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Abstract

Dynamic policy games feature a wide range of equilibria. This paper provides a

methodology for obtaining robust predictions. We begin by focusing on a model of

sovereign debt although our methodology applies to other settings, such as models of

monetary policy or capital taxation. The main result of the paper is a characterization

of outcomes that are consistent with a subgame perfect equilibrium conditional on

the observed history. Our methodology provides observable implications across all

equilibria that we illustrate by characterizing, conditional on an observed history, the

set of all possible continuation prices of debt and comparative statistics for this set; by

computing bounds on the maximum probability of a crisis; and by obtaining bounds

on means and variances. In addition, we propose a general dynamic policy game and

show how our main result can be extended to this general environment.
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1 Introduction

Following Kydland and Prescott (1977) and Calvo (1978), the literature on optimal gov-
ernment policy without commitment has formalized interactions between a large player
(government) and a fringe of small players (households, lenders), dynamic policy games,
by building on the tools developed in repeated games in the work of Abreu (1988) and
Abreu et al. (1990). This agenda has studied interesting applications for capital taxation
(e.g., Chari and Kehoe, 1990, Phelan and Stacchetti, 2001, Farhi et al., 2012), monetary pol-
icy (e.g., Ireland, 1997, Chang, 1998a, Sleet, 2001) and sovereign debt (e.g., Calvo, 1988,
Eaton and Gersovitz, 1981, Chari and Kehoe, 1993, Cole and Kehoe, 2000) and helped us
to understand the distortions introduced by lack of commitment and the extent to which
governments can rely on reputation to achieve better outcomes.

One of the challenges in studying dynamic policy games is that these settings typ-
ically feature a wide range of equilibria with different predictions over outcomes. For
example, there are “good” equilibria where the government may achieve, or come close
to achieving, the optimum with commitment, while there are “bad” equilibria where this
is far from the case, and the government may be playing the repeated static best response.
When studying dynamic policy games, which of these equilibria should we employ? Can
we make any general prediction given this pervasive equilibrium multiplicity? One ap-
proach is imposing refinements, such as various renegotiation-proof notions, that either
select an equilibrium or significantly reduce the set of equilibria. Unfortunately, no gen-
eral consensus has emerged on the appropriate refinements.

The goal of this paper is to overcome the challenge multiplicity raises by providing
predictions in dynamic policy games that hold across all equilibria; following the termi-
nology of Bergemann and Morris (2013), robust predictions. The approach we offer in-
volves making predictions for future play that depend on past play. The key idea is that
even when little can be said about the unconditional path of play, quite a bit can be said
once we condition on past observations. To the best of our knowledge, this simple idea has
not been exploited as a way of deriving robust implications from the theory. Formally, we
introduce and study a concept which we term "equilibrium consistent outcomes": out-
comes of the game, after an observed history, that are consistent with all subgame perfect
equilibria that on its path could have generated the observed history.

Although the notions we propose and results we derive are general and apply to a
large class of dynamic policy games, for concreteness we first develop them for a specific
application, using a model of sovereign debt along the lines of Eaton and Gersovitz (1981).
In the model, a small open economy faces a stochastic stream of income. To smooth
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consumption, a benevolent government can borrow from international debt markets, but
lacks commitment to repay. If it defaults on its debt, the only punishment is permanent
exclusion from financial markets; it can never borrow again. There are two features of
this model that make it appealing to our work. First, this model has been widely adopted
and is a workhorse in international economics. Second, as we show in this paper, this
policy game can feature wide equilibrium multiplicity. On one end of the spectrum, in the
worst equilibrium, the government is in autarky, facing a price of zero for debt issuance,
and consuming its income. Meanwhile, in the best equilibrium, the government smooths
consumption, and there is no room for self-fulfilling crises.1

Our main result provides a characterization of equilibrium consistent outcomes in any
period (debt prices, debt issuance, and default decisions). Aided by this characterization,
we obtain bounds for equilibrium consistent debt prices that are history dependent. The
highest equilibrium consistent price is the one of the best equilibrium, is Markovian and,
thus, independent of past play. The lowest equilibrium consistent price is strictly positive
and depends on past play. Due to the recursive nature of equilibria, only the previous
period play matters and acts as a sufficient statistic for the set of equilibrium consistent
prices. The fact that the last period is a sufficient statistic may seem surprising. However,
this result is a direct expression of robustness: it can always be the case the expected
payoff rationalizing a decision had to be realized in histories that have not occurred.

The restrictions that we obtain in this paper are intuitive. In our sovereign debt ap-
plication, equilibrium consistent debt prices improve whenever the government avoids
default under duress. In particular, if the country just repaid a high amount of debt, or
did so under harsh economic conditions, for example, when output was low, the lowest
equilibrium consistent price is higher. The choice to repay under these conditions reveals
an optimistic outlook for bond prices that narrows down the set of possible equilibria for
the continuation game. This optimistic outlook is the expression of a dynamic revealed pref-
erence argument. What the government has left on the table as a consequence of its past

1Given that our approach tries to overcome the challenges of multiplicity, we first ensure that there is
multiplicity in the first place. In particular we show that in the standard Eaton and Gersovitz (1981) model,
restrictions on debt, which are often adopted in the quantitative sovereign-debt literature (Chatterjee and
Eyigungor 2012 and micro-founded in Amador, 2013), can imply the existence of multiple equilibria (see
Auclert and Rognlie, 2016 for necessary and sufficient conditions for uniqueness). Our multiplicity relies
on the existence of autarky a subgame perfect equilibrium. This result may be of independent interest,
since it implies that rollover crises are possible in this setting. The quantitative literature on sovereign debt
following Eaton and Gersovitz (1981) features defaults on the equilibrium path, that are caused by shocks to
fundamentals. A recent exception is Stangebye (2018) that studies numerically the role of nonfundamental
shocks in sovereign crises using a model as in Eaton and Gersovitz (1981) with long term debt. Another
strand of the literature studies self-fulfilling debt crises following the models in Calvo (1988) and Cole and
Kehoe (2000). Our results suggest that crises, defined as episodes where the interest rates are very high but
not due to fundamentals, may be a robust feature in models of sovereign debt.
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decisions, reveals the expectations over the future. In equilibrium, these expectations over
the future must be correct, and hence imposes restrictions over future outcomes, which
are the basis of the predictions we obtain in this paper.

What is the importance of obtaining robust predictions? What we describe as robust
predictions in this paper, which follows the terminology in Bergemann and Morris (2013),
can also be described as the observable implications of equilibrium. In two influential pa-
pers, Jovanovic (1989) and Pakes et al. (2015), characterize for static games the observable
implications of models with multiple equilibria. These implications, which are based on
a static revealed preference argument, have been the basis of large literature in Industrial
Organization and Econometrics that utilize them to estimate models with multiple equi-
libria (see Tamer, 2010 and De Paula, 2013 for recent reviews). To the best of our knowl-
edge, ours is the first paper to obtain predictions over observables in a dynamic model
with multiple equilibria without appealing to any equilibrium selection. We believe that
our main results could be used as the basis of estimation techniques for dynamic models
without imposing assumptions regarding the class of equilibria.

The first part of the paper characterizes equilibrium outcomes for the model as in
Eaton and Gersovitz (1981). One of the limitations of this analysis is that in the classic
version of the model, there is a deterministic relationship between the goverment’s poli-
cies and prices. There are many reasons to think that this link is not that tight. In fact,
a large literature in sovereign lending, but also a large body of work studying other dy-
namic policy games, has focused on the implications of breaking this link (at least since
Calvo, 1988 and Cole and Kehoe 2000). Thus, we study a variation of the model that al-
lows for coordination failures and crisis, by introducing a sunspot variable that is realized
after the government chooses its policies but before market prices are realized.

For this generalized version of the model our main result, following the classic ap-
proach in Aumann (1987a), characterizes probability distributions over outcomes, what
we term as “equilibrium consistent distributions”. Even though in the model enriched
with sunspots any equilibrium price can now be realized after a particular equilibrium
history, we show that there are bounds on the probability distributions over prices. This
is intuitive. For example, if the government just repaid a large amount of debt, it cannot
be consistent with an equilibrium that they receive a price of zero with probability one.
This intuition will be the basis of the characterization of equilibrium consistent distribu-
tions. This characterization is based on the same dynamic revealed preference argument
that we explained above, which is a consequence of sequential rationality and that beliefs
are correct in equilibrium.

As in the baseline model, building on the characterization of equilibrium consistent
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distributions we then turn to explore the predictions on observables that hold across all
equilibria. First, we obtain bounds on the maximum probability of low prices; for ex-
ample, a rollover debt crises, a price of zero. Due to equilibrium multiplicity, as we ar-
gued above, rollover debt crises may occur on the equilibrium path for any fundamentals.
However, the probability of a rollover crisis, after a certain history, may be constrained.
We derive these constraints, showing that rollover crises are less likely if the borrower has
recently made sacrifices to repay. Second, we study bounds on moments of distributions
over outcomes. In particular, we characterize bounds over the expected value of debt
prices given a history for any equilibrium. Surprisingly, the bounds of expected prices of
debt will be tightly related to the bound of prices in the model without sunspots, which
are easy to compute. In addition, as in Bergemann et al. (2015), we characterize bounds
on variances, which holds across all equilibria. As we mentioned before, the importance
of bounding moments across all equilibria is that these can be the basis of econometric
estimation methods.

In the last section of the paper we show how our characterization of equilibrium con-
sistent outcomes extends to a more general class of dynamic policy games. In particular,
we provide a general model of credible government policies, which follows the seminal
contribution of Stokey (1991). The key features that the general setup tries to capture are
lack of commitment, a time inconsistency problem, infinite horizon that creates reputation
concerns in the sense of trigger-strategy equilibria, and short run players that form expec-
tations regarding the policies of the government. With some variation on the timing of
the moves for the players, most dynamic policy games share these features. After propos-
ing the general model, and showing that widely used frameworks such as the model of
Eaton and Gersovitz (1981) and the New Keynesian model as in Woodford (2011), fit in
the setup, we replicate our main results of the paper for this general setup.

Literature Review. Our paper relates to several strands of the literature. First, to the
literature on credible government policies. The seminal papers on optimal policy with-
out commitment are Kydland and Prescott (1977) and Calvo (1978). Applications range
from capital taxation as in Phelan and Stacchetti (2001) and Farhi et al. (2012); mone-
tary policy as in Ireland (1997), Chang (1998a), Sleet (2001) and Waki et al. (2015); and
sovereign debt Atkeson (1991), Arellano (2008), Aguiar and Gopinath (2006), Cole and
Kehoe (2000), and more recently Dovis et al. (2017). We believe that our paper is closely
related to Chari and Kehoe (1990), Stokey (1991) and Atkeson (1991). The first two pa-
pers adapt the techniques developed in Abreu (1988) to characterize completely the set of
equilibria in dynamic policy games. Atkeson (1991) extends the techniques in Abreu et al.
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(1990), by allowing for a stochastic public state variable, in the context of sovereign lend-
ing finding interesting properties of the best equilibrium. Our paper studies a related, yet
different question. Instead of characterizing equilibria at the beginning of the game, we
characterize continuation equilibria given a history of play. This characterization of con-
tinuation equilibria is precisely the basis for obtaining predictions that are robust across
all equilibria. Our central assumption is that an equilibrium has generated the history of
play, without appealing to any equilibrium refinement.

Second, to the literature on robust predictions. The papers that are more closely related
to our work are Angeletos and Pavan (2013), Bergemann and Morris (2013) and Berge-
mann et al. (2015). The first paper, Angeletos and Pavan (2013), obtains predictions that
hold across every equilibrium in a global game with an endogenous information struc-
ture. The second paper, Bergemann and Morris (2013), obtains restrictions over moments
of observable endogenous variables that hold across every possible information structure
in a class of coordination games. In a related paper, Bergemann et al. (2015) characterize
bounds on output volatility, across all potential information structures, in a static model
where agents face both idiosyncratic and common shocks to productivity. Our paper
contributes to this literature by obtaining predictions that hold across all equilibria in a
dynamic game. In particular, we obtain restrictions over the distribution of equilibrium
debt prices, for any possible process of sunspots, by exploiting the dynamic implications
that sequential rationality has on the distribution of observables. These implications are
the basis to obtain bounds on first and second order conditional moments, across all pos-
sible sunspot processes, or following the terminology in Bergemann and Morris (2017),
across all possible information structures.2 These bounds provide testable implications of
the model, even in the presence of both equilibrium multiplicity and uncertainty of the
information structure agents have when making their decisions.

Third, our paper relates to the literature that studies the observable implications of
models with multiple equilibria. The two more close related papers are Jovanovic (1989)
and Pakes et al. (2015). The first paper, Jovanovic (1989), provides a framework to dis-
cuss conditions under which a model with multiple equilibria is point or set identified.
The main ideas are clearly illustrated in a two person entry game, one of the canonical
examples of estimation of games with multiple equilibria.3 The second paper, Pakes et al.

2The literature of information design in dynamic games, where agents may have access to private infor-
mation about other players actions, was first formalized by Myerson (1986) and Forges (1986), extending
the concept of correlated equilibrium to extensive form games. Extending the intuition of Aumann (1985),
Forges (1986), and most recently Sugaya and Wolitzky (2017) in an incomplete information setting.

3Entry games have been studied extensively in the IO literature (see for example Bresnahan and Reiss,
1990, Berry, 1992, Bajari et al., 2007, Ciliberto and Tamer, 2009), or are examples of a large literature on
estimation of static and dynamic games of complete (see for example Aguirregabiria and Mira, 2007 and
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(2015), discuses conditions under which inequality constraints can be used as a basis for
estimation and inference.4 Both papers are based on a revealed preference argument that
places bounds over observables given an optimizing behavior of an agent. Our paper, is
based on a dynamic version of this revealed preference argument: what the government
just left on the table, reveals an outlook for the future, and this outlook for the future
places bounds over observables. The importance of obtaining dynamic observable im-
plications is that extends the applicability of the previous results, which focus on a static
setting.

Finally, sections 2, 3, and 4 of this paper study robust predictions in a dynamic policy
game that builds on Eaton and Gersovitz (1981). This framework, and variations of it,
have been extensively used to study sovereign borrowing. The literature has followed
two main directions. One direction, the quantitative literature on sovereign debt, follow-
ing the initial contributions of Aguiar and Gopinath (2006) and Arellano (2008), stud-
ies sovereign spreads, debt capacity and welfare from a positive and normative point of
view. The focus is usually on Markov equilibria on payoff relevant state variables and and
hence defaults can only be consequence of bad fundamentals. Our paper shares with this
strand of the literature the focus on a model along the lines of Eaton and Gersovitz (1981)
but rather than characterizing a particular equilibrium, we study predictions across all
equilibria. In addition, we provide a full characterization of the set of equilibrium and
conditions for equilibrium multiplicity that are novel in the literature. The second direc-
tion, focuses on equilibrium multiplicity, and in particular, in self fulfilling debt crises.
The seminal contributions are Calvo (1988) and Cole and Kehoe (2000). Our paper stud-
ies multiplicity in an alternative setup, the one of Eaton and Gersovitz (1981);5 the crucial
difference between the setting in Cole and Kehoe (2000) and the one in Eaton and Gerso-

Bajari et al., 2010) and incomplete (see for example De Paula and Tang, 2012) information.
4Moment conditions that yield inequality constraints, as observable implications of equilibria, have

spurred a literature in Econometrics that studies inference and consistency of structural estimates that are
based on moment inequalities (see for example, Chernozhukov et al. 2007, Beresteanu et al. 2011, Bugni,
2010, Romano and Shaikh, 2010), or estimates structural parameters in games with multiple equilibria (see
for example Ciliberto and Tamer, 2009) among others. Identification of structural parameters is also a part
of a much larger literature on partial identification in Econometrics (see for example Tamer, 2010 for a recent
review).

5A recent exception that studies multiplicity in a model as in Eaton and Gersovitz (1981) is Stangebye
(2018). Auclert and Rognlie (2016) find necessary and sufficient conditions for uniqueness in a model as in
Eaton and Gersovitz (1981). Recent contributions to the strand of the literature that studies defaults due to
fundamentals, among many others, are Bianchi et al. (2017), Chatterjee and Eyigungor (2015), Hatchondo
et al. (2016), Pouzo and Presno (2016), Arellano and Bai (2014), Arellano and Bai (2017), Ottonello and
Perez (2018), Aguiar et al. (2017), and Sanchez et al. (2018). Recent contributions to the strand that studies
equilibrium multiplicity, following Calvo (1988) and Cole and Kehoe (2000), are Lorenzoni and Werning
(2013), Bocola and Dovis (2016), Aguiar et al. (2017), Corsetti and Dedola (2016), Roch and Uhlig (2018),
and Ayres et al. (2018). See Aguiar and Amador (2013) for a comprehensive review.
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vitz (1981) is that in the latter the government issues debt (with commitment) and then
the price is realized, changing the source of equilibrium multiplicity. Our contribution
to this strand of the literature is that by providing sufficient conditions for equilibrium
multiplicity in a model as in Eaton and Gersovitz (1981) we show that once we introduce
coordination devices, under the right parametric assumptions, coordination failures are a
robust feature in models of sovereign lending.

Outline. The paper is structured as follows. Section 2 introduces the model. Section 3
characterizes equilibrium consistent outcomes. Section 4 discusses the characterization of
equilibrium consistent outcomes when there are correlating devices available after debt
is issued. Section 5 spells out the general model and states the main results of the paper
in this setup. Section 6 concludes.

2 A Dynamic Policy Game

Our model of sovereign debt follows Eaton and Gersovitz (1981). Time is discrete and
denoted by t ∈ {0, 1, 2, ....}. A small open economy receives a stochastic stream of income
denoted by yt. Income follows a Markov process with c.d.f. denoted by F(yt+1 | yt). The
government is benevolent and seeks to maximize the utility of the households. It does so
by selling bonds in the international bond market. The household evaluates consumption
streams according to

E

[
∞

∑
t=0

βtu(ct)

]
where β < 1 and u is increasing and strictly concave. The sovereign government issues
short term debt at a price qt. The budget constraint is

ct = yt − bt + qtbt+1.

