n  dayoday n day
U(l) U(l a) + U(l b) with U(l a) _ U(lal) + U(laZ)
U(l'a'l) _{19°In Ly(wo.a%) _E (_ 19%1In LN(wo,aN)) E (_ 19%In Lfv(wo,a?v))_l 10In Ly(wo.a%)
N " n dwdal n dwday n  dayday n day

T Y CLALY O, WY LAV {_ 10%mii(00dd) _ ((_ 192 1nL;v(wo.am)>}

n dwday n  dayday n  dayoday n  dayday

54 Since H, is symmetric, note that Hg,ao)n = H(g,ag)n:
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E (_ 10%1n L}‘V(wo,a?\,)) 101nLy(wo.ay)
n  dayday n day

. 3 * 0 2 * 0 2 * 0 -1
UIEILb) _ %Zdlm(a,v) (E (16 lnLN(wo,aN)) L E (16 lnLN(wo,aN)) E (_18 lnLN(wo,aN))

g=1 n  dwdaydagy n  dwday n  dayday

E (1 93 lnL}‘V(coo,a?V)>> [f]-[ 19InLy(wo, aN)] E ( 10%InLy(wo, aN)) %Bln L}‘V(wo,af{,)’

n daydaydagy day n  dayday day

Ry(w) denotes the remainder term satisfying [[Ry(w)|l =o0,(1) +o0o,(n"|lw —well) for we€
B(wg,7y), and a, denote the gth-element of ay and dim(ay) = 2n.

In terms of the Fernandez-Val and Weidner’s (2016) expressions. the reminder terms satisfy
1-

a7 | R ()l IRy ()l . . . ~
we}}s(g)p;’rw)m 0,(1) and weBS(li)Iz,rw)m = 0,(1). Since we will finally achieve ||@y —
_ 1 . ~ 142 ~
woll = 0,(n™) = 0, (&), we will have [R§ @) llg = 0, (n*7) and [Ru(@)1l = 0,(D).

11

Step 2: One additional condition for Proposition D.2 is [|@y(w) — ayll; = 0 <n7+5> if |lw— woll =

1 1
O(n_E). Lemmas D.2 and D.3 in the supplement file shows that [[@y — woll =0, (n_E) and
1 1
lay(@y) —ajll, =0 (n 2 q) if 2g,, = llm XN 1s nonsingular and X, > 0. Showing Lemmas D.2
and D.3 relies on strict concavity of the log-likelihood function. For this, we consider the
reparameterization suggested by Olsen (1978), i.e, T: (w, ay) ~ (w*, ay). By showing the results for
the re-parameterized MLEs, we can obtain the desired results using the functional invariance property
of the MLE (ie, (@y,@y) =T 2@}, &y)). After verifying U + U

|Gy — woll = 0,(n™Y) = 0, (\/iﬁ) (a part of Proposition D.3 shows UIE,O) + U,E,l) = 0,(1)).

= 0,(1), we can achieve

Then, UIS,O) is the main part of the asymptotic distribution of @y while Uls,l) characterizes the
d
asymptotic bias of @y. We will show that U - N(0,5;,,) where %, = lim %}, \ and u®P —ny =
n—-oo

0,(1) forsome Ay.The lemma below characterizes the form of Aj.

Step 3: The proposition below characterizes the key terms of the asymptotic expansion @y: (i) U,E,O)

and (i) UV,

d
Proposition D.3. (i) U\ — N(0, 5,) as n—oo; and (ii) u{te — (AL + A5y) %o, ute? —
(A*3,N + A’;N) 5 0, and UIE,l’b) — (Asy + A% n) 50 as no 0,

where A}y = = 7 1an” "L E(q ﬁ‘}thffﬁ")
E,N:% ?1Cnu 12 E(qndh::?]d
E,N = l j=1 Qn,jj (_Zn lE(h::Z;)) E(hnuva’onj)'
e S ) 7_1E(hzzvadm)
EN 1 ZJ 1(‘)"(0-'0“0)]] n]]n k E(an]qnl]) and