There is limited enforcement of debt. Therefore, the government will repay only if it is
more convenient to do so. We assume that after a default the government remains in
autarky forever after but there are not direct output costs of default. Furthermore, we
also assume that the government cannot save

bt+1 ≥ 0.
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The assumption of no savings, which may implicitly capture political economy constraints
that make it difficult for governments to save as modeled by Amador (2013), in addition
to the assumption of no direct costs of default, are sufficient to guarantee that autarky
is an equilibrium. The idea is that, if the government cannot save, and there are no out-
put costs of default, if the government expects a zero bond price for its debt now and in
every future period, then it will default its debt. To guarantee multiplicity we need to
introduce conditions to guarantee that there is at least another equilibrium has a positive
debt capacity. In our paper, this equilibrium with a positive price of debt is the Markov
equilibrium that is usually studied in the literature of sovereign debt.6

Lenders. There is a competitive fringe of risk neutral investors that discount the future
at a rate of r > 0. This discount rate, and the possibility of default, imply that the price of
the bond is given by

qt =
1− δt

1 + r

where δt if the default probability on bonds bt+1 issued at date t.

Timing. The sequence of events within a period is as follows. In period t, the govern-
ment enters with bt bonds that it needs to repay. Then income yt is realized. The govern-
ment then has the option to default dt ∈ {0, 1}. If the government does not default, the
government runs an auction of face value bt+1. Then, the price of the bond qt is realized.
Finally, consumption takes place, and is given by ct = yt − bt + qtbt+1. If the government
decides to default, then consumption is equal to income, ct = yt. The same is true if the
government has ever defaulted in the past. We adopt the convention that if dt = 1 then
dt′ = 1 for all t′ ≥ t.

Histories, Strategies, and Outcomes. A history is a vector ht = (h0, h1, ..., ht−1), where
ht = (yt, dt, bt+1, qt) is the the outcome of observable variables of the stage game at time
t. A partial history is an initial history ht concatenated with a history of the stage game
at period t. For example,

(
ht, yt

)
is the history after which the government must choose

policies (dt, bt+1). The set of all partial histories is denoted by H. We label as Hg ⊂ H
the partial histories where the policy maker has to choose policies. Likewise, Hm ⊂ H is

6As we discuss in the Online Appendix C, and shown in Auclert and Rognlie 2016, no savings, bt+1 ≥ 0,
is a necessary conditions for equilibrium multiplicity. One of the contributions in our paper is to show that,
no savings, plus a set of parametric conditions are sufficient for equilibrium multiplicity. Another paper
studying multiplicity in the Eaton and Gersovitz (1981) setup is Stangebye (2018). The setup in the latter
differs from us since there is long term debt and there are direct costs of default. The paper focuses on
numerical results.
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Figure 1: The figure summarizes the timing and the construction of histories.

the set of partial histories where the market plays; for example, ht+1
m =

(
ht, yt, dt, bt+1

)
.

A policy maker’s strategy is a function σg
(
ht, yt

)
= (dt, bt+1) for all histories. A rational

expectation strategy for the market is a pricing function qm
(
ht, yt, dt, bt+1

)
for all histories.

Denote by Σ the set of strategies for the government and the market. For a strategy profile
σ =

(
σg, qm

)
we write V (σ | h) for the continuation expected utility, after history h, of the

representative consumer if agents play according to profile σ. For any strategy profile
σ ∈ Σ, we define the continuation at ht ∈ Hg

V(σ | ht) = Et

{
∞

∑
s=t

βs [(1− ds)u(ys − bs + qsbs+1) + dsu(ys)]

}

where (ys, ds, bs+1, qs) are generated by the strategy profile σ.

Equilibrium. A strategy profile σ =
(
σg, qm

)
constitutes a subgame perfect equilibrium

(SPE) if and only if, for all partial histories ht ∈ Hg

V(σ | ht) ≥ V(σ′g, qm | ht) for all σ′g ∈ Σg, (2.1)

and for all histories ht+1
m = (ht, yt, dt, bt+1) ∈ Hm

qm

(
ht+1

m

)
=

1
1 + r

∫
(1− dσg(ht+1, yt+1)dF(yt+1 | yt). (2.2)

That is, the strategy of the government is optimal given the pricing strategy of the lenders
qm (·); likewise, qm (·) is consistent with the default policy generated by σg. The set of all
subgame perfect equilibria is denoted as Σ∗ ⊂ Σ.
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Equilibrium Consistency. We now introduce the concept of equilibrium consistency.
Given a SPE profile σ =

(
σg, qm

)
, we define its equilibrium path x (σ) as a sequence

of measurable functions x (σ) =
(

dσg
t
(
yt) , bσg

t+1

(
yt) , qqm

t
(
yt))

t∈N
that are generated by

following the profile σ. The outcomes in a particular period are defined as xt(·) =(
dσg

t (·) , bσg
t+1 (·) , qqm

t (·)
)

, where xt(·) is function of the realization of income history yt.
A history h ∈ H is equilibrium consistent if and only if it is on some equilibrium path
x = x (σ), for some SPE profile σ. Or, in other words, a history ht is equilibrium consis-
tent if we can find at least some equilibrium σ that explains the data.7

What Follows. The main question we would like to answer in our paper. Suppose that
an outsider observes the history ht. Is there a subgame perfect equilibrium profile that
could have generated history ht? If so, which are the possible continuation histories after
observing ht? In particular, given equilibrium histories ht, which outcomes xt are part of
a continuation equilibrium?

3 Equilibrium Consistent Outcomes

This section discusses the main result of the paper, which is the characterization of equi-
librium consistent outcomes. We work with the baseline case where income is a contin-
uous random variable, as in Eaton and Gersovitz (1981). In subsection 3.1, we start by
characterizing the set of equilibrium values and prices. Then, in subsection, 3.2, we state
and describe our main result. Finally, in subsection 3.3, we apply our main result to obtain
predictions for bond prices across all equilibria.

3.1 Equilibrium Prices, Continuation Values.

For any history ht+1
m we define the highest and lowest prices equilibrium prices as:

q(ht+1
m ) := max

σ∈Σ∗(ht+1
m )

qm

(
ht+1

m

)

q(ht+1
m ) := min

σ∈Σ∗(ht+1
m )

qm

(
ht+1

m

)
.

7This definition will be instrumental in finding the defining conditions of equilibrium paths, by provid-
ing a recursive representation. A history is part of an equilibrium path if and only if the history up to t− 1
is part of an equilibrium path and the partial history at time t is also consistent with it.
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In the Online Appendix, Section C, we describe necessary and sufficient conditions for
equilibrium multiplicity.8 In particular, we show that the worst SPE price is zero and
the best SPE price is the one for the Markov equilibrium that is characterized in the lit-
erature on sovereign debt, such as in Arellano (2008) and Aguiar and Gopinath (2006),
where coordination failures do not have a role. The lowest price q(ht+1

m ) is attained by
using a fixed strategy for all histories, and the government will obtain the utility level of
autarky. Thus, the lowest price is associated with the worst equilibrium, in terms of wel-
fare. Likewise, the highest price q(ht+1

m ) is associated with a, different, fixed strategy for
all histories (the maximum is attained by the same σ for all ht+1

m ) and delivers the highest
equilibrium level of utility for the government. Thus, the highest price is associated with
the best equilibrium in terms of welfare. The autarky utility (conditional on defaulting) is
given by:

Vd (y) ≡ u (y) + βEy′|yVd(y′). (3.1)

The continuation utility (conditional on not defaulting) of choice b′ given bonds (b, y) is

Vnd (b, y, b′
)
= u

(
y− b + b′q

(
y, b′

)
b′
)
+ βV

(
y, b′

)
, (3.2)

where q (y, b′) is the bond price schedule under the best continuation equilibrium (the
Markov equilibrium that we just characterized), if yt = y and the bonds to be paid tomor-
row are bt+1 = b′. Denote by Vnd

(b, y) = maxb′≥0 Vnd
(b, y, b′). Finally, the continuation

value of the best equilibrium, starting with income y and bonds b′, is given by:

V(y, b′) = Ey′|y

[
max

{
Vnd(b′, y′), Vd(y′)

}]
. (3.3)

3.2 Main Result

Suppose that, thus far, we have observed ht−1
m =

(
ht−1, yt−1, dt−1, bt

)
an equilibrium con-

sistent history (where the price at time t has not yet been realized), and we want to charac-
terize the set of shifted outcomes xt,m = (qt−1, dt (·) , bt+1 (·)) that are consistent with this

8There are two points worth noting. First, our analysis may be of independent interest, because we de-
scribe conditions under which there are multiple Markov equilibria in a sovereign debt model that follows
Eaton and Gersovitz (1981), a framework that has been widely adopted in the literature. The importance of
this result is that it opens up the possibility of confidence crises in a class of models that are usually utilized
to study crises that are due to bad fundamentals. Thus, confidence crises are not necessarily a special fea-
ture of the timing in Calvo (1988) and Cole and Kehoe (2000) but rather a robust feature of most models of
sovereign debt. Second, given our assumptions of no savings and no direct costs of default characterizing
the equilibrium set is relatively straightforward. This will not be the case in Sections 4 and 5, where we
will need to, first, characterize the equilibrium set, developing a procedure in the spirit of Abreu (1988);
Abreu et al. (1990); Atkeson (1991), and then use this characterization to pin down equilibrium consistent
outcomes.
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history.9 Proposition 1 provides a full characterization of the set of equilibrium consistent
outcomes.

Proposition 1. Suppose that ht−1
m =

(
ht−1, yt−1, dt−1, bt

)
is an equilibrium consistent history,

with no default so far. Then, xt,m = (qt−1, dt (·) , bt+1 (·)) is equilibrium consistent with ht−1
m if

and only if the following conditions hold:
a. The price is consistent with the default policy:

qt−1 =
Eyt|yt−1

(1− dt(yt))

1 + r
; (3.4)

b. Incentive compatibility for the government:

(1− d(yt))
[
u(yt − bt + q(yt, bt+1)bt+1) + βV(yt, bt+1)

]
+ d(yt)Vd(yt) ≥ Vd(yt); (3.5)

c. Promise keeping constraint:

βEyt|yt−1

[
(1− dt(yt))V

nd
(bt, yt, bt+1(yt))

]
+ βEyt|yt−1

[
dt(yt)Vd (yt)

]
≥

[u (yt−1)− u (yt−1 − bt−1 + qt−1bt)] + βEyt|yt−1
Vd(yt). (3.6)

Proof. See Appendix A.

If conditions (a) through (c) hold, we simply write

(qt−1, dt (·) , bt+1 (·)) ∈ ECO (bt−1, yt−1, bt) ,

where ECO stands for “equilibrium consistent outcomes”.
There are several points worth noting. First, note that the conditions (3.4) and (3.5) in

Proposition 1 characterize the set of SPE outcomes. Condition (3.4) states that the price
qt−1 needs to be consistent with the default policy dt(·). Condition (3.5) states that the
policy dt (·) , bt+1 (·) is implementable in an SPE if it is incentive compatible when the
policy is rewarded with the best equilibrium and a deviation is punished with the worst
equilibrium. The argument for the proof builds but also modifies the one on Abreu (1988).

9An outcome in period t is given by xt =
(
dx

t (·) , bx
t+1 (·) , qx

t (·)
)

which includes the policies and prices
of period t. xt,m represents the policies of period t but the prices of period t− 1. The focus in xt,m, in contrast
to that of xt, simplifies the characterization of equilibrium consistent outcomes.
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Second, note that equilibrium consistent outcomes are characterized by an additional
condition, (3.6), which is the main contribution of this paper. This condition decribes
how past observed history (if assumed to be generated by an equilibrium strategy pro-
file) introduces restrictions on the set of equilibrium consistent policies. In our setting,
condition (3.6) guarantees that the government’s no default decision at t − 1 was opti-
mal. That is, on the path of some SPE profile σ̂, the incentive compatibility (IC) con-
straint from government’s utility maximization in t − 1 is that the value of staying on
path, u (ct−1) + βV

(
σ̂ | ht), is greater than or equal to the value of a deviation u (yt−1) +

βEyt|yt−1
Vd(yt). Note that V

(
σ̂ | ht) is the continuation value of the equilibrium, as de-

fined before. One interpretation of this incentive compatibility constraint, is that the net
present value (with respect to autarky) that the government expects from not defaulting
must be greater (for the past choice to be optimal) than the opportunity cost of not default-
ing: u (yt−1)− u (ct−1). This must be true for any SPE profile that could have generated
ht−1

m .
The intuition regarding why (3.6) is necessary for equilibrium consistency is as follows.

Note that, if incentive compatibility at t− 1 holds for some equilibrium, it also holds for
the case the in which continuation equilibrium is actually the best (continuation) equi-
librium. Denote by q̂t = q̂t

(
ht, yt, dt, bt+1 (yt)

)
. For any equilibrium consistent policy

(d (·) , b′ (·)), it has to be the case that:

Eyt|yt−1

[
(1− dt(yt))V

nd
(bt, yt, bt+1(yt))

]
+ Eyt|yt−1

[
dt(yt)Vd (yt)

]
≥ (3.7)

Eyt|yt−1

[
(1− dt(yt))

(
u(yt − bt + bt+1(yt)q̂t) + βV(σ̂ | ht+1)

)]
+ Eyt|yt−1

[
dt(yt)Vd (yt)

]
where the right hand side of equation (3.7) is equal to V

(
σ̂ | ht). From incentive compat-

ibility in t− 1 and (3.7), we obtain the following:

Eyt|yt−1

[
(1− dt(yt))V

nd
(bt, yt, bt+1(yt))

]
+ βEyt|yt−1

[
dt(yt)Vd (yt)

]
≥ (3.8)

[u (yt−1)− u (yt−1 − bt−1 + qt−1bt)] + βEyt|yt−1
Vd(yt).

This is exactly condition (3.6). Therefore, if the policies do not satisfy (3.6), then there is
no SPE that can generate the history ht−1

m ; in other words, there is no SPE consistent with
ht−1

m with policies (dt (·) , bt+1 (·)) for period t.
We also show that this condition is sufficient, so if (dt (·) , bt+1 (·)) satisfies the con-

ditions (3.4), (3.5), and (3.6), we can always find at least one SPE profile σ̂ that would
generate xt,m on its equilibrium path. Even after a long history of data, the sufficient
statistics to forecast the outcome xt,m are (bt−1, bt, yt−1). Thus, effectively ECO(ht

−) =
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ECO(bt−1, yt−1, bt). This result may seem surprising, but it is a direct consequence of
robustness of the outside observer is expressed. In particular, because income y is a con-
tinuous random variable, any promises (in terms of expected utility) that rationalized
past choices are “forgotten” each period; the reason is that the outside observer needs to
take into account that the promises could have been realized in states that did not occur.

Third, and finally, note that even though the outside observer is using just a small
fraction of the history to place restrictions on the observable outcomes, the set of equi-
librium consistent outcomes exhibits history dependence beyond that of the set of SPE.
In particular, the set of equilibrium consistent outcomes is a function of the variables
(bt−1, yt−1, bt). Thus, there is a role for past actions in placing restrictions over observable
outcomes. We view this result as an application of the revealed preference arguments in
Jovanovic (1989) and Pakes et al. (2015) to dynamic games.10

3.3 Equilibrium Consistent Prices

The question that we would like to answer now is the following: Given an observed his-
tory ht−1

m , which are the possible continuation prices? Aided by the characterization of
equilibrium consistent outcomes in Proposition 1 we will characterize the set of equilib-
rium debt prices that are consistent with the observed history ht−1

m =
(
ht−1, yt−1, dt−1, bt

)
.

This set of prices comes from the restrictions of equilibrium for the observable variables.
There are two objects of interest: the highest and the lowest equilibrium consistent prices.

Prices. The highest equilibrium consistent price solves

q
(

ht−1
m

)
= max

(q̂,dt(·),bt+1(·))
q̂

subject to
(q̂, dt (·) , bt+1 (·)) ∈ ECO (bt−1, yt−1, bt) .

This price is the one for the (best) Markov Equilibrium that we characterized in the Online
Appendix Section C, where after a default, the government is forever in autarky. Note that
the expected value of the incentive compatibility constraint (3.5) is the expected value of
the option to default V(yt, bt+1) for the best equilibrium, which is given by equation (3.3).

10In regard to the particular model we are analyzing, the repayment of debt affects future prices; this
implication of repayment does not appear in the quantitative literature for sovereign debt that follows
Eaton and Gersovitz (1981) as in Arellano (2008) and Aguiar and Gopinath (2006). In these papers, the fact
that a country has just repaid a large quantity of debt, does not affect the future prices that the country will
obtain.
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The promise-keeping constraint will not be binding (generically) for the best equilibrium
(given that the country did not default). For these two reasons, the best equilibrium
consistent price is the one obtained with the default and bond policy that maximize the
value of the option. Thus, q

(
ht−1

m
)
= q (yt−1, bt) .

The lowest equilibrium consistent price solves

q
(

ht−1
m

)
= min

(q̂,dt(·),bt+1(·))
q̂

subject to
(q̂, dt (·) , bt+1 (·)) ∈ ECO (bt−1, yt−1, bt) .

Characterizing this price is slightly more challenging. Note that the lowest SPE price is
zero because default is implementable after any history if we do not take into account
the promise-keeping constraint (3.6). However, we will show that the lowest equilib-
rium consistent price is positive, for every equilibrium history. Furthermore, because the
set of equilibrium consistent outcomes after history ht

m depends only on (bt−1, yt−1, bt),
it holds that the lowest equilibrium consistent price is history dependent; q

(
ht−1

m
)
=

q (bt−1, yt−1, bt) .
Proposition 2 establishes the main result of this subsection: a characterization of q

that is a solution for a (convex) minimization program, which can be reduced to a one
equation/one variable problem.

Proposition 2. Suppose that ht−1
m is equilibrium consistent and that not defaulting was feasible

under the best continuation equilibrium; i.e. Vnd (bt−1, yt−1, bt) > Vd (yt−1). Then, there exists
a constant γ = γ (bt−1, yt−1, bt) ≥ 0 such that d (y′) = 0 ⇐⇒ Vnd

(bt, yt) ≥ Vd (yt) +

γ for all yt ∈ Y; therefore, the lowest equilibrium consistent price is given by

q (bt−1, yt−1, bt) =
Eyt|yt−1

(1− d (yt))

1 + r
.

Proof. See Appendix A.

The proof is in the appendix. Here, we provide a brief discussion of the argument.
First, note that by choosing the bond policy of the best equilibrium, all of the constraints
imposed by equilibrium consistency are relaxed because the value of not defaulting in-
creases. Therefore, finding the lowest ECO price will amount to finding the default pol-
icy that yields the lowest price that is consistent with equilibrium. Second, note that
the promise-keeping constraint needs to be binding. If not, the minimization problem
has as its only constraint the incentive compatibility constraint, and the minimum price
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is zero (with a policy of default in every state). However, if the price is zero, then the
promise keeping constraint will not be satisfied. Third, note that the incentive compati-
bility constraint will not be binding. Intuitively, imposing a default is not costly in terms
of incentives, and for the lowest equilibrium consistent price, we want to impose default
in as many states as possible.

Considering these observations, note that the trade-off of the default policy for the
lowest price will be: imposing defaults in more states will lower the price at the expense
of a tighter promise keeping constraint. This condition pins down the states where the
government defaults; as many defaults as possible, but not so many that achieving no
default in the previous period was not worth the effort. This result implies that the policy
is pinned down by d (yt) = 0 if and only if Vnd

(bt, yt)≥ Vd (yt) + γ where γ is a constant
to be determined.

Note how default policies are tilted deferentially in the best and worst continuation
equilibria. For the best equilibrium default policy at t, it holds that d(yt) = 0 if and
only if Vnd

(bt, yt) ≥ Vd(yt). On the other hand, the lowest equilibrium consistent price
is Vnd

(bt, yt) ≥ Vd(yt) + γ, where γ is the constant that, as we will see below, solves a
one equation in one unknown system and depends on (bt−1, yt−1, bt). The default policy
is shifted to create more defaults and to lower the price; the number of defaults is lim-
ited, however, so that the promise-keeping is satisfied (i.e., if not, we cannot rationalize
previous choices). Equilibrium consistent outcomes uncover a novel tension that is not
present in SPE. For a particular history ht

−, implementing default is not costly because it
is always as good as the worst equilibrium. However, implementing default today lowers
the prices that the government expected in the past and makes it harder to rationalize a
particular history.

Next, we discuss the final piece: how we obtain γ? Define ∆nd (bt+1, yt+1) = Vnd
(bt, yt)−

Vd (yt) . This constant, γ, solves a single equation and is the minimum value such that the
promise keeping constraint holds with equality, with the optimal bond policy, which is
evaluated at the best continuation; i.e:

β
∫

∆nd≥γ
∆nddF̂

(
∆nd | yt−1

)
− u (yt−1) + u

(
yt−1 − bt−1 + bt

1− F̂ (γ | yt−1)

1 + r

)
= 0.

Comparative Statics. The next result, Corollary 1, describes how the set of equilibrium
consistent prices,

[
q, q
]

changes with the history of play and follows directly from Propo-
sitions 1 and 2. After presenting the corollary and discussing its intuition, we provide a
numerical illustration of the results in this Section.
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Corollary 1. Let q (bt−1, yt−1, bt) be the lowest ECO (bt−1, yt−1, bt) price after history ht−1
m .

The following holds: (a) q (bt−1, yt−1, bt) is decreasing in bt; (b) q (bt−1, yt−1, bt) is increas-
ing in bt−1; and (c) For every equilibrium (bt−1, yt−1, bt), −bt−1 + q (bt−1, yt−1, bt) bt ≤ 0; if
income is i.i.d., then q is decreasing in yt−1, and so is the set of equilibrium consistent prices
[q(bt−1, yt−1, bt), q(yt−1, bt)].

Proof. See Appendix A.

First, note that the lowest equilibrium consistent price is decreasing in the amount of
debt issued bt. The intuition is that higher amounts of debt issued imply a more relaxed
promise-keeping constraint. In other words, the past choices of the government could be
rationalized with a lower price for the debt b′. The opposite intuition holds for bt−1; if the
country just repaid a large amount of debt (i.e., made an effort to repay the debt), then the
past choices are rationalized by using higher prices. Second, note that a positive capital
inflow obtained at the the lowest equilibrium consistent price would imply that u (yt−1)−
u
(

yt−1 − bt−1 + q (bt−1, yt−1, bt) bt

)
is negative. Intuitively, the country is not making

any effort to repay the debt. Therefore, it need not be the case that the country expects
high prices for debt in the next period. Mathematically, when there is a positive capital
outflow with the lowest equilibrium consistent price, γ is infinite. This result implies
that 1−F̂(γ)

1+r = q (bt−1, yt−1, bt) = 0, which contradicts a positive capital inflow. Finally,
because there are no capital inflows at the lowest equilibrium consistent price, repaying
debt at this price will become more costly for a lower realization of income yt−1; this due
to the concavity of the utility function. Mathematically, because of concavity, u (yt−1)−
u
(

yt−1 − bt−1 + q (bt−1, yt−1, bt) bt

)
is increasing as income decreases, and therefore, the

promise-keeping constraint tightens as income decreases.11

A Quantitative Illustration. We now numerically solve for the equilibrium consistent
prices. The process for log output is given by log yt = µ + ρy log yt−1 + σyεt where µ =

0.75 , σy = 0.3025, and ρy = 0.0945. The risk free interest rate is set to r = 0.017. The
utility function is u(c) = c1−γRRA

1−γRRA
, the coefficient of relative risk aversion is γRRA = 2, and

11There are three important points here. First, the observation regarding concavity noted in the last
sentence is used often in the literature on sovereign debt. For example, to show that default occurs in
bad times, as in Arellano (2008), or to show the monotonicity of bond policies with respect to debt, as
in Chatterjee and Eyigungor (2012). Second, the change in this expression will depend on the sign of

u (yt−1)− u
(

yt−1 − bt−1 +
1−F̂(γ)

1+r bt

)
, which is positive because there are no capital inflows with the lowest

equilibrium consistent price. Third, note that, in the non i.i.d. case, this property will not hold, because,
even though the burden of repayment is higher, the value of repayment in terms of the continuation value
can be increasing.

18



Figure 2: This figure plots equilibrium consistent prices q and q. We describe the comparative statistics
after history ht

m.Thus, the relevant state variables are (bt, yt, bt−1).

the discount factor β = 0.953.12Figure 2 depicts the numerical results.
As we discussed before, the best equilibrium, q, coincides with the equilibrium studied

in the quantitative literature of sovereign debt, such as Arellano (2008). We plot the best
equilibrium in blue and the lowest equilibrium consistent price in red. As clearly shown
in the Figure, the best equilibrium for low levels of debt is risk-free. As we increase the
level of debt, the price drops, and the price drop is sharp, as it is in most models with
short-term debt.

The lowest equilibrium consistent price q(bt−1, yt−1, bt) is computed using Proposition
2. Note that the comparative statistics that we specified in the Corollary 1 clearly emerge
in Figure 2. First, in the left panel, when the government repays debt bt = 0.5 and issues
bt+1 = 0.75, the lowest equilibrium consistent price decreases in the realization of income.
This result occurs because the government repaid debt, but as we increase yt,it did so
under more favorable conditions. In addition, as one would expect, when the amount
of debt repaid climbs to bt = 0.75 and the amount of debt issued is still bt+1 = 0.75, the
red dotted line dominates the red line. The lowest equilibrium consistent price is now
higher. Finally, note that the best equilibrium price is constant through the realizations of
income, because for those levels of debt, bt+1 = 0.75, default is not a concern. Second, in
the right panel we observe that with debt repayment, bt, we obtain the opposite: when

12We set the same parameters values for all the numerical exercises in this section, Section 4 and in the
Online Appendix Section C.
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the government repays a larger amount of debt, then the lowest equilibrium consistent
price increases. This is the case for both (yt = 1, bt+1 = 0.50) and (yt = 1, bt+1 = 0.75).13

The dotted line corresponds to a higher debt issuance, and as we just discussed, given a
larger capital inflow, the prices are expected to be lower.

4 Equilibrium Consistent Distributions

In Section 3 we characterized equilibrium consistent outcomes and aided with this char-
acterization we constructed bounds on equilibrium prices. These bounds are tight. Any
price outside

[
q(bt−1, yt−1, bt), q(yt−1, bt)

]
occurs with probability zero. These tight pre-

dictions are a consequence of the special feature of the setup in Section 3 by which the
actions of the government, dt−1, bt, and the prices they obtain for debt qt−1 are connected
with a deterministic mapping. There are many settings in which one would think that
there is not deterministic link between policies and outcomes. One example is sovereign
borrowing. The government does not need to know what prices they will obtain given
their policies. This is, in fact, a widely studied topic in models of sovereign borrowing at
least since Calvo (1988). 14

To break the deterministic mapping between policies and prices in our baseline model
of Section 3, we introduce a sunspot between the moment in which the large player moves
and the market reacts. In particular, we generalize the setup in Eaton and Gersovitz
(1981) by adding a sunspot variable ζt after the government issues debt but before the
price is realized.15 As a consequence of the introduction of the sunspot, conditional on
any single realization, the set of equilibrium consistent outcomes then coincides with
the set of subgame perfect equilibria. That is, for any history of policies chosen by the

13This result may be contrasted with the result in Cole and Kehoe (2000). In their setting the potential
for rollover crises induces the government to lower debt below a threshold that rules rollover crises out.
Thus, the government’s efforts have no effect in the short run, but payoff in the long run. In our model, an
outside observer will witness that rollover crises are less likely immediately after an effort has been made
to repay the debt.

14Theoretical models of sovereign debt that are prone to multiple equilibria are, for example, Cole and
Kehoe (2000), Aguiar et al. (2017), Stangebye (2014) and Bocola and Dovis (2016). Another strand of the
literature is Calvo (1988) and Lorenzoni and Werning (2013). Yet another strand is the work of Corsetti and
Dedola (2016). Another example, of a weaker link, is models of monetary policy. There is a large literature
on equilibrium indeterminacy in New Kenynesian Models that studies which rules guarantee that a unique
equilibrium can be obtained. Equilibrium multiplicity breaks the link between the interest rate chosen by
the central bank and the realizations of output and inflation. For models of monetary policy see for example
Benhabib et al. (2001), Lubik and Schorfheide (2004) and Mertens and Ravn (2014).

15It is worth noting that adding a sunspot that is realized together with output adds nothing to the anal-
ysis. Effectively, the output could already be acting as a random coordination device. Thus, the interesting
question is to add a sunspot variable after the bond issuance, but before the price is determined.
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government, any equilibrium price can be observed; i.e., any price qt−1 ∈ [0, q(yt−1, bt)],
that we characterize in section C of the Appendix.

But this raises a question: Does the fact that ht−1
m is generated by an equilibrium place

any restrictions over outcomes? At first, it looks like histories will have no bite in pinning
down future outcomes. Surprisingly, as we will show in the main result of this section,
Proposition 3, we will obtain history dependent predictions. However, these restrictions
will be across distributions of debt prices.16 The idea is that, for example, a distribution
that puts probability one to a zero price cannot be an equilibrium distribution for any
history; in particular if the government has repaid a positive amount of debt. Given
these restrictions over probabilities, it is intuitive to conjecture that also the means and
variances of distributions over prices, as well as other moments of the distributions, will
be pinned down.17

What follows. In this section we do three things. First, in Subsection 4.1, we start by
characterizing the best equilibrium continuation values for the government given a re-
alization of prices . We already characterized the set of equilibrium values, and prices.
However, for this section it will be useful to know the best continuation after a particu-
lar price realization (ex-post best continuation value). Second, in the main result of the
section, Proposition 3, we characterize what we term as equilibrium consistent distribu-
tions,which are probability distributions over prices that are consistent with a SPE given
history. This result parallels the main result in Section 3, Proposition 1. Third, aided
by this characterization, as in the version of the model without sunspots, we explore
the restrictions implied over observables of the assumption that the history is generated
by some equilibrium, thus making Proposition 3 operational. In Proposition 4 we find
bounds on the probability of a non-fundamental debt crises, where a crisis refers to an
event where the realized price falls below a given threshold q̂. In Propositions 5 and 6
we obtain bounds of the expected prices and their variance that hold across all equilibria.
Finally, in Corollary 1, we compute comparative statistics for the set of equilibrium con-

16This is the main insight of Aumann (1987b) notion of Correlated equilibrium, where instead of char-
acterizing the mapping between information and strategies, we can obtain directly constraints directly on
equilibrium strategy distributions. The same principle also works in settings of incomplete information, as
has been recently studied in Kamenica and Gentzkow (2011), Benoît and Dubra (2011) and for a general
setting as the concept of Bayesian Correlated Equilibrium in Bergemann and Morris (2016).

17The importance of the bound on distributions over outcomes is that they will permit to obtain set
identification of parameters. As we mentioned in the introduction, this paper relates to the previous find-
ings on the observable implications of models with multiple equilibria; Jovanovic (1989) and Pakes et al.
(2015). These implications over observables, often moment conditions, can be used to recover structural
parameters of interest. As we mentioned before, our paper is the paper to derive testable implications of
equilibrium without any restriction in the set of equilibrium strategies.
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sistent distributions and show that the set is ordered according to first order stochastic
dominance.

4.1 Ex-Post Best Continuation Value

The maximum continuation value function v (y−, b, q−) given bonds b, issued at a price
q−, when income is y−, is defined as v (y−, b, q−) := maxσ∈Σ∗(y−,b) V (σ | y−, b, q−). In
Appendix D we show that this function can be computed as:

v (y−, b, q−) = max
d(·)∈[0,1]Y

Ey′|y

[
d (y)Vd (y) + (1− d (y))Vnd

(b, y)
]

subject to

q− =
Ey|y− (1− d (y))

1 + r
.

We also show that v (y−, b, q−) is non-increasing in b, and non-decreasing and concave
in q−.18 The fact that the function is non-decreasing in q follows from the fact that better
prices are associated with better continuation equilibrium, as well as higher contempora-
neous consumption (since bt+1 ≥ 0). Concavity follows from the the fact that v (y−, b, q−)
solves a linear programming problem. We use both properties to obtain sharper charac-
terizations of the set of equilibrium consistent distributions and to obtain testable predic-
tions.

4.2 Main Result: Equilibrium Consistent Distributions

As we just mentioned ζt denotes the sunspot that is realized after the government is-
sues bonds bt+1, but before the price qt is determined; i.e, a sunspot is realized after
ht

m. The timeline is depicted in Figure 3. Without a loss of generality we assume that
ζt ∼ Uniform [0, 1] i.i.d. over time.19 At history ht+1

m =
(
ht, yt, dt, bt+1

)
, given an equilib-

rium strategy σ = (σg, qm), the associated equilibrium price distribution at t is defined by
Pr (qt ∈ A) =: Pr

(
ζt : qσ

t
(
ht+1

m , ζt
)
∈ A

)
. Denote by ECD

(
ht+1

m
)

the set of equilibrium

18Note that the set of equilibrium strategies only depends on the initial bonds and the seed value of
income Σ∗ (y−, b). In the case of i.i.d. income, then it would be the case that Σ∗ (b). We relegate the details
to Appendix D. We will use interchangeably, the notation v (y−, b, q−) or v (y, b′, q), depending of what is
more convenient.

19The reason that this assumption implies no loss of generality is a direct consequence of robustness:
we will try to map all equilibria that can be contingent on the randomizing device, and hence as long as
the random variable remains absolutely continuous, any time dependence in ζt can be replicated by time
dependence on the equilibrium itself.
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Figure 3: The figure summarizes the timing and the construction of histories in the case in which there is
a sunspot. Now, we introduce a sunspot ζt after the government has issued debt bt+1 and before the price
qt has been realized.

price distributions from history consistent equilibria. The following proposition charac-
terizes this set.

Proposition 3. Suppose that ht+1
m =

(
ht, yt, , bt+1

)
, with no default so far, is equilibrium con-

sistent. Then, the distribution Q ∈ ∆ (R+) is an equilibrium consistent price distribution; i.e.
Q ∈ ECD

(
ht+1

m
)

if and only if: (a) Q ∈ ∆ ([0, q (yt, bt+1)]) and (b) IC of the government:

∫ q(yt,bt+1)

0
[u (yt − bt + qbt+1) + βv (yt, bt+1, q)] dQ (q) ≥ Vd (yt) . (4.1)

Proof. See Appendix B.

Condition (4.1) parallels conditions (3.5) and (3.6) in Proposition 1. There are some
differences, though. First, and most important, we now characterize the distributions over
prices that are consistent with a decision of defaulting or not dt and a debt issuance debt
bt+1. Proposition 1 characterized the complete outcome xt+1,m; prices qt−1, as well as
policies dt and bt+1. Here, Proposition 3, characterizes prices qt given policies dt, bt+1.
Second, now, the payoff for the government is an expectation with respect to a measure
Q over prices q (to be more precise, qt). This breaks the deterministic mapping between
government decisions and market prices; in the model without sunspots, in equilibrium,
the government knows the debt price they will obtain before deciding not to default and
how much debt to issue.