*

6N = 3 Zl 1 n(adad)ucnu Zk 12 1E(qnlkqnu
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. a .
with vao, nj == Xk=12p= 1an,]kqnpk+ Z “12q 1b‘l’l,jlqn,‘§q for j=1,---,n,
a .
Vaygni = 1Zp 1bnk1qnpk ;Zl=12q=1 Cnilqn(;q fori=1,-n,
wa
wn(aoao),]] E(tnijo)-l__namnfz' E(tnl]) +- z:l 1Tagn,i (nl}) for ] =1,

wa
Wn,(agag)ii = —Z?_l ( nl]d) + = Zn 1Ty nj (tn U) +;nad’n‘i Yi=1E ( nl}) for i=1,-

where 7Tao,n1 Z" 1 2p= 1an]kE(h,(fZZ) +—Zn=12n=1 bnﬂE(hi?qd) for j =1,---,n,and

Tagni = ; k=1 Zp:l bn,kiE(h;),Z]o() +- Z =1Cn llE(hn lq ) for i=1,-n
Then, A* = ?,N + AE,N + AE,N + AZ,N + A*S,N + A*6,N

Step 4: By applying Proposition D.2 (ii) and Proposition D.3, we have

d
VN(@y — wo) = 55, (U + USY) + 0,(1) > N(Z5, A%, Z51) as n - oo,

where A, = lim Ay with Ay = Ay + Aoy + A3y + Ay + A5y + Ay (for details, refer to Lemma
e : , , ,
D.4 in the supplement).

Derivatives: In this part, we provide the detailed forms of the key derivative components. Consider the

d1InLy(w,ay)

first-order derivatives. Then, e = Y1 Xj=19ni (cu ®j o) A d) with

© _ (dlnLy(way) dlnLy(weay) olnLy(way) dlnLy(weay) olnLyway))
An,ij (‘U: %0, a’i,d) = EX oy ap OB 902

—1(Yn,ij = 0)0._1 d)(Ert,'i*j(w,aj,i;ixi,d))(f.g:l WnigVngj)
Cb(en'i]-(w,aj ol d))

¢’< enii(@ajo ald))(zh VminMony)
d)(EnU(aJ a,oam))

¢(e:{,'i*i(w.aj,a a; a))(Zg ht WnigVnghMonh))

¢( "U(“’ j,0. i d))
ot (@ajoma) Jonis
CD( nu(w @ o “xd))
t’/)(e:fji*j(w %0, d))en'ij(‘“ “j,o.ai,d)

q’( nu(“’ aj,00 “ld))

_Tn,ij,l((S) + 1(Yn,ij > O)U ! :l](w ®j o0, aLd)(Zg 1 Wn, Lgyngj)

_1(yn,ij = 0)0'_1 rn,ij,y(a) + 1(Yn,ij > O)U ! :l](w a] 0’ aLd)(Zh 1ynlhmnh])

= _1(yn,ij = 0)0_1 — Tnij, p(‘s) + 1(ynu > 0)0 16n Jij (w, aj,o:“i,d)(ZZ,h:l Wn,ig)’n,ghmn,hj)

—1(ynij = 0)o! + 1(ynij > 0)a e :;U(w @ o» Ai ) Znij

_ﬁl(yn'” =0) 1(yn” >0) +55 1(yn” > O)Enu(w a;, 0!“1(1)

At the true parameter values, let q,;; = q,‘{fij(wo,aj,o,o,ai,djo) for i=1,..,n and j =1,...,n. Other
quantities below are similarly defined.

!
; dlnLy(w,ay) dlnLy(w,ay) dlnLy(w,a dlnLy(w,a dlnLy(w,a
Consider NN = ( N e né N), niwan) ATH n@aN)) opserve that
day d0ay, dan o dai g dang
dln Ly (w,ay) d1n Ly (w,ay)
2 ONVOENI p _— ag
a1, qn,‘il(w, U100 Ui ) 014 An,1j (w, @0 @1,4)
dlnLy(w,ay) a, dInLy(w,ay) ag
—_— S\, A a; T e— AW, &, A
6a2’0 = ?21 qn.lZ( ’ i 2,00 l:d) , and 50!2,d = Z;’lzl qn,2]( 4 ].0' Z'd)
. : o : . :
0ln Ly (w,ay) qngn (a), U0 ai,d) 0InLy(w,ay) qn n,j (w a] 0 An d)
dan,o dap g
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a, _ 1 n .
where qn‘ij(w, ajo,aid) = qnij(w, ajo,al-d) — ,u;ijlaj,o +ua;y for j=1,-,n

1 .
qnu(w aj, O'ald) = Qnu(w aj, OPald) + ua;, — #‘Z?:lai,d for i=1,-,

qn,ij(w' aj,orai,d) = —1()’n,ij = 0)0_1

(@ ).

4’( nu(w aj, O’ald))

q)( n, U(O) 6{] O’al d))

Consider the relevant components of the second-order derivatives.