Why is condition (4.1) necessary and sufficient? The idea of the proof is an extension
of the argument that proves Proposition 1. Fix an equilibrium consistent distribution Q
after history ht+1

m . If we assume that ht+1
m is on the equilibrium path of some SPE, then
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the government strategies, dt and bt+1, were optimal before the realization of the sunspot
ζt. This implies that the government ex-ante preferred to pay the debt (i.e. dt = 0) and
issue bonds (bt+1) rather than defaulting on the debt. If, after these decisions the price
realized is q, the payoff for the government would be at most u (yt − bt + qbt+1) plus the
best ex-post continuation value βv (yt, bt+1, q). However, the government has no certainty
regarding the price that will be realized for the debt issued. So, the government forms an
expectation with respect to the “candidate” equilibrium consistent distribution Q. This
expectation, and it’s associated expected utility, the left hand side of condition (4.1), has
to at least as good as defaulting; if not, then the government would have defaulted and
would not be issuing debt. This precisely describes condition (4.1), which is necessary
because if it were to be violated, then we could not construct promises that rationalize
the past history ht

m.20 The idea of sufficiency, in other words the reason why we eliminate
bt−1 and all the previous policies, again stems from the fact that both the output and
the sunspot are non-atomic.21 The particular history that followed ht−1

m when bt−1 was
chosen, the one with the particular realization of yt, had zero probability of occurring.
Thus, it could always have been the case that the payoffs that rationalized bt−1 and the
previous policies were to be realized in a state that never materialized.

Finally, two points are worth noting. Note that ECD
(
ht+1

m
)
= ECD (bt, yt, bt+1); we

only use the most recent history, as in Proposition 1. In addition, can we employ con-
ditions (4.1) for the case without sunspots? Yes. Note that in the case without sunspots
that we analyzed in the previous section, the condition for equilibrium consistency is the
static payoff u (yt − bt + qbt+1) plus the continuation valueβv (yt, bt+1, q) has to be greater
than or equal to Vd (yt) . The lowest equilibrium consistent price that we characterized in
Section 3 will be pinned down by this condition with equality.

4.3 Implications of Equilibria: Bounding Price Distributions

We now delve into the implications of Proposition 3 over observable variables; in partic-
ular, distributions over prices qt. The first set of implications are over the probability of
low prices. In particular, we characterize the maximum probability that a crisis will occur.
Second, we provide bounds across all equilibria for the expectation of prices. Third, we

20One might wonder why we cannot rely on on the best continuation payoff V(yt, bt+1). This is because
this payoff is associated with the best equilibrium price, and this is price need to be realized. The best
possible payoff, after the price q is realized, is precisely v (yt, bt+1, q).

21Even if output where discrete, sunspots make shocks non-atomic, having the same effect as if we had
absolutely continuous output shocks.
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also provide bounds across all equilibria for the variance of distributions over prices.22

Finally, to close this subsection, we study the comparative statistics for the set of equilib-
rium consistent distributions, ECD (bt, yt, bt+1).

Probability of Crises and the Infimum Distribution. We would like to infer the maxi-
mum probability (across equilibria) that the government assigns to a price q̂; i.e., a crisis.
Formally, we define the function Q (q̂) as:

Q (q̂; bt, yt, bt+1) ≡ max
Q∈ECD(bt,yt,bt+1)

PrQ (q ≤ q̂) (4.2)

where PrQ (q ≤ q̂) :=
∫ q̂

0 dQ (q). Furthermore this bound will yield a necessary condi-
tion for a distribution to be an element in ECD (bt, yt, bt+1). The following proposition
summarizes the results.

Proposition 4. Consider an equilibrium consistent history ht+1
m =

(
ht, yt, dt = 0, bt+1

)
. (a) For

any q̂ ≥ q (bt, yt, bt+1), Q (q̂; bt, yt, bt+1) = 1. (b) For any q̂ < q (bt, yt, bt+1) it holds that:

Q (q̂; ·) = Vnd
(bt, yt, bt+1)−Vd (yt)

Vd (yt)− [u (yt − bt + q̂bt+1) + βv (yt, bt+1, q̂)] + Vnd
(bt, yt, bt+1)−Vd (yt)

(4.3)

Proof. See Appendix B.

Lets us start with the case q̂ ≥ q (bt, yt, bt+1). The reason why Q (q̂; bt, yt, bt+1) is equal
to one is intuitive. A probability distribution that places a probability equal to one over
q (bt, yt, bt+1) will be an equilibrium consistent distribution. In this case PrQ (q ≤ q̂) is go-
ing to be equal to one. Thus, the max over the equilibrium consistent distributions will be
equal to one. The case in which q̂ < q (bt, yt, bt+1) is not that simple. Proposition 4 finds
the maximum ex-ante probability (before ζt is realized) of observing a prices qt, lower
than q̂, and it will be less that one. The idea of the proof is as follows. To relax the IC
constraint for the government, condition (4.1), as much as possible, we need to we do the
following: we consider distributions that are binary and assign prices {q̂, q}, and assign
the best continuation equilibria when q is realized and the best ex-post continuation equi-
librium when q̂ is realized. This distribution, that we label Q (q̂) needs to be as good as
defaulting. When we equalize the value of issuing debt with the distribution Q (q̂) to the
value of defaulting, it implies then that Q (q̂) is given by (4.3).

22All of these bounds are independent of the nature of the sunspots (i.e. the distribution of sunspots, its
dimensionality, and so on), in the same way as the set of correlated equilibria does not depend on the actual
correlating devices.
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Figure 4: This figure plots Q (q) for different levels of output and for our main calibrated parameters. The
left panel fixes bt+1and bt and shows the comparative statistics with respect to yt. The right panel fixes yt

and shows the comparative statistics with respect to bt.

Note that if the income realization is such that Vnd
(bt, yt) = Vd (yt) (i.e., under the

best continuation equilibrium, the government is indifferent between defaulting or not,
and still does not default), then Q (q̂; bt, yt, bt+1) = 0 for any q̂ < q (bt, yt, bt+1) = q (yt, bt+1).
The idea is that for these income levels, only q = q (yt, bt+1) is an equilibrium consis-
tent price, and the only distribution that is equilibrium consistent places probability one
on that price. Note also that Q is a cumulative distribution function for q: it is a non-
increasing, right-continuous function with a range of [0, 1]; hence it implicitly defines a
probability measure for debt prices.

Figure 4 presents the function for the maximum probability of prices, Q (q̂), for differ-
ent states (bt, yt, bt+1). In the left panel the two distributions differ on the income realiza-
tion under which the government repaid its debt. Lets start with the blue line: the govern-
ment repaid debt under an income realization of 1.36 (yt), repaid 0.5 units of debt (bt), and
issued 0.5 units (bt+1). Q (0) is approximately 0.7: the maximum probability of obtaining
a price of zero is approximately 0.7. Any distribution where the probability is higher than
0.7, after (bt, yt, bt+1) = (0.50, 1.36, 0.50), is not equilibrium consistent because it would
violate the IC constraint of the government. Second, note that as price q increases, Q (q̂)
also increases: the government is willing to accept a higher probability of obtaining low
prices (lower than q̂), because these prices are not that low. Third, as we should expect,
the function Q (q̂) reaches one at a price q(bt, yt, bt+1) |(bt,yt,bt+1)=(0.50,1.36,0.50). Finally, note
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that the function Q (q̂) shifts if the government repays its debt under poor economic con-
ditions (these conditions imply a lower spot utility); for example, Q (0) is approximately
0.55, if income is 1.16 instead of 1.36, which is what one would expect in order not to vio-
late the incentive compatibility constraint. Finally, the right hand side of the panel shows
the comparative statistics with respect to how much debt is repaid.

Bounding Expectations. One application that is of particular interest is bounding the
moments of distributions across all equilibria. We start with expected values. The set
of equilibrium consistent expected prices is just the set of possible

∫
qdQ for some Q ∈

ECD (bt, yt, bt+1). Denote this set by E (bt, yt, bt+1). We will show that this set can be
easily characterized and is related to the prices we studied in the model without sunspots
in Section 3. The following proposition shows that, in fact, the set of expected values is
identical to the set of equilibrium consistent prices when there are no sunspots.

Proposition 5. Suppose that history ht+1
m =

(
ht, yt, dt, bt+1

)
is equilibrium consistent. Then the

set of expected prices is equal to the set of prices without sunspots; i.e.,

E (bt, yt, bt+1) =
[
q (bt, yt, bt+1) , q (yt, bt+1)

]
.

Moreover, if bt+1 > 0, then the minimum expected value is uniquely achieved at the Dirac distri-
bution Q̂ that assigns probability one to q = q (bt, yt, bt+1).

Proof. See Appendix B.

The result follows from the concavity of the value function v (yt, bt+1, q̂) and the fact
that q (·) is the minimum price q for which u (yt − bt + qbt+1) + βv (yt, bt+1, q) is equal to
Vd (yt). The equality at q = q (·) follows from the strict monotonicity in q of equilibrium
utility; given by u (yt − bt + qbt+1) + βv (yt, bt+1, q). If the inequality were to be strict,
then we can find a lower equilibrium consistent price, which contradicts the definition of
q (·). Therefore, the integrand in the left hand side of 4.1 is larger than Vd (yt) only when
q ≥ q (bt, yt, bt+1). The concavity of v (y, b′, q) and Jensen’s inequality then imply that for
any distribution Q ∈ ECD (bt, yt, bt+1) : u

(
yt − bt + EQ (q) bt+1

)
+ βv

(
yt, bt+1, EQ (q)

)
has to be greater than or equal than

∫
[u (yt − bt + qbt+1) + βv (yt, bt+1, q)]dQ (q). The

latter needs to be greater than or equal to Vd (yt) for Q to be an equilibrium consistent
distribution, which explains why EQ (qt) is greater than q (bt, yt, bt+1).

Proposition 5 provides testable implications of equilibrium in the dynamic game that
we are analyzing. These implications extend the restrictions derived in the work of Jo-
vanovic (1989) and Pakes et al. (2015). The bounds that we just derived yield moment in-
equalities; in particular, that Eqt

[
qt | ht+1

m
]
∈[q (bt, yt, bt+1),q (yt, bt+1)]. Aided with these
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moment inequalities, one could in principle, perform estimation of the structural set of
parameters as in Chernozhukov et al. (2007) and Galichon and Henry (2011).

Bounding Variances. Next, we characterize bounds over variances. The importance of
this application comes not only from the fact that we can obtain dynamic implications
from equilibria; we can also know, ex-ante, how much volatility the model can generate.
Note that without any a priori knowledge this can be a daunting task. Which equilibrium
will yield the highest variance? In the next proposition, we can pin down how much
variance the model can generate, without trying every possible equilibrium. Take any
Q ∈ ECD(ht+1

m ) with EQ (qt) = µ. Denote by S
(
ht+1

m , µ
)

the set of variances of these
distributions.

Proposition 6. Suppose that history ht+1
m =

(
ht, yt, dt, bt+1

)
is equilibrium consistent. Define

q∗ :=
[
1−Q (0)

]
× q (yt, bt+1). If Q ∈ Q and EQ (qt) = µ then S

(
ht+1

m , µ
)
=
[
0, Var

(
ht+1

m , µ
)]

where V
(
ht+1

m , µ
)

is defined as:

• If µ ≥ q∗, then Var
(
ht+1

m , µ
)
= µ (q− µ).

• If q (bt, yt, bt+1) ≤ µ < q∗ then Var
(
ht+1

m , µ
)
= µ

(
q + qµ − µ

)
− qµq, where Q (q)

is defined in Proposition 4 and qµ is the unique solution to the equation Q
(
qµ

)
qµ +(

1−Q
(
qµ

))
q = µ.

Proof. See Appendix B.

The idea of the proof is as follows. We know that any price distribution with sunspots
lies in the interval [0, q (yt, bt+1)]. We need to show that the maximum variance is achieved
always with a binary distribution and absent any additional constraints, given the mean
µ, the maximum variance is given by equation µ (q− µ) . First, we show that the no
default incentive constraint (4.1) is not binding if the expected prices are high enough;
i.e., if µ ≥ q∗. Therefore, in this case, Var

(
ht+1

m , µ
)
= µ (q− µ). When µ < q∗, the

incentive constraint for no-default starts to be binding. The maximum variance is still
achieved by a binary distribution, but this binding constraint restricts how low the prices
can be in the two values of the distribution. Thus, qµ is defined as the value that solves
Pr
(
qµ

)
qµ +

(
1− Pr

(
qµ

))
q equal to µ for some distribution Pr. Turns out that the dis-

tribution, Pr for which the incentive constraint (4.1) is binding is Q (·). This is intuitive,
because will make the probability of the low value as high as possible, maximizing the
variance. It can also be shown that both qµ and, hence, Var

(
ht+1

m , µ
)

are strictly increasing
in µ.
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Figure 5: This figure plots Var
(
ht

m, µ
)

for for different levels output and for our main calibrated parame-
ters. The left panel fixes bt+1and bt and perform comparative statistics with respect to yt. The middle panel
fixes ytand bt and perform comparative statistics with respect to bt+1.The right panel fixes yt and perform
comparative statistics with respect to bt.

Figure 5 presents the bounds of the variances for the equilibrium consistent distri-
butions given an expected value for prices. First, it is clear that in the three panels, the
frontier of the mean and variances has kinks. All these kinks occur when the expected
price is equal to q∗. Each one of the panels and each of the two cases in each panel are
different because different values of (bt, yt, bt+1). Second, note that in the left panel, both
curves are the same up to the inflection point of the blue line. This result occurs because
q∗ is a function of (bt, yt, bt+1), whichmarks the inflection point for each one of the curves.
If the expectation of prices, E(q), is higher than the maximum of both q∗, then the func-
tions are identical because in the left Panel yt, bt+1 is the same for both frontiers. The
blue line falls faster than the red line is because for the blue line the debt repayment is
larger; thus, for a given mean the variance needs to be smaller. The middle panel also
presents this same intuition but with respect to the issuance of new debt. Because more
debt is issued in the red line, the spot utility for the government is relaxed. In addition,
the right-hand side panel has the opposite intuition: when more debt is repaid, then the
government tolerates lower variances. Finally, it is worth noting that for values of E(q)
that are higher than q∗, the blue and red lines do not need to coincide. The reason why
they coincide is because q(yt, bt+1) is flat for both variables in the range of yt, bt+1 in the
plots.
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Comparative Statics and Stochastic Dominance. We close this subsection by provid-
ing the comparative statistics over the set of distributions, ECD (bt, yt, bt+1). This result
parallels what we found in Corollary 1 in Subsection 3.3.

Corollary 2. The set of equilibrium price distributions ECD (bt, yt, bt+1) is non-increasing (in
a set order sense) with respect to bt and if income is i.i.d, it is non-decreasing in yt. Furthermore,
suppose that Q ∈ ECD (bt, yt, bt+1) and Q′ is a probability distribution for equilibrium prices;
i.e. Q′ ∈ ∆ ([0, q (yt, bt+1)]). If Q′ first order stochastically dominates (FOSD) Q, then Q′ ∈
ECD (bt, yt, bt+1).

Proof. See Appendix B.

The intuition of the first part of these comparative statistics, again, stems from the re-
vealed preference argument. If the government repaid a larger amount of debt, then the
distribution of the prices that they would expect needs to shift towards higher prices. If
the set does not change, then there will be a distribution that will be inconsistent with
equilibrium because it will violate the promise-keeping constraint. For the second part, if
Q′ FOSD Q, then the proposition shows that once a distribution is consistent with equi-
librium, any distribution that FOSD this distribution will be an equilibrium consistent
distribution. Intuitively, higher prices lead to both higher consumption and higher con-
tinuation equilibrium values for the government since both are weakly increasing in the
debt price qt.23

5 A General Dynamic Policy Game

In this section we show that the main results that we proved in Section 3 and Section 4,
Proposition 1 and Proposition 3, extend to a more general class of policy games and do
not rely on the specific model studied in these sections. This should not be surprising.
The main economic argument for Propositions 1 and 3 comes from a revealed preference:
what the government leaves on the table provides bounds on the expectation it had re-
garding future play. These bounds, place restrictions over outcomes or over distributions.

23See that Q is, by its own definition, the infimum over all possible distributions in ECD, since it gives
the greatest cdf across all equilibrium consistent distributions. For every Q ∈ ECD (bt, yt, bt+1) we have
that Q FOSD Q, and if Q′ is some other lower bound, then Q′ FOSD Q. Moreover, Q 6/∈ ECD (bt, yt, bt+1).
The distribution Q (·) is the maximum lower bound (in the FOSD sense) of the set equilibrium consistent
distributions; i.e. for every Q ∈ ECD (bt, yt, bt+1) we have Q FOSD Q, and if Q′ is some other lower bound,
then Q′ FOSD Q.
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Therefore, in this section we do two things. First, we propose a general model of a dy-
namic policy game in the spirit of Stokey et al. (1989).24 Second, we provide the analogs
of Propositions 1 and 3 for this more general setup. In each one of these cases we show
how to traduce these characterizations into restrictions over observables.

5.1 Setup

We will follow the notation in Stokey et al. (1989). There are two players: an infinitely long
lived player (government) and short lived agents (market) that set expectations according
to a particular rule. In each period t, agents play an extensive form stage game, with 5
sub periods (t, τi)i∈{1,5} . The payoff relevant states are an exogenous random shock yt,
and an endogenous state variable bt. The timeline of the stage game follows:

• τ = τ1 : A publicly observable random variable yt ∈ Y ⊆ Rl is realized, that follows
a (controlled) Markov process: yt ∼ f (y | yt−1, bt).25

• τ = τ2 : The long-lived player (government) chooses a control dt ∈ D ⊆ Rd and
a next period state variable bt+1 ∈ B ⊂ Rb (where both D and B are compact sets)
that are jointly feasible, given (bt, yt). We say that (dt, bt+1) is feasible if (dt, bt+1) ∈
Γ (bt, yt), where Γ : B×Y×Q ⇒ D× B is a non-empty, compact valued , continuous
correspondence.

• τ = τ3 : A sunspot variable ζt is realized and distributed according to ζt ∼ U[0, 1].

• τ = τ4 : The agents determine their expectations about future play. This process is
modeled in reduced form, with the market choosing qt ∈ Rk to satisfy:

qt = Et

{
∞

∑
s=t

δs−tT (bs+1, ys+1, ds+1, bs+2)

}
24To keep notation simple and the exposition more concrete, we will focus on games in which the short

run players form an expectation regarding next period policy. There is a large class of models that share this
timing. For sovereign debt, one class follows Eaton and Gersovitz (1981). For monetary policy, one class
is the New Keynesian model as in Benigno and Woodford (2003). There are policy games that focus on
alternative timings, though. In particular, there is a class of games in which the decision of the long-lived
player and the short-lived players occurs sequentially, but in the same period. This timing has been used
mainly for monetary policy (for example, in the seminal contribution of Barro and Gordon, 1983, but see
also, for example, Obstfeld et al., 1996), and capital taxation (see for example Phelan, 2006 and Chari and
Kehoe, 1990). Our results can be extended to incorporate these alternative timings.

25Sometimes, we say that y includes a sunspot if ∃ {y∗t , zt} such that (1) y∗t ⊥ zt for all t, (2) y∗t is a con-
trolled Markov process; i.e. y∗t ∼ g

(
y∗t | y∗t−1, bt

)
and (3) zt ∼i.i.d Uniform [0, 1].
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where δ ∈ (0, 1) and T : B× Y × D × B → Rk is a continuous, bounded function.
The expectation is taken over future shocks {yt+s}∞

s=1 knowing the strategy profile
of the long lived player.

• τ = τ5 : the payoffs for the long lived player are realized and given by a continuous
utility function u (bt, yt, dt, bt+1, qt). Lifetime utility is then given by

V0 := E0

{
∞

∑
t=0

βtu (bt, yt, dt, bt+1, qt)

}
,

where β ∈ (0, 1).

Example 1. This example is exactly the one studied in Section 3 and Section 4. yt is na-
tional income, bt ≥ 0 is the outstanding public debt to be repaid, dt ∈ {0, 1} is the de-
fault decision and qt = Et

[
1−dt+1

1+r

]
is the risk neutral price set by lenders in equilibrium.

Flow utility is given by u (bt, yt, dt, bt+1, qt) = (1− dt) u (yt − bt + qtbt+1) + dtu (yt), as-
suming that when the government defaults on its debt, it gets to consume its income and
is banned forever from international financial markets. Note that the feasibility corre-
spondence is given by Γ(yt, bt, qt) = yt − bt + qtbt+1 ≥ 0.26

Example 2. Our framework also incorporates New Keynesian (NK) models of monetary
policy with no endogenous state; see for example Benigno and Woodford (2003) and more
recently Waki et al. (2015). In the case of the NK model the control is dt = πt where πt

is inflation. Agents set inflation expectations to match future inflation, as qt := πe
t =

Et (πt+1). Inflation and output are related according to a forward looking Phillips curve
gt = πt − βπe

t + εt, where gt is the output gap and εt is a supply shock. In addition,
let π∗t be a random variable that gives the optimal natural level of inflation (absent an
inflation gap). The random shocks are then yt = (εt, π∗t ), and the government is assumed
to minimize the loss function:

L (π, πe, εt, π∗t ) =
1
2

g2
t +

1
2

χ (πt − π∗t )
2 =

1
2
(πt − βπe

t + εt)
2 +

1
2

χ (πt − π∗t )
2 .

In this example, the feasibility constraint represents the fact that πt needs to be bounded.

Histories, Equilibrium and Equilibrium Consistency. The notation in this section fol-
lows the one used in Sections 2, 3, and 4. Recall that a history is a vector ht = (h0, h1, ..., ht−1),

26As we commented in Section 2, because the market chooses after the government it can be the case that
this constraint is ex-post “violated”. In that case, the government has a technology available to generate
resources such that the budget constraint holds; in this case the government obtains utility of −∞.
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where ht = (yt, dt, bt+1, qt) is the description of the outcome of the stage game at time
t. A partial history is an initial history ht concatenated with some subset of the stage
game at period t. The set of all partial histories (initial and partial) is denoted by H,
and Hg ⊂ H represent the histories where the government has to choose (dt, bt+1); i.e.,
ht

g =
(
ht, yt

)
. Likewise, Hm ⊂ H is the set of partial histories where the expectation set-

ters (or “market”) ; i.e., ht+1
m =

(
ht, yt, dt, bt+1

)
. A strategy for the government is a function

σg
(
ht, yt

)
= (dt, bt+1) for all histories, and a strategy for the market is a pricing function

qm
(
ht, yt, dt, bt+1, ζt

)
∈ Rk. The payoff for the government of a particular (feasible) strat-

egy σg, σm , after a particular history ht, yt is given by:

V
(
σ | ht, yt

)
= Et

{
∞

∑
t=s

βt−su
(

bσg
t , yt, dσg

t , bσg
t+1, qσm

t

)}
.

A strategy profile σ =
(
σg, qm

)
is a Subgame Perfect Equilibrium (SPE) of the game if:

a. V
(
σ | ht, yt

)
≥ V

(
σ′g, qm | ht, yt

)
for all

(
ht, yt

)
, σ′g ∈ Σg ;

b. qm
(
ht, yt, dt, bt+1, ζt

)
= Et

{
∑∞

s=t δs−tT (bs+1, ys+1, ds+1, bs+2)
}

where the policies (bs+1

ds+1, bs+2) are generated by σ.

We denote it by σ ∈ Σ∗. The methodology we developed in Sections 3, and 4, derived
statistical predictions for the data generated by the set of subgame perfect equilibria. We
focused in a particular dynamic policy game that followed Eaton and Gersovitz (1981). In
this section we follow similar steps for the general model that we just described. Given
a SPE profile σ =

(
σg, qm

)
, we define its equilibrium path π = x (σ) as a sequence of

measurable functions π =
(
dt
(
yt) , bt+1

(
yt) , qt

(
yt))

t∈N
that are generated by following

the profile σ. A history h is equilibrium consistent if and only if is on some equilibrium path
x = x (σ), for subgame prefect equilibrium σ ∈ Σ∗.

What follows? First, in subsection 5.2, we characterize the worst equilibrium payoff
and the best possible continuation after a realization of the expectation of the public. Re-
call that the best continuation value function played a central role in the characterization
of equilibrium consistent distributions in Proposition 3. As we explained after discussing
Proposition 3, this object is also useful for the characterization of equilibrium consistent
outcomes without sunspots. Second, in subsection 5.3, paralleling what we did in Section
3 we will characterize equilibrium consistent outcomes, for the model when there are no
sunspots. The main result is Proposition 7. Finally, paralleling what we did in Section 4,
we will characterize equilibrium consistent distributions over outcomes. The main result
is Proposition 8 which is an extended version of Proposition 3.
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5.2 Equilibrium and Continuation Values

As we did in Section 3, it will be useful to define the best ex-post continuation payoff.
Also, we define the set of equilibrium payoffs and and the worst equilibrium payoff. We
start with the set of equilibrium payoffs. Formally, denote as E (y−, b) and E s (y−, b) the
set of equilibrium payoff in the model without and with sunspots, respectively. Formally,
E (y−, b) is defined as:

E (y−, b) =
{
(q, v) ∈ Rk ×R : ∃σ ∈ Σ∗ (y−, b) with

v = V (σ | h0 = (y−, b))
q = E0

{
∑∞

t=0 δtT (bt+1, yt+1, dt+1, bt+2) | y−, b
} }

and let Q (y−, b) ⊆ Rk be its projection over q. We can characterize E (y−, b) using the
concept of self-generation and enforceability in Abreu (1988); Abreu et al. (1990) and
Atkeson (1991). We can show that if y is non-atomic and u is concave in q (for exam-
ple, risk aversion of the long lived player), then E (y−, b) is compact and convex valued.
This is satisfied by both examples discussed above. Furthermore, if E (y−, b) is compact
and convex valued, then E s (y−, b) = E (y−, b).27 For a simpler exposition we focus on
this case.28

We continue with the best value function and the max-min value. The best value function
gives the maximum equilibrium value for the long lived player, if qt = q− is realized; i.e.,

v (y−, b, q−) = max
v∈R

v

s.t. (q−, v) ∈ E (y−, b) .

By following steps that are similar to the ones used in the Appendix, Section D, we can
also show that if E (y−, b) is convex valued and u (·) is concave in q, then v (y−, b, q−) is
also concave in q. The max-min value is the worst possible value that the long lived player

27In repeated games, it is usually the case that for the set of equilibrium payoffs with and without
sunspots to be equal, we only need to know that the set without sunspots is convex. However, our case
is different because the continuation value of one of short lived players enters non-linearly in the utility
function of the long lived players, and therefore in the IC constraint of the other one. Which explains why,
in addition to convexity, we need concavity of the spot utility function with respect to q. This was satisfied
in the model of sovereign debt in our first sections.

28Why is the exposition simpler? When this is not the case, all the propositions in this section re-
main valid, but we need to define the functions v, the best ex-post continuation payoff and U, the worst
equilibrium payoff, over the correspondence E s (y−, b) instead. These two functions are defined below
vs (y, b, q) = max {v : (q, v) ∈ E s (y, b)} and Us (y, b) := max(d,b′)∈Γ(b,y) min(q,v)∈E s(y,b) u (b, y, d, b′, q) + βv.
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can obtain in any SPE , going forward. Formally,

U (y, b) := max
(d,b′)∈Γ(b,y)

{
min

(q,v)∈E(y,b′)
u
(
b, y, d, b′, q

)
+ βv

}
.

How this is related to what we did in Sections 3, and 4? In the sovereign debt model,
U (y, b) = Vd (y), denotes the autarky value. We show this in the Appendix C.29

5.3 Equilibrium Consistency

Let us start by analyzing the case without a sunspot after the decision of the govern-
ment. Aided with the best ex-post continuation v (y, b′, q) and the max-min value for
the government, the main result of this section is to characterize which period t outcomes
ht = (dt, bt+1, qt) are equilibrium consistent, after an equilibrium consistent history ht.
These outcomes are denoted by ECO

(
ht). We then apply Proposition 7 to obtain predic-

tions over qt across all equilibria as we did for the model of sovereign debt.

Proposition 7. Suppose that ht+1 is an equilibrium consistent history. Then, an outcome ht+1 =

(dt, bt+1, qt) is equilibrium consistent if and only if: (a) qt is an equilibrium prices; i.e. qt ∈
Q (yt, bt+1); and (b) incentive compatibility for the long lived player:

u (bt, yt, dt, bt+1, qt) + βv (yt, bt+1, qt) ≥ U (yt, bt) .

The proof of Proposition 7 follows closely the steps of the proof of Proposition (3). We
briefly discuss the argument in the Appendix Section E. Proposition 7 identifies the nec-
essary and sufficient conditions for an outcome (dt, bt+1, qt) to be equilibrium consistent
after an equilibrium consistent history. There are a couple of points that are worth not-
ing. First, the condition that qt ∈ Q (yt, bt+1) just states that qt needs to be an equilibrium
price or expectation. In the model of sovereign debt, it stated that qt ∈ [0, q(yt, bt+1)];
i.e., that the price was between zero and the price of the best equilibrium. Clearly, if
qt /∈ Q (yt, bt+1) then it cannot be part of a continuation equilibrium, so qt would not be
equilibrium consistent.

Second, the IC constraint is replaced by only one equation. Necessity is intuitive. If for
any yt ∈ Y, the condition is violated, then the policies dt, bt+1 could not be implemented
by promising the best continuation equilibrium if they follow them, and the worst contin-
uation if they do not. Thus, they cannot be implemented. The sufficiency of this condition

29There are several papers that develop the techniques to solve for the set of equilibrium payoffs fol-
lowing the seminal contribution of Judd et al. (2003). Following Waki et al. (2015), it can be shows that
v (y−, b, q−) can be expressed as the unique fixed point of a contraction mapping, given U (y, b).
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again stems from the fact that yt is non-atomic, and hence, any particular realization of
yt has no marginal effect on expected lifetime utilities from the previous periods; i.e. the
promise keeping constraints can always be satisfied if we change the realization of the
continuation value on a single yt.30

How can we use the previous Proposition to obtain robust predictions on prices? The
second condition in Proposition 7 defines, for a given yt and the long lived player’s choice
(dt, bt+1), a set of equilibrium consistent prices:

ECO (bt, yt, dt,, bt+1) := {qt ∈ Q (yt, bt+1) : u (bt, yt, dt, bt+1, qt) + βv (yt, bt+1, qt) ≥ U (yt, bt)} .

(5.1)

If v (yt, bt+1, qt) is concave in qt, which happens if E is convex valued and u is concave in
q, then the set of equilibrium consistent prices, that we denote as Q (bt, yt, dt, bt+1) will be
convex. In the case of k = 1, this implies that Q is a compact interval; Q (bt, yt, dt, bt+1) =[

q (bt, yt, dt, bt+1) , q (bt, yt, dt, bt+1)
]

as in the sovereign debt model. Again, as in the pre-
vious sections, the set Q (bt, yt, dt, bt+1) defines the restrictions over observables of the
assumption of equilibrium.

We now go back to the case in which there is a sunspot (public correlating device) that is
realized in τ = 4. We present a generalization of the main result presented in Section 4,
Proposition 7, for the general model that we just introduced. We will assume that E (y−, b)
is convex valued and u is concave in q.

Proposition 8. Suppose that ht+1 is an equilibrium consistent history. Then, Qt is an equilibrium
consistent distribution if and only if: (a) Qt ∈ ∆ [Q (yt, bt+1)]; (b) incentive compatibility for
long lived player:∫

q̂∈Q(yt,bt+1)
[u (bt, yt, dt, bt+1, q̂) + βv (yt, bt+1, q̂)] dQt (q̂) ≥ U (yt, bt) .

As for the previous proposition presented in this section the proof of Proposition 7
follows closely the steps of the proof of Proposition 3. We discuss the argument in the
Online Appendix Section E. Proposition 8 generalizes Proposition 7 for the case with
sunspots, when E is convex valued and u is concave in q. Again, the first requirement,
Qt ∈ ∆ [Q (yt, bt+1)] is asking for a distribution to be a probability distribution over equi-
librium prices. As in the case without sunspots, and more importantly, as in Section 4,
we can use the results in Proposition 8 to obtain observable implications over prices. For
example, we can again obtain bounds over expectations. Define now a set of equilibrium

30One final comments. Note that we can characterize all equilibrium consistent histories recursively: start
with the null history h0 = (y−, b0) (the starting state) and, ht+1 is equilibrium consistent if and only if ht is
equilibrium consistent and ht = (yt, dt, bt+1, qt) satisfies conditions (1) and (2) of Proposition 7.
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consistent price distributions ECD (bt, yt, dt, bt+1). Because the IC for the government is
a linear inequality on measures Qt, under the assumptions of Proposition 8 the function
g (q̂ | ht) := u (bt, yt, dt, bt+1, q̂) + βv (yt, bt+1, q̂)−U (yt, bt) is concave in q̂ as well. There-
fore, as in the sovereign debt model, we have that the set of expected prices E (bt, yt, bt+1)

that is defined as the values
∫

q̂dP (q̂) such that Q ∈ ECD (bt, yt, dt, bt+1). In this case,
we can show that is equal to the set of equilibrium consistent prices without sunspots; i.e.
E (bt, yt, dt, bt+1) = Q (bt, yt, dt, bt+1).

6 Conclusion

Dynamic policy games have been extensively studied in macroeconomic theory to in-
crease our understanding of how lack of commitment restricts the outcomes that a gov-
ernment can achieve. One of the challenges in studying dynamic policy games is equilib-
rium multiplicity. Our paper acknowledges and embraces equilibrium multiplicity. For
this reason, we focus on obtaining robust predictions. These are predictions that hold across
all equilibria, or in the language of Bergemann and Morris (2017) across every possible
information structure.

We obtain robust predictions by characterizing what we termed as equilibrium consis-
tent outcomes. As we have discussed in the text, the basis of our predictions is a revealed
preference argument, which was also exploited to obtain the testable implications of equi-
libria in Jovanovic (1989) and Pakes et al. (2015). The idea of the revealed preference ar-
gument is that by taking a particular action, the government obtained some utility; and
by doing so may have left something else on the table. What the government left on the
table, places bounds on what it can receive in the future. As we discuss in the text, equi-
librium consistency is a general principle. Even though we focus on a model of sovereign
debt that follows Eaton and Gersovitz (1981), as we show in the last section of the paper,
our results can be generalized to other dynamic policy games.

We think that the predictions we obtain, in particular, the bounds on moments across
distributions, provide testable implications of a model that are not sensitive to a partic-
ular equilibrium selection mechanism, and in addition, can be the basis of estimation
procedures robust to equilibrium selection. These estimation procedures, can be exten-
sions of the ones in an extensive literature in industrial organization and game theory (for
example Berry, 1992, Bajari et al., 2007, Aguirregabiria and Mira, 2007) and Economet-
rics (for instance Chernozhukov et al., 2007 and Galichon and Henry, 2011) that recovers
structural parameters of interest using moment conditions. These are topics for further
research.
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Appendix to “Robust Predictions in Dynamic
Policy Games”

Juan Passadore and Juan Xandri

A Proofs Main Results

Proof. Proposition 1. Step 1: Necessity. ( =⇒ ). If (d (·) , b′ (·)) is SPE-consistent, there
exists an SPE profile σ̂ such that ht ∈ H (σ̂) and

d (yt) = dσ̂
t
(
ht, yt

)
and b′ (y) = bσ̂

t+1
(
ht, yt, d = 0

)
.