2InLy(way) _

danday

where

aajloaai,d

9% 1In Ly (w,ap) Z

2
aai'd

9% 1n Ly (w,ay)
2

60(]-,0

9%2InLy(way)

9% 1InLy(w, aN)

aaldadl,d

h;xl‘;](w aj, o»“id) = hnij(w ajo:aid)
Tll](w ajo'ald) hnl](w a]o;ald) —E for i=1

hnij (@, @0, @a) = 1(Ynij = 0)0_211’( nl](w aj, Oiald)) ~ 1(yn,j > 0)o 2

Consider the elements of h*“

ra? In Ly (w,ay)

daq,00a1,

*

=S,

0 0
0aq1,00ay,4 0ay,00az4
9% In Ly (w,an) 0 %InLy(way) 0%InLy(way)
dazedaz, 0azo0ayq 0az,000a;4
. ?InLy(way) 0*InLy(weay) 8%InLy(way)
dan,00an,o danpda; g 0ane0asq
210 Lk
" " 0% 1nLy(w,ay) 0
Balldaalld
2 *
" " " 0°InLy(w,ay)
aaz'daazld
* * * *
% 1InLy(w,ay)
(W, @0, @iq) for j=1,..,n; ——L==0

—u for i #1 with

o2 In Ly (w,an)

n,ij

9% In Ly (w,an)

92 In Ly (w,an)

3% In Ly (w,an)

hn.ij(w» aj,mai,d) +u for j=1,..,

L hie

nai(w a0, ai4) for i=1,...,

u . _
—;for]—

(w ajo,ald) for j=1,-

3% In Ly(w,an)

n; and

92 In Ly (w,ay)

- n and h®¢

6aj,06ak_o

nandi=1,..,n;

n,ij

9% In Ly(w,ay)

8% 1n Ly (w,ay)

8% In Ly(w,ay)

n, and

+ 1( nU > O)O'_IEnl]((U, aj,o,ai,d)

3% In Ly (w,an)]
0aq,00anq
3% 1n Ly (w,ay)
0az00ang

danedang

0

0

dapnqdanq

—u for j # k;

((1) a] Olald) for i = 1

3%In Ly(w,an)]

0A0aq,0 dAdaz 0Adan,o 0A0aq q 0A0ayq 0Adan q
%?InLy(way) 9%InLy(way) ?InLy(way) d%InLy(way) 92%InLy(way) 3% In Ly(w,ay)
dydaq, dydaz,e dydan,e dydaqq dydazq dydanqg
ZInLy(way) _ |0*InLy(way) 8%InLy(way) % InLy(way) d%InLy(way) 8%InLy(way) 3%In Ly(w,ay)
0w6a§v 0pdayo dpdas, 0pdano 0pday,q dpday g4 0pdanq
%?InLy(way) 9%InLy(way) ?InLy(way) d%InLy(way) 92%InLy(way) 3% 1In Ly(w,ay)
Bday, Bday Bdan o pday 4 apda, g dfdang
%?InLy(way) 9%InLy(way) ?InLy(way) d%InLy(way) 982%InLy(way) 3% 1In Ly(w,ay)
d00ay,o dogday, dcdan, doday g doday g 000anq
where for j =1,...,n,
2InLy(way) n hla"(w o a ) 92InLy(way) _ hyao (w O a )
d1daj, n,ij » W0 Uid ) ayoaj, n,ij » B0, Uid)
9% 1In Ly (w,ay) pa 9% InLy(w,ay) Ba
— = h "(w di,, O ) — N = n h "(w Ai,, A ) and
apdaj, n,ij \*"» %j,00%i,d )y aBoa;, n,ij \**» Y00 %id )
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?InLy(way) _ wn a o,

~ w,q;,, A g) With
dc2daj, =1 nl} ( j,07 ld)

;1101(10(“’ Qj0, “ld) 1(3’n.ij = 0)0_21/)( nl](w aj, o'“ld)) (Zg 1Wnlgyngj)
—1(ynij > 0)o 2 (Xh_1 WnigVng)):
RS (0,50, @1a) = 1(vms; = )02 (€77(@, @0, @i10) ) (Bt Y inMn )
—1()’n,ij > O)U_Z(Zh 1Yn,inM nhj)
hﬁol(]o(w’ aj,orai,d) = 1(3’n,ij = 0)0_21/)( €nij (‘U a;, o'ald)) (Zgh 1 Wn,igYn,ghMn, h])
—1(ynij > 0)o™2(Z% po1 WniigVnghMunj)»
hf_’:‘fj"(w, Ao @iq) = 1(yni; = 0)0‘21/)( enii(oa; O,ald)) Zpij — 1(ynij > 0)o™22,;;, and
1 ¢<En,ij(w'aj,o'ai,d))
203 <1>(e+'f‘.(w a; o,aid))