That is, there exists a SPE that can generate the history ht
−, which specifies the contingent

policy d (·) , b′ (·) in period t, and satisfies conditions (3.4) to (3.6). Because σ̂ is an SPE,
using the results of Abreu et al. (1990) we know that if d (y) = 0 at ht =

(
ht
−, qt−1

)
then

u
(

yt − bt + b′ (yt) qσ̂
m
(
ht, dt = 0, b′ (yt)

))
+ βV

(
σ̂ | ht+1

)
≥ Vd(yt). (A.1)

According to the definition of best continuation values and prices.

V
(

σ̂ | ht+1
)
≤ V

(
yt, b′ (yt)

)
and qσ̂

m
(
ht, dt = 0, b′ (yt)

)
≤ q

(
yt, b′ (yt)

)
. (A.2)

Because b′ (yt) ≥ 0 (the no savings assumption) and u (·) is strictly increasing, we can
insert (A.2) into (A.1) to conclude that

u
(
yt − b + b′ (yt) q

(
yt, b′ (yt)

))
+ βV

(
yt, b′ (yt)

)
≥

u
(

y− bt + b′ (yt) qσ̂
m
(
ht, dt = 0, b′ (yt)

))
+ βV

(
σ̂ | ht+1

)
which proves condition (3.5). Further, since σ̂ generated the observed history, the past
prices must be consistent with policy (d (·) , b′ (·)). Formally:

qt−1 = qσ̂
m

(
ht−1, yt−1, dt−1, bt

)
=

Eyt|yt−1

(
1− dσ̂

(
ht, yt

))
1 + r

=
Eyt|yt−1

(
1− dσ̂ (yt)

)
1 + r
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which also proves (3.4). Using the usual promise keeping accounting, condition (3.6), is
the same as condition (3.5) but at t − 1. Formally, if σ̂ is SPE and ht ∈ H (σ̂) then the
government’s default and bond issue decision at t − 1 was optimal given the observed
expected prices

u (yt−1 − bt−1 + btqt−1) + βV
(
σ̂ | ht) ≥ u (yt−1) + βEyt|yt−1

Vd(yt).

Using the recursive formulation of V (·), we obtain the following inequality:

V
(
σ̂ | ht) = Eyt|yt−1

[
(1− d(yt))

[
u(yt − bt + b′(yt)qσ̂

m(h
t, yt, dt = 0, b′(yt))) + V

(
σ̂ | ht+1

)]]
+ Eyt|yt−1

[
d(yt)

[
u (yt) + βEyt|yt−1

Vd(yt)
]]

≤ Eyt|yt−1
(1− d(yt))

[
u
(
yt − bt + b′(yt)q(b′(yt))

)
+ V(yt, b′(yt))

]
+ Eyt|yt−1

d(yt)
[
u (yt) + βEyt|yt−1

Vd(yt)
]

.

According to the previous two inequalities and the law of iterated expectations, condition
(3.6) follows.

Step 2: Sufficiency. (⇐=). We need to construct a strategy profile σ that is a SPE such
that ht

m ∈ H (σ) and d (·) = dσ
t
(
ht, ·
)

and b′ (·) = bσ
t+1
(
ht, ·
)
. Given that ht

m ∈ H (Σ∗),
we know there exists a SPE profile σ̂ =

(
σ̂g, q̂m

)
that generates ht

m. Let σ (b, y) be the best
continuation SPE (associated with the best price q (·) ) when yt = y and bt+1 = b. Let σaut

be the strategy profile for autarky (associated with qm = 0 for all continuation histories).
In addition, let ht+1 (yt) =

(
ht, yt, d (yt) , b′ (yt) , q (yt, b′ (yt))

)
be the continuation history

at yt = y and the policy (d (·) , b′ (·)) if the government faces the best possible prices. We
define the histories that precede ht and are not equal to ht as (hs, ys) ≺ ht. That is, if we
truncate ht to period s, we obtain hs. We denote (hs, ys) 6≺ ht as the histories that do not
precede ht. The symbol � denotes histories that precede and can be equal. We construct
the following strategy profile σ =

(
σg, qm

)
:

σg (hs, ys) =



σ̂g (hs, ys) for all (hs, ys) ≺ ht

σaut (ys) for all s < t and (hs, ys) 6≺ ht

dt
(
ht, yt

)
= d (yt) and bt+1

(
ht, yt

)
= b′ (yt) for

(
ht, yt

)
for all yt

σg (bs+1, ys) (hs, ys) for all hs � ht+1 (yt)

σaut (ys) for all s > t, hs 6� ht+1 (yt)
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and

qm (hs, ys, ds, bs+1) =



q̂m (hs, ys, ds, bs+1) for all (hs, ys) ≺ ht

0 for all s < t and (hs, ys) 6≺ ht

q (ys, b′ (ys)) for all hs �
(
ht, yt, d (yt) , b′ (yt)

)
0 for all h 6s �

(
ht, yt, d (yt) , b′ (yt)

)
.

By construction ht
m ∈ H (σ). This occurs because σ = σ̂g for histories (hs, ys) � ht. In ad-

dition, the strategy σ prescribes the policy (d (·) , b′ (·)), which is on the equilibrium path.
Next, we need to show that at ht, this strategy profile is indeed an SPE. To do this, we will
use the one deviation principle. Note that for all histories with s > t the continuation pro-
file is an SPE (by construction); this process prescribes the best continuation equilibrium,
which is an SPE by definition. Next, we need to show that at ht, this profile is indeed an
equilibrium. The fact that an equilibrium exists is due to the second constraint, which is
the IC constraint

(1− d(yt))
[
u(yt − bt + q(yt, bt+1((yt)))bt+1(yt)) + βV(yt, bt+1((yt)))

]
+ ..

... + d(yt)Vd(yt) ≥ Vd(yt).

Note also that the default policy at t− 1 was consistent with σ (and is an equilibrium) and
that qt−1 is consistent with the policy (d (·) , b′ (·)). The promise-keeping constraint (3.6)
translates into the exact IC constraint for profile σ, showing that the default decision at
t− 1 was indeed optimal given profile σ. The “price keeping” (3.4) constraint also implies
that qt−1 was consistent with policy (d (·) , b′ (·)). The final step for proving sufficiency is
showing that, s < t − 1 (that is hs ≺ ht). Note that because y is absolutely continuous,
the particular y that is realized has zero probability. Therefore, the expected value of this
new strategy is the same

V(σ̂ | hs) = V(σ | ht)

for all hs ≺ ht with s < t− 1; the probability of the realization of ht, is zero. Altogether,this
implies that σ is indeed an SPE and generates history ht

m on the equilibrium path, proving
the desired result.

Proof. Proposition 2. Step 1: Rewrite program ECO program. By Proposition 1 and q is
defined as:

q
(

ht−1
m

)
= min

(q̂,dt(·),bt+1(·))
q̂
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subject to
(q̂, dt (·) , bt+1 (·)) ∈ ECO (bt−1, yt−1, bt) .

This can be rewritten as:
q(b, y, b′) = min

q,d(·)∈{0,1}Y ,b′′(·)
q

subject to

Ey′|y [1− d (y′)]
1 + r

= q (A.3)(
1− d

(
y′
)) (

Vnd (b′, y′, b′′
(
y′
))
−Vd (y′)) ≥ 0 (A.4)

βEy′|y

[
d
(
y′
)

Vd (y′)+ (1− d
(
y′
))

Vnd (b′, y′, b′′
(
y′
))]
− ..

..− βEy′|yVd(y′) ≥ u (y)− u
(
y− b + b′q

)
.

(A.5)

First, note that we can relax the constraints (A.4) and (A.5) by choosing:

b′′
(
y′
)
= argmax

b̂≥0
Vnd

(
b′, y′, b̂

)
.

Second, we define the set R (b′) =
{

y′ ∈ Y : Vnd (b′, y′) ≥ Vd (y′)
}

to be the set of income
levels for which the government does not default, under the best continuation equilib-
rium. Note that if y′ /∈ R (b′), then the no default decision is not equilibrium feasible for
any continuation equilibrium (this stems from the fact that (A.4) is a necessary condition
for no default). The minimization program, that we now call program Pq, can now be
written as:

q
(
b, y, b′

)
= min

q,d(·)∈{0,1}Y
q (A.6)
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subject to

Ey′|y [1− d (y′)]
1 + r

= q(
1− d

(
y′
)) [

Vnd (b′, y′
)
−Vd (y′)] ≥ 0 for all y′ ∈ R

(
b′
)

d
(
y′
)
= 1 for all y′ /∈ R

(
b′
)

βEy′|y

[
d
(
y′
)

Vd (y′)+ (1− d
(
y′
))

Vnd (b′, y′, b′′
(
y′
))]
− ..

..− βEy′|yVd(y′) ≥ u (y)− u
(
y− b + b′q

)
.

(A.7)

Step 2: Show that program Pq has a non-empty feasible set. As a preliminary step, we need to
show that this problem has a non-empty feasible set. To accomplish this, we choose the
default rule that makes all constraints less binding: i.e. d (y′) = 0 ⇐⇒ Vnd (b′, y′) ≥
Vd (y′). This rule corresponds to the best equilibrium policy. If this policy is not feasible,
then the feasible set is empty. Under this default policy and at the best equilibrium, price
q is equal to the best equilibrium price q = q (y, b′). The feasible set is non-empty if and
only if

Vnd (b, y, b′
)
≥ Vd (y) .

Step 3: Rewrite the promise keeping constraint (A.7). Note that

Vd(y′) =
[
d
(
y′
)

Vd (y′)+ (1− d
(
y′
)
)Vd (y′)] .

Therefore, we can rewrite the promise-keeping constraint as

βEy′|y
(
1− d

(
y′
)) [

Vnd (b′, y′
)
−Vd (y′)] ≥ u (y)− u

(
y− b + b′q

)
. (A.8)

Step 4: Solve a relaxed version of program Pq. Step 4.1: Determine the setup. We focus on a
relaxed version of the problem. We will allow the default rule to be d (y′) ∈ [0, 1] for all y′.
Given the state variables (b, y, b′) the relaxed problem is a convex minimization program
in the space (q, d (·)) ∈

[
0, 1

1+r

]
×D (Y), where:

D (Y) ≡ {d : Y → [0, 1] such that d (y′) = 1 for all y′ /∈ R (b′)}

is a convex set of default functions. In addition, we include a constraint for prices

q ≥
Ey′|y [1− d (y′)]

1 + r
.
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The intuition for this last constraint is that d (y′) = 1 has to be feasible in the relaxed
problem. The Lagrangian of the relaxed program is then:

L (q, δ (·)) = q + µ

(
−q +

Ey′ |y [1− d (y′)]
1 + r

)
+

λ
(

u (y)− u
(
y− b + b′q

)
− βEy′ |y

[
1− d

(
y′
)]

(1− d
(
y′
)
)
[
Vnd (b′, y′

)
−Vd (y′)]) .

Step 4.2: FOC’s point by point. The optimal default rule d (·) must minimize the Lagrangian
L, given the multipliers (µ, λ) , where (µ, λ) ≥ 0. Note that for y′ ∈ R (b′), any d ∈ [0, 1]
is incentive constraint feasible, and

∂L
∂d (y′)

=

(
− µ

1 + r
+ λβ

[
Vnd (b′, y′

)
−Vd (y′)]) dF

(
y′ | y

)
where dF (y′ | y) is the “conditional probability” of state y′ given y. Therefore, because it
is a linear programming program, the solution is in the corners (if it is not in the corners,
it has the same value in the interior); then, the values of y′ such that the country does not
default are given by

d
(
y′
)
= 0 ⇐⇒ λ

[
Vnd (b′, y′

)
−Vd (y′)] > µ

β (1 + r)
. (A.9)

Step 4.3: Ensuring that λ > 0 in the optimum. Suppose that λ = 0; then d (y′) = 1 for all
y′ ∈ Y satisfies the IC and the price constraint. Therefore, the minimum price is

q ≥ 1− 1
1 + r

= 0.

Therefore, the minimizer will be zero, q = 0. However, this minimizer, q = 0, will not
meet the promise-keeping constraint. Formally,

β
∫

Vd (y′) dF
(
y′ | y

)
− βEy′|yVd(y′)− u (y) + u (y− b) =

= β
(

Ey′|yVd(y′)−Ey′|yVd(y′)
)
+ u (y− b)− u (y) = u (y− b)− u (y) < 0.

This equation implies that λ > 0. Note that λ > 0 implies that q (b, y, b′) > 0.
Step 4.4: Find γ such that d (y′) = 0 ⇐⇒ Vnd (b′, y′) ≥ Vd (y′) + γ. To do so, we

define:
γ :=

µ

λβ (1 + r)
.
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Then, (A.9) implies that:

d
(
y′
)
= 0 ⇐⇒ Vnd (b′, y′

)
≥ Vd (y′)+ γ,

which is what we wanted to show.
How we compute γ? Step 5.1. Develop an equation for γ . Aided by this characterization,

according to the promise -keeping constraint, we have an equation for γ that is a function
of the states

β
∫

Vnd(b′,y′)≥Vd(y′)+γ

[
Vnd (b′, y′

)
−Vd (y′)] dF

(
y′ | y

)
= u (y)− u

(
y− b + b′q

)
(A.10)

where

q =
Pr
(
Vnd (b′, y′) ≥ Vd (y′) + γ

)
1 + r

. (A.11)

Define
∆nd(b′, y′) := Vnd (b′, y′

)
−Vd (y′) .

So,

q =
F̂
(
∆nd(b′, y′) ≥ γ

)
1 + r

where F̂ is the probability distribution of the random variable ∆nd(b′, y′).
Step 5.2. Ensuring that the solution γ is well defined. Define the function

G (γ) = β
∫

∆nd≥γ
∆nddF̂

(
∆nd | y

)
− u (y) + u

(
y− b + b′

1− F̂ (γ | y)
1 + r

)
.

First, note that G is weakly decreasing in γ such that G (0) > 0 (from the assumption
Vnd (b′, y′)− Vd (y′) > 0) and limγ→∞ G (γ) = u (y− b)− u (y) < 0. Second, note that
G is right continuous in γ. These two observations imply that we can find a minimum
γ : G (γ) ≥ 0. If income is an absolutely continuous random variable, then G (·) is strictly
decreasing and continuous, implying the existence of a unique γ such that G (γ) = 0. This
process provides the solution to the price minimization problem.

B Sunspot Proofs

Proof. Proposition 3. Step 1: Necessity.(=⇒). Suppose there is an equilibrium strategy
σ such that ht+1

m ∈ H (σ). This strategy that the government optimally decided not to

50



default at period t, which implies the following:

∫ 1

0

[
u
(

yt − bt + qσ
(

ht+1
m , ζt

)
bt+1

)
+ βVσ

(
ht+1

m , ζt

)]
dζt ≥ u (yt) + βEyt+1|ytV

d(yt+1)

(B.1)
Recall that E (yt, bt+1) is the set of equilibrium payoffs of the game.31 Since σ is an SPE,
because of self generation, it holds that for all sunspot realizations ζt ∈ [0, 1]:(

Vσ
(

ht+1
m , ζt

)
, qσ
(

ht+1
m , ζt

))
∈ E (yt, bt+1) .

This further implies two things:

a. qσ
(
ht+1

m , ζt
)
∈ [0, q (yt, bt+1)] (i.e., it delivers equilibrium prices)

b. Vσ
(
ht+1

m , ζt
)
≤ v

(
yt, bt+1, qσ

(
ht+1

m , ζt
))

. This occurs because v is the maximum pos-
sible continuation value given the price realization q = qσ

(
ht+1

m , ζt
)
.

The price distribution given by σ can be defined by measure Q over measurable sets
A ⊆ R+, as in:

Q (A) =
∫ 1

0
1
{

qσ
(

ht+1
m , ζt

)
∈ A

}
dζt = Pr

{
ζ : qσ

(
ht+1

m , ζt

)
∈ A

}
.

Note that condition (a) shows that Supp (Q) ⊆ [0, q (yt, bt+1)]. By changing the integra-
tion variables in B.1, using the definitions above and because of conditions (a) and (b):

∫ q(yt ,bt+1)

0
[u (yt − bt + q̂bt+1) + βv (yt, bt+1, q̂)] dQ (q̂) ≥

∫ 1

0

[
u
(

yt − bt + qσ
(

ht+1
m , ζt

)
bt+1

)
+ βVσ

(
ht+1

m , ζt

)]
dζt

≥ u (yt) + βEyt+1|yt
Vd(yt+1);

which proves the desired result.
Step 2: Sufficiency (⇐=). Suppose that Q is an equilibrium consistent distribution with

31In the Online Appendix Section D we define the equilibrium value correspondence and show how it
can be computed. To make this proof self contained, we repeat the definition here:

E (y−, b) =:

(v, q−) ∈ R2 : ∃σ ∈ Σ∗ (y−, b) :


v = E

{
∑∞

t=0 u
(
cσ
(
ht))}

ct = yt − bt + qσm
t bt+1

b0 = b

q− =
Ey|y− (1−d0(y))

1+r


 .

This set has the utility values for the government and prices for the investors that can be obtained in a
subgame perfect equilibrium, given an initial seed value y−, and initial bonds b. Note that in the model of
sovereign debt, we know that the set of prices is [0, q(y−, b)] and the set of values is [Vaut(y−), V(y−, b)].
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the conditional density function FQ. Let:

σ∗ (yt, bt+1, q) ∈ argmax
σ∈Σ∗(yt,bt+1)

Vσ
(

h0
)

s.t. qσ
0 ≤ q .

Note that by definition, σ∗ (yt, bt+1, q) is a strategy that achieves the continuation value
v (yt, bt+1, q). As we show in the Online Appendix, Section D, the constraint in this prob-
lem, qσ

0 ≤ q, is binding. Because ht+1
m is an equilibrium consistent history, we know there

exists an equilibrium profile σ̂ such that ht+1
m ∈ H (σ̂). For histories h′ successors of histo-

ries ht+1 =
(

ht, dt, b̂t+1, ζt, q̂t

)
we define the profile σ as:

σ
(
h′
)
=

σd (h′) if dt = 1or b̂t+1 6= bt+1 or q̂t /∈ [0, q (yt, bt+1)]

σ∗ (yt, bt+1, q̂t)
(
h′ ∼ ht+1) otherwise,

and for histories h′ =
(
ht, dt = 0, bt+1, ζt

)
, let

qσ
(

ht+1, yt, dt, bt+1, ζt

)
= F−1

Q (ζt)

where FQ (q) = Q (q̂) is the cumulative distribution function of distribution Q and F−1
Q (ζ) =

inf
{

x ∈ R : FQ (q) ≥ ζ
}

is its inverse. It will be optimal not to default at t (if we follow
strategy σ for all successor nodes) if:

∫ 1

0

[
u
(

yt − bt + F−1
Q (ζ) bt+1

)
+ βVσ (bt+1, ζ)

]
dζ ≥ u (yt) + βEyt+1|ytV

d(yt+1) ⇐⇒

∫ q(yt,bt+1)

0
[u (yt − bt + q̂bt+1) + βv (yt, bt+1, q̂)] dQ (q̂) ≥ u (yt) + βEyt+1|ytV

d(yt+1),

(B.2)
using the classical result that F−1

Q (ζ) =d Q if ζ ∼ Uniform [0, 1], then Vσ (h′) = V (σ∗ (h′)) =
v (yt, bt+1, qt) according to the definition of σ. Condition B.1 is satisfied, and Supp (Q) ⊆
[0, q (yt, bt+1)] implies that if the government follows profile σ, then h is also on the path of
σ, and σ is indeed a Nash equilibrium at such histories (because both σd and σ∗ (yt, bt+1, q̂)
are subgame perfect profiles). Finally, for histories h′ 6� ht we define σ (h′) = σ̂ (h′).
Therefore, σ (h′) is an SPE profile (since it is a Nash equilibrium at every possible history)
and generates h =

(
ht, dt = 0, bt+1

)
on its path.

Proof. Proposition 4. Step 1: Determine the upper bound for probability of q = 0. To con-
struct the maximum equilibrium consistent probability such that qt = 0 after history ht+1

m ,
we need to make the promise-keeping constraint as relaxed as possible. We do this by
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focusing on probability distributions Q that are binary. These distributions place pos-
itive probability only on the worst equilibrium price and best equilibrium prices. We
denote the, largest, probability of a price equal to zero as Q (q̂ = 0). As a consequence,
1− Q (q̂ = 0) is the, lowest, probability of the best equilibrium consistent price. The IC
constraint for this distribution is now:

Q (q̂ = 0)
[
u (yt − bt) + βEyt+1|yy Vd(yt+1)

]
+
(
1−Q (q̂ = 0)

) [
Vnd

(bt, yt, bt+1)
]
= Vd (yt) .

Then

Q (q̂ = 0) =
∆nd (bt, yt, bt+1)

∆nd (bt, yt, bt+1) + u (yt)− u (yt − bt)
< 1,

where ∆nd (·) denotes the maximum utility difference between not defaulting and de-
faulting (under the best equilibrium)

∆nd (bt, yt, bt+1) ≡ Vnd
(bt, yt, bt+1)−Vd (yt) .

Thus, the probability of q = 0 is bounded away from 1 from an ex-ante perspective
(i.e. before the sunspot is realized, but after the government decision’s decision has been
made). Therefore, we obtain a history dependent bound on the probability of a financial
crisis.

Step 2: Determine the upper bound for q = q̂. First, we determine the upper bound for
general q̂ < q (bt, yt, bt+1). Here, we use the same strategy: let p = Pr (ζt : q (ζt) ≤ q̂). Us-
ing the same strategy as before, to obtain a less binding IC constraint for the government,
we need to maximize equilibrium utility for q (ζt) > q̂. Thus, we consider equilibria that
assigns the best continuation equilibria in this case (to make the IC of the government as
flexible as possible). Consider the continuation equilibria where q (ζt) = q (yt, bt+1) and
v (ζt) = V (yt, bt+1) (the fact that this corresponds to an actual equilibria is easy to check).
With a reasoning that is similar to the one in Step 1, we see that focusing on equilibria that
have support q (ζt) ∈ {q̂, q (yt, bt+1)} makes the government’s IC as flexible as possible.
This, because the utility of the government is increasing in q̂ and moreover, v (y−, b, q̂)
(the greatest continuation utility consistent with q ≤ q̂) is also increasing in q̂ as we saw
before. Therefore, if p is the maximum such probability, then we must have:

p [u (yt − bt + q̂bt+1) + βv (yt, bt+1, q̂)] + (1− p)Vnd (bt, yt, bt+1) ≥ Vd (yt) ⇐⇒
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p ≤ ∆nd (bt, yt, bt+1)

Vd (yt)− [u (yt − bt + q̂bt+1) + βv (yt, bt+1, q̂)] + ∆nd (bt, yt, bt+1)
.

Note that this is not an innocuous constraint only when the right hand side is less than 1,
which happens only when

u (yt − bt + q̂bt+1) + βv (yt, bt+1, q̂) ≥ Vd (yt) .

As we argued before,
q̂ ≥ q (bt, yt, bt+1)

where the last inequality comes from the characterization of q (bt, yt, bt+1).

Proof. Proposition 5. We already know that max E (bt, yt, bt+1) = q (yt, bt+1) since the
Dirac distribution P over q = q (yt, bt+1) is equilibrium consistent. In the same way, we
also know that the Dirac distribution Q̂ that assigns probability 1 to q = q (bt, yt, bt+1) is
equilibrium consistent; this distribution corresponds to a case where both investors and
the government ignore the realization of the correlated device, and the characterization
of q (·) is exactly the only price that satisfies

u
(

yt − bt + q (bt, yt, bt+1) bt+1

)
+ βv

(
yt, bt+1, q (bt, yt, bt+1)

)
= Vd (yt) .

In the Online Appendix, Section D, Lemma 3, we show that v (y−, b, q) is a concave func-
tion in q, which together with the fact that u is strictly concave and b′ > 0 implies that the
function

H (q) := u (yt − bt + qbt+1) + βv (yt, bt+1, q)

is strictly concave in q. For any distribution Q ∈ ECD (bt, yt, bt+1), let EQ (q) =
∫

q̂dQ (q̂).
Jensen’s inequality then implies that

u
(
yt − bt + EQ (q) bt+1

)
+ βv

(
yt, bt+1, EQ (q)

)
≥︸︷︷︸
(1)

∫
[u (yt − bt + q̂bt+1) + βv (yt, bt+1, q̂)] dQ (q̂)

≥︸︷︷︸
(2)

Vd (yt)

with strict inequality in (1) if Q is not a Dirac distribution. Then, the definition of q(bt, yt, bt+1)

implies that for any distribution Q ∈ ECD (bt, yt, bt+1) we have that:

EQ (q) ≥ q (bt, yt, bt+1) ;
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therefore, the minimum expected value is exactly q (bt, yt, bt+1), which is achieved uniquely
at the Dirac distribution Q̂ (because of the strict concavity of u (·)). Finally, knowing that
E is naturally a convex set, we then obtain

E (bt, yt, bt+1) =

[
min

Q∈Q(bt,yt,bt+1)

∫
q̂dQ (q̂) , max

Q∈Q(bt,yt,bt+1)

∫
q̂dQ (q̂)

]
=

[
q (bt, yt, bt+1) , q (bt, yt, bt+1)

]
which is what we wanted to show.

Proof. Proposition 6. Step 1: Determine the bounds for General Random Variables. To show
the bounds on the variance, we rely on the fact that for any random variable X with
support in [a, b] ⊆ R and mean E (X) = µ, it holds that:

Var (X) ≤ µ (b + a− µ)− ab.

Moreover, this upper bound in the variance is achieved by a binary distribution Pµ over
{a, b}, with Pµ (a) = (b− µ) / (b− a), and of course, Pµ (b) = 1− Pµ (a).

Step 2: Are these bounds Equilibrium Consistent? It Depends. Since the price realiza-
tion must have support on [0, q(yt, bt+1)], after history ht

m, according to Proposition 3, we
know that if Q : EQ (qt) = µ then VQ (qt) ≤ µ (q(yt, bt+1)− µ); this bound is achieved
by distribution Qµ with Qµ (0) =

q−µ
q . However, this particular distribution may not be

equilibrium consistent since it may violate the ex-ante IC for no default, condition (4.1),

∫ q(yt,bt+1)

0
[u (yt − bt + qbt+1) + βv (yt, bt+1, q)] dQµ (q) ≥ Vd (yt) .

Whether this constraint is violated or not will depend on the particular value of µ ∈[
q(bt, yt, bt+1), q(yt, bt+1)

]
. We define q∗ = Q (0)× 0 +

(
1−Q (0)

)
q.

Step 3: Case 1. IC is not binding for the candidate distribution if the mean is high enough. We
first show that if EQ (qt) = µ ≥ q∗, then any distribution Q ∈ ∆ ([0, q]) with EP (qt) = µ

also satisfies 4.1, and hence the maximum variance is achieved precisely at µ (q− µ). We
now show this. We define

D
(

ht+1
m , qt

)
:= u (yt − bt + qtbt+1) + βv (yt, bt+1, qt)−Vd (yt) ;

as the difference between the best continuation given a price qt and history ht+1
m , and the

worst equilibrium. Remember that q∗ = Q (0)× 0 +
(
1−Q (0)

)
q. Using the definition
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of Q (0), it can be shown that

Q (0) =
Vnd

(bt, yt, bt+1)−Vd (yt)

Vnd
(bt, yt, bt+1)−Vd (yt) + u (yt)− u (yt − bt)

.

Thus, using the definition of D
(
ht+1

m , qt
)

at q∗:

D
(

ht+1
m , q∗

)
= D

(
ht+1

m , Q (0)× 0 +
(
1−Q (0)

)
q
)

> Q (0) D
(

ht+1
m , 0

)
+
(
1−Q (0)

)
D
(
ht

m, q
)

=
Vnd

(bt, yt, bt+1)−Vd (yt)

Vnd
(bt, yt, bt+1)−Vd (yt) + u (yt)− u (yt − bt)

[u(yt − bt)− u(yt)] +

Vnd
(bt, yt, bt+1)−Vd (yt)

Vnd
(bt, yt, bt+1)−Vd (yt) + u (yt)− u (yt − bt)

[u(yt)− u(yt − bt)]

= 0.

Therefore, by the concavity of v (yt, bt+1, qt) ,∫
D
(

ht+1
m , qt

)
dQ (qt) ≥︸︷︷︸

D is concave in q

D
(

ht+1
m , µQ

)
≥︸︷︷︸

D is increasing in q

D
(

ht+1
m , q∗

)
> 0.

Thus, when µ ≥ q∗ then Var (qt) = µ (q(yt, bt+1)− µ) .
We also check that q∗ > q. This holds because D

(
ht+1

m , q
)

= 0 and D
(
ht+1

m , q∗
)
>

Q (0) D
(
ht+1

m , 0
)
+
(
1−Q (0)

)
D
(
ht+1

m , q
)
= 0, which then implies that q∗ > q (because

D is strictly increasing in q).
Step 4.1: Case 2. Proposal Violates IC for a Low Mean. We also show that if Q : EQ (qt) =

µ < q∗, then the distribution Qµ defined as Qµ (0) = q−µ
q and 1− Qµ (0) violates the ex
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ante no default incentive constraint 4.1. This follows because:

EQµ

[
D
(

ht+1
m , qt

)]
=

(
1− µ

q

)
D
(

ht+1
m , 0

)
+

µ

q
D
(

ht+1
m , q

)
= D

(
ht+1

m , 0
)
+

µ

q

[
D
(

ht+1
m , q

)
− D

(
ht+1

m , 0
)]

= D
(

ht+1
m , 0

)
+

µ

q

[
D
(

ht+1
m , q

)
− D

(
ht+1

m , 0
)]

< D
(

ht+1
m , 0

)
+

(
1−Qµ (0)

)
q

q

[
D
(

ht+1
m , q

)
− D

(
ht+1

m , 0
)]

= D
(

ht+1
m , 0

)
+

−D
(
ht+1

m , 0
)

D
(

ht+1
m , q

)
− D

(
ht+1

m , 0
) [D

(
ht+1

m , q
)
− D

(
ht+1

m , 0
)]

= 0

where we use that µ < q∗ and the definition of q∗ =
(
1−Q (0)

)
q. Thus:

EQµ

[
D
(

ht+1
m , qt

)]
< 0.

This implies that the candidate Qµ is not an equilibrium consistent price distribution
when µ < q∗.

Step 4.2: A New Proposal. To show the second result, following Step 1, we know that we
need to restrict attention to binary support distributions; because D

(
ht+1

m , qt
)

is concave,
it is easy to show that the support that maximizes the variance (for a given expectation
µ < q∗) is

{
qµ, q

}
for some qµ. Since the no default incentive constraint is binding and

we also have a given expectation µ, we need to find qµ and Pr
(
qµ

)
to solve the following

system of equations:Pr
(
qµ

)
qµ +

(
1− Pr

(
qµ

))
q = µ

Pr
(
qµ

)
D
(
h, qµ

)
+
(
1− Pr

(
qµ

))
D (h, q) = 0.

Next, note that the second constraint (the no-default incentive constraint), given qµ is the
definition of the infimum distribution

Q
(
qµ

)
= D

(
ht+1

m , q
)

/
(

D
(

ht+1
m , q

)
− D

(
ht+1

m , qµ

))
given in Proposition 4. Using this on the first equation, we obtain one equation in the
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unknown qµ :

Q
(
qµ

)
qµ +

(
1−Q

(
qµ

))
q = µ ⇐⇒

D
(
ht

m, q
)
− D

(
ht

m, qµ

)
q− qµ

=
D
(
ht

m, q
)

q− µ
. (B.3)

Because D
(
ht+1

m , q
)

is increasing in q, the solution qµ of equation B.3 is increasing in µ in
the region where µ < q∗.

Proof. Corollary 2. This is true because the function

U (Q; bt,yt, bt+1) =
∫
{u (yt − bt + q̂bt+1) + βv (yt, bt+1, q̂)} dQ (q)

is strictly increasing in yt and strictly decreasing in bt, and the set can be rewritten as

Q (bt, yt, bt+1) =
{

Q ∈ ∆ ([0, q]) : U (Q; bt,yt, bt+1) ≥ Vd (yt)
}

.

The function H (q) := u (yt − bt + qbt+1)+ βv (yt, bt+1, q) is strictly increasing in q. There-
fore, if Q′FOSDQ and Q ∈ Q (bt, yt, bt+1) then

∫
H (q) dQ′ ≥

∫
H (q) dQ ≥ Vd (yt). Fi-

nally we show that Q is not en equilibrium consistent distribution. By definition, equa-
tion 4.2 cannot be an equilibrium consistent price; this implies that the Lebesgue-stjeljes
measure associated with Q (·) has the property that Supp (Q) =

[
0, q (bt, yt, bt+1)

]
and

Q (q = 0) = p0 > 0, which implies that

∫ q(yt ,bt+1)

0
{u (yt − bt + q̂bt+1) + βv (yt, bt+1, q̂)} dQ (q̂) < u

(
yt − bt + q (·) bt+1

)
+ βv

(
yt, bt+1, q (·)

)
= Vd (yt)

where the last equation comes from the definition of q (·) and the function H (q̂) ≡
u (yt − bt + q̂bt+1) + βv (yt, bt+1, q̂) is strictly increasing in q̂.
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Online Appendix to “Robust Predictions in
Dynamic Policy Games”

Juan Passadore and Juan Xandri

C Multipe Equilibrium in Eaton and Gersovitz (1981)

This appendix studies equilibrium multiplicity in the model proposed in 2. In particular,
we characterize the best and worst equilibrium prices (Propositions 9 and 11); the whole
set of equilibria (Proposition 10); we provide sufficient conditions for equilibrium multi-
plicity (Proposition 12); we provide a numerical example for multiplicity; and finally, we
discuss which are the implications for deviations from our stylized setting for equilibrium
multiplicity. Our results complement the results in Auclert and Rognlie (2016); their pa-
per shows uniqueness in the Eaton and Gersovitz (1981) when the government can save
and savings are valued and extends the result for costs of default and the possibility of
re-entry.

Preliminaries. For any history ht+1
m we consider the highest and lowest prices

q(ht+1
m ) := max

σ∈Σ∗(ht+1
m )

qm

(
ht+1

m

)

q(ht+1
m ) := min

σ∈Σ∗(ht+1
m )

qm

(
ht+1

m

)
.

where Σ∗(ht+1
m ) is the set of equilibria after history ht+1

m . As it will be clear from this sec-
tion, the set Σ∗(ht+1

m ) is equal to Σ∗(yt, bt+1); i.e, the set is pinned down only by yt, bt+1.
The best and worst equilibria turn out to be Markov equilibria and we find conditions
for multiplicity. The worst SPE price is zero, and the best SPE price is the one for the
Markov equilibrium that is characterized on sovereign debt, such as Arellano (2008) and
Aguiar and Gopinath (2006). Our analysis may be of independent interest, because it
describes the conditions under which there are multiple Markov equilibria in a sovereign
debt model, similar tot he one proposed in Eaton and Gersovitz (1981). The importance of
this result is that it opens up the possibility of confidence crises in models as in Eaton and
Gersovitz (1981). Thus, confidence crises are not necessarily a special feature of the tim-
ing in Calvo (1988) and Cole and Kehoe (2000) but rather robust features in most models
of sovereign debt. The lowest price q(ht+1

m ) can be attained by using a fixed strategy for
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all histories ht+1
m . This strategy will deliver the utility level of autarky for the government.

Thus, the lowest price is associated with the worst equilibrium, in terms of welfare. Like-
wise, the highest price q(ht+1

m ) is associated with a different fixed strategy for all histories
(the maximum is attained by the same σ for all ht+1

m ) and delivers the highest equilibrium
level of utility for the government. Thus, the highest price is associated with the best
equilibrium in terms of welfare.

C.1 Lowest Equilibrium Price and Worst Equilibrium

We start by showing that, after any history ht+1
m , the lowest SPE is equal to zero. Denote

by B the set of assets for the government. We assume that the government cannot save;
i.e. B ≥ 0.

Proposition 9. B denotes the set of assets for the goverment. Under the assumption of B ≥ 0,
the lowest SPE price is equal to zero

q(ht+1
m ) = q(yt, bt+1) = 0

and is associated with a Markov equilibrium that achieves the worst level of welfare.

When the government is confronted with a price of zero for its bonds in the present
period and expects to face the same price in all future periods, it is best to default. The
government cannot benefit from repaying the debt. The proof is simple. We need to show
that defaulting after every history is an SPE. Because the game is continuous at infinity,
we need to show that there are no profitable one shot deviations when the government
uses this strategy. Note, first, that if the government uses a strategy of always defaulting,
it is effectively in autarky. In history ht+1

m with income yt and debt bt, the payoff of such a
strategy is

u(yt) +
β

1− β
Eyt+1|yt u(yt+1).

Note also that, a one shot deviation involving repayment today has associated utility of

u(yt − bt) +
β

1− β
Eyt+1|yt u(yt+1).

Thus, as long as bt+1 is non-negative, a one shot deviation of repayment is not profitable.
Therefore, autarky is an SPE with an associated price of debt equal to zero.
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C.2 Highest Equilibrium Price and Best Equilibrium

We now characterize the best SPE and show that it is the Markov equilibrium studied
by the literature on sovereign debt. To find the worst equilibrium price, it was suffi-
cient to use the definition of equilibrium and the one shot deviation principle. To find
the best equilibrium price it will be necessary to find a characterization of equilibrium
prices. Denote by V(yt, bt+1) the highest expected equilibrium payoff if the government
enter period t + 1 with bonds bt+1 and income in t was yt. The next lemma provides a
characterization of equilibrium outcomes.

Proposition 10. xt,m = (qt−1, dt (·) , bt+1 (·)) is an SPE outcome for history ht
m if and only if

the following conditions hold:
a. The price is consistent

qt−1 =
Eyt|yt−1

(1− dt(yt))

1 + r
, (C.1)

b. IC of the government

(1− d(yt))
[
u(yt − bt + q(yt, bt+1)bt+1) + βV(yt, bt+1)

]
+ d(yt)Vd(yt) ≥ Vd(yt). (C.2)

The proof is omitted; it is a particular case of the main result for the model without
sunspots. Condition (C.1) states that the price qt−1 needs to be consistent with the default
policy dt(·). Condition (C.2) states that a policy dt (·) , bt+1 (·) is implementable in an
SPE if it is incentive compatible given that following the policy is rewarded with the best
equilibrium and a deviation is punished with the worst equilibrium. The argument in
the proof follows Abreu (1988). These two conditions are necessary and sufficient for an
outcome to be part of an SPE.32

Markov Equilibrium. We now characterize the Markov equilibrium that is usually stud-
ied in the literature on sovereign debt. The value of a government that has the option to
default is given by

V(y−, b) = Ey|y−

[
max

{
Vnd(b, y), Vd(y)

}]
. (C.3)

32Note that for any history (even those that are inconsistent with equilibria) SPE policies are a function
of only one state: the debt that the government has to pay at time t (bt). There are two reasons for this.
First, the stock of debt summarizes the physical environment. Second, the value of the worst equilibrium
depends only on the realized income.
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This is the expected value of the maximum between not defaulting Vnd(b, y) and the value
of defaulting VD(y). The value of not defaulting is given by

Vnd(b, y) = max
b′≥0

u(y− b + q(y, b′)b′) + βV(y, b′). (C.4)

That is, the government repays the debt and obtains a capital inflow (outflow), and from
the budget constraint consumption is given by y− b + q(y, b′)b′; in the next period, the
government has the option to default on b′ bonds. The value of defaulting is

Vd(y) = u(y) + β
Ey′|yu(y′)

1− β
, (C.5)

and is just the value of consuming income forever. These value functions define a default
set

D(b) =
{

y ∈ Y : Vnd(b, y) < Vd(y)
}

. (C.6)

A Markov Equilibrium (with states b, y) is a set of policy functions

(c(y, b), d(y, b), b′(y, b)),

a bond price function q(y, b′) and a default set D(b) such that c(y, b) satisfies the resource
constraint; taking as given q(y, b′) the government bond policy maximizes Vnd, and the
bond price q(y, b′) is consistent with the default set

q(y, b′) =
1−

∫
D(b′) dF(y′ | y)

1 + r
. (C.7)

The next proposition states that the best Markov equilibrium is the best SPE

Proposition 11. The best SPE is the best Markov equilibrium.

Proof. According to lemma 10, the value of the best equilibrium is the expectation with
respect to yt, given yt−1, and is given by

max
dt,bt+1

(1− dt)
[
u(yt − bt + q(yt, bt+1)bt+1) + βV(yt, bt+1)

]
+ dtVd(yt).

Note that this is equal to the left hand side of (C.3). The key assumption for ensuring
that the best SPE is the best Markov equilibrium is that the government is punished with
permanent autarky after a default.
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C.3 Multiplicity

Given that the worst equilibrium is autarky, a sufficient condition for the multiplicity
of Markov equilibria is any condition that guarantees that the best Markov equilibria
has positive debt capacity, which is a standard situation in quantitative sovereign debt
models. In general some debt can be sustained as long as there is enough of a desire to
smooth consumption, which will motivate the government to avoid default, at least for
small debt levels. The following proposition provides a simple sufficient condition for
this to be the case. We define Vnd(b, y; B, 1

1+r ) as the value function when the government
faces the risk free interest rate q = 1

1+r ; there is a borrowing limit B as in a standard
Bewley incomplete market model. The government has the option to default. This value
is not an upper bound on the possible values of the borrower because default introduces
state contingency and might be valuable. Our next proposition, however, establishes
conditions under which default does not take place.

Proposition 12. Suppose that for all b ∈ [0, B] and all y ∈ Y

Vnd(b, y; B,
1

1 + r
) ≥ u(y) + βEy′|yVd(y′). (C.8)

Then multiple Markov equilibria exist.

Proof. If the government is confronted with q = 1
1+r for b ≤ B, then condition (C.8)

ensures that it will not want to default after any history, which justifies the risk free rate
for b ≤ B. An SPE can implicitly enforce the borrowing limit b ≤ B by triggering autarky
and setting qt = 0 if bt+1 > B ever occurs. Since the debt issuance policy is optimal given
the risk free rate, we have constructed an equilibrium. This proves that there is at least
one SPE sustaining strictly positive debt and prices. The best equilibrium dominates this
one and is Markov, as shown earlier, so it follows that there exists at least one strictly
positive Markov equilibrium. Finally, note that we need to check condition (C.8) only for
small values of B. However, the existence result then extends an SPE across the entire
B = [0, ∞).33

Example. Suppose there are two income shocks yL and yH that follow a Markov chain
(a special case is the i.i.d. case). For this case, λi denotes the probability of transitioning
from state i to state j 6= i. We construct an equilibrium where debt is risk free, and the
government goes into debt B, stays there as long as its income is low, repays the debt and

33Indeed, it is useful to consider small B and take the limit, which then requires checking only a local
condition. The following example illustrates this condition.
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remains debt free when income is high. Conditional on not defaulting, this bang bang
solution is optimal for small enough B. To investigate whether default is avoided, we
must compute the values

vBL = u(yL + (R− 1)B) + β (λLvBH + (1− λL)vBL)

vBH = u(yH − RB) + β (λHv0L + (1− λH)v0H)

v0L = u(yL + B) + β (λLvBH + (1− λL)vBL)

v0H = u(yH) + β (λHv0L + (1− λH)v0H)

where R = 1 + r. We write the solution to this system as a function of B. To guarantee
that the government does not default in any state, we need to check that vBL(B) ≥ vaut,
vBH(B) ≥ vaut, v0L(B) ≥ vaut

L and v0H(B) ≥ vaut
H (some of these conditions can be shown

to be redundant). The following proposition provide a simple parametric assumption in
which the sufficient conditions hold.

Proposition 13. A sufficient condition for vBL ≥ vaut, vBH ≥ vaut, v0L ≥ vaut
L , v0H ≥ vaut

H that
holds for some B > 0 is v′BL(0) > 0, v′BH(0) > 0. When λH = λL = 1 this condition simplifies
to βu′(yL) > Ru′(yH).

Note that the simple condition with λH = λL = 1 is met when u is sufficiently concave
or if β is sufficiently close to 1. These conditions ensure that the value from consumption
smoothing is high enough to sustain debt.

Proof. Note that we can rewrite the system of Bellman equations as

A.v(B) = u(B)

Thus, a condition in primitives is

v′(0) = A−1u′(0) ≥ 0

For the special case where λ = 1, note that

vBH =
1

1− β2 (u(yH − RB) + βu(yL + B))

v0L = u(yL + B) + βvBH

Then, v′BH(0) > 0 implies that v′0L(0) > 0. A sufficient condition is βu′(yL) > Ru′(yH).
The intuition is that, the government is credit constrained in the low state, with no debt,
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Figure 6: This figure plots the best and worst equilibrium pricing functions: q(y, b′) and the worst
equilibrium price equal to zero.

and is willing to tradeoff and have lower consumption in the high state.

A Numerical Illustration. We now numerically illustrate equilibrium multiplicity. The
process for log output is given by log yt = µ + ρy log yt−1 + σyεt where µ = 0.75. σy =

0.3025, ρy = 0.0945. The parameters are the same that we use in the main calibration:
the discount factor β = 0.953, CRRA utility with relative risk aversion γRRA = 2 and the
risk-free interest rate r = 0.017. Figure C.3 presents the results. The value functions are
the ones in equations (C.3) to (C.7) and the price is given by (C.7). The worst equilibrium
has the value of autarky and a price of zero. The best equilibrium is the one studied in
quantitative models with short-term debt as in Arellano (2008). Our case is different to
Arellano (2008) because there is permanent exclusion after default and there are no direct
costs of default. We plot the two price functions, the one of the best equilibrium and
the other one is equal to zero (autarky). As it is clear from the right panel, in the best
equilibrium for low levels of debt and income debt is risk-free. As we increase the level
of debt, the price drops. The price drop is sharp, as is most models with short-term debt.

C.4 Discussion

We close this section with a discussion of conditions under which there is unique or mul-
tiple equilibria. First, notice, that sunspots are not needed to generate multiple equilibria.
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Sunspots may act as a coordinating device to select a particular equilibrium, but we did
not use any property of output as a coordinating device to show that either autarky or the
best equilibrium are equilibria or that they are different; i.e. we did not use them in any
part of Propositions 9, 10, and 12.

Second, as we mentioned before, things are different when the government is al-
lowed to save before default and the punishment is autarky, including exclusion from
saving. Under this combination of assumptions, the government might want to repay
small amounts of debt to maintain the option to save in the future. As a result, autarky is
no longer an equilibrium. Furthermore, a unique subgame perfect equilibrium prevails,
as shown by Auclert and Rognlie (2014). Note however, that the government needs to
value savings. If savings are not valued, which is a parametric assumption, that means
that the value of smoothing consumption with savings is the same as the value of au-
tarky, a condition that is micro-founded in Amador (2013), then autarky will again we
an equilibrium; it is easy to modify the proof of Proposition 9 for this case. Furthermore,
one can find examples in which savings are not valued and the sufficient conditions for
multiplicity of Proposition 12 hold. Finally, note that non-uniqueness holds given a non-
equilibrium punishment.

Third, whether or not there are direct costs of default matter for equilibrium multi-
plicity. For autarky to be an equilibrium, it has to be a dominant strategy to default on
any amount of debt that it is allowed to hold if they face a zero price, i.e. to default for
all b ∈ B if q = 0. With default costs, the value of defaulting is lower. Therefore, as with
the case of savings, if these costs are large, the government might want to repay small
amounts of debt even though the market is offering a zero price of debt in all future pe-
riod, because the cost of default is too high. Thus, we need to increase the static gain of
defaulting for any history. A sufficient condition would then be that B > 0. The lower
bound on debt will be increasing in the magnitude of the output costs of default. In a
related paper Stangebye (2018) studies a case that is related though different and numer-
ically finds multiple equilibria. There are output costs of default but, different from the
case in this paper there is long term debt which provides additional forces for equilibrium
multiplicity.
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D Characterization of v (y−, b, q−)

In this section we characterize the best ex-post continuation value when the income real-
ized is y− and b bonds are issued at price q−; i.e.

v (y−, b, q−) := max
σ∈Σ∗(y−,b)

V (σ | y−, b0 = b, q−) .

The procedure consists of two steps. In the first step, we characterize the set of equi-
librium payoffs E (y−, b):the values for the government and the prices for the investors.
We base our characterization on the concept of self-generation, introduced in Abreu et al.
(1990) which has applications for monetary policy Chang (1998b), capital taxation Phelan
and Stacchetti (2001) and sovereign lending Atkeson (1991). In the second step, using the
set of equilibrium values and prices, E (y−, b), we show how to compute v (y−, b, q).

D.1 Step 1: Characterizing the Equilibrium Set E (y−, b)

We define the equilibrium value correspondence as

E (y−, b) =:

(v, q−) ∈ R2 : ∃σ ∈ Σ∗ (y−, b) :


v = E

{
∑∞

t=0 u
(
cσ
(
ht))}

ct = yt − bt + qσm
t bt+1

b0 = b

q− =
Ey|y− (1−d0(y))

1+r


 .

The set E (y−, b) has the (utility) values and prices that can be obtained in a SPE. Given
an initial seed value y−, recall that income follows a first order Markov process, and there
are initial bonds b. In period t = 0, the government will repay (or not) b by choosing d0,
issuing debt b1 at a price q0. Next, to characterize the set of equilibrium payoffs, we will
introduce a procedure that modifies the one first introduced in Abreu et al. (1990).

Step 1.1: Enforceability. Take a bounded, compact-valued correspondence W : Y ×
R+ ⇒ R2.34

Definition 1. A government strategy (d (·) , b′ (·)) is enforceable in W (y−, b) if we can find
a pair of functions v (·) and q (·) such that:

a. For all y ∈ Y, (v (y) , q (y)) ∈W (y, b′(y))

34We will drop the dependence on d and we will bear in mind that after default the government is not
in the market. We will also interchangeably use the notation W (y−, b) and W (y, b′), depending on when
which one is most convenient. We find that the the notation W (y, b′) is most convenient for enforceability,
and the notation W (y−, b) is most convenient for the set of equilibrium payoffs.
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b. For all y ∈ Y, the policy (d (y) , b′ (y)) solves the problem:

max
d̂∈{0,1},b̂≥0

(
1− d̂

) {
u
[
y− b + q (y) b̂

]
+ βv (y)

}
+ d̂

{
u (y) + βEy′ |yVd(y′)

}
.

We refer to the pair (v (·) , q (·)) as the enforcing values of policy (d (y) , b′ (y)), and we
write (d (·) , b′ (·)) ∈ E (W) (y−, b). Further, given the functions v (·) and q (·) we define:

Vv(·),q(·) (b, y) =: max
d̂∈{0,1},b̂≥0

(
1− d̂

) {
u
[
y− b + q (y) b̂

]
+ βv (y)

}
+ d̂

{
u (y) + βEy′|yVd(y′)

}
.

Definition 2. Given a correspondence W : Y ×R+ ⇒ R2, we define the generating corre-
spondence B (W) : Y×R+ ⇒ R2 as:

B (W)
(
y, b′

)
=

(v, q) ∈ R2 : ∃ (d (·) , b′ (·))∈E (W)
(
y, b′

)
:

 v = Ey′ |y

[
Vv(·),q(·) (b′, y′)

]
q =

Ey′ |y [1−d(y)]
1+r

 .

The idea of B (W) (y, b′) is that this is the set of enforceable payoffs given the correspon-
dence W (·, ·).

Definition 3. A correspondence W (·) is self-generating if for all b ≥ 0 it holds that W (y−, b) ⊆
B (W) (y−, b).

Step 1.2: A self generating set is an equilibrium set. In this step, we show that if a set
of values is self-generating then it belongs to the set of equilibrium values. The proof
follows Abreu et al. (1990) and is constructive; to make the manuscript as self contained as
possible, we provide a brief discussion of the argument. This is now a standard argument
that can be found, for the case without state variables, in different textbooks; for example
Mailath and Samuelson (2006). We go back to using the notation W (y−, b) instead of
W (y, b′).

Proposition 14. Any bounded, self-generating correspondence gives equilibrium values: i.e. if
W (y−, b) ⊆ B (W) (y−, b) for all y− ∈ Y, b ≥ 0 then W (y−, b) ⊆ E (y−, b).

Proof. Fix (y−1, b0). Take any pair (v−1, q−1) ∈ W (y−1, b0). We would like to show that
(v−1, q−1) ∈ E (y−1, b0). To do this, we need to construct an SPE strategy profile σ ∈
Σ∗ (y−1, b0) that achieves the payoff v−1 and in the first period generates the prices q−1.35

Next, we do just that. Since W (y−1, b0) ⊆ B (W) (y−1, b0), i.e. if W is self generating,
then we know we can find functions (d0 (y0) , b1 (y0)) , and the values (v0 (y0) , q0 (y0)) ∈

35Note that v−1 is the expected payoff generated by policies {dt, bt