1(3’7“1 > 0) P nu(w aj, 0'ald)

fu;zo(w aj, o'“ld) = 1(3’7111

+l/)( nll(w aJO’ald)) nu(w a]O’ald)

Note that
92 lnL;V(w:aN) _ ‘n /1“0 a2 lnLN(a) (IN) Yao
AdaLy R i (“’ aj, 0'ald) dydaLy —Z 1Ry ;7 (w’aj,o'ai,d),
?InLy(w,an) _ on pay ?InLy(way) _ wn Ba,
opdaig 2j=1 h"*if (w' %o ai'd)' 0poayq Zj=1 M ij (a), %0, ai,d)' and
?InLy(way) _ wn o?a, .
Tootoa, Xhahy (0,a50,a1) forall i=1,-,n
. . . . d(y(x) 93 InLiy(we,al 33 1InLy(we,al
For the third-order derivative, define ¢(x) =M. For M and M the
dx dwdaydaj, dwdapyoda;q
relevant terms are
For j=1,..,n,
63 lnL?V(w:aN) _ n /10!0 63 lnL}‘V(w,aN) _ Tl Yao
010az, tnij (@ a0, @1a), ayoaz, =1lnj (. )0, @),
3 InLy(way) _ pa, 3 InLy(way) Ba,
—6p6a2 = i=1ty if (w, aj,o,al-,d), —aﬁaajz.o = di=1ly if (a), aj,o'ai,d)’ and
63lnLN(w aN) ala,
ao-zaa]o 1tn ij ((1), aj,O'ai,d)'

where tr/},?](')(w‘ )0, Qia) = =1(Ynij = 0)0_34"( enij(@ o, o'“ld)) (Z6=1 Wnig¥n.gj):

t%?jo(w' aj,o:ai,d) = _1(Yn,ij = 0)0_3¢( nl](w aj, O'ald)) (Zh 1 Yn,inM nh})
tiy (@ %o, @) = =1(Ynj = 0)0_34’( €nij(@, %o'“zd)) (5,021 WnigVngnMnns),

tff‘]"(w, %oy Aia) = —1(Vnij = 0)0‘3<p( enii(w aj, O,ald)) Z,;;, and
le( Tll](w aj, O'ald))

+(P( Tll](w ajo’ald)) nl](w a;, O’ald)

iy (0,010, @,0) = ~1(Vnij = 0) 52

1
+ 1(yn,ij > 0);
For j=1,.,nand i =1,..,n,
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93 InLy(w,ay) Aag 3 InLy(way) _ ya,
0Adajo0aiq bij (a), Yoo ai'd)’ 9ydaj,0aiq = tnij (w' %o ai‘d)'

3 InLy(way) _  pa, 3 InLy(way) _ , Ba,
0pda;o0aigq = lnij (a), Hior i d)' 0Bdaj,0aiq = bnij (a), %o ai’d)' and
P InLy(way) O' o

d020aj,0a;q nl] (w %, O’ald)

For i =1,...,n, we have

aslnLRI(w:aN) n /10(0 23 lnLN(a)aN) Yo

orda?,; tij (“’ Y, 0'a“1) oyda?, Lj=1tn A (a), af,o'ai,d)'
63lnLN((u ay) pa, 23 lnLN(a) ay) Bao

6p60( - Z tn ij ((l), aj‘o; ai,d) —aﬁaa = Z tn ij (0), aj,o,ai,d), and
63lnLN(w aN) n o’ @

aJZaaﬁd j=1 nl] (w aj, 0'ald)

33 InLy(wo,ad) d 3% InLy(wo.ad)
daydayda;, daydayda;qy

derivatives above) are

For , the relevant terms (see the derivation of second order

3 InLy(w, aN) 33 In Ly (w,ay)

23, itnsi(@ a0 aiq) for j=1,..,m; T 0 for k # [;
as(;r;LN—(a(le:V)_ nl](w ajolald) for j=1,..,nand i =1,..,n;
%_ Tll](w ajmald) for j=1,..,n and i=1,..,n
%=Oforiil;and %g;‘“m_ n nu(“’ “]o,“zd) for i=1,...1m,

where tn‘;](w, aj,o,ai,d) = —1(yn,ij = 0)0‘3<p( nl](w a;, O,ald))
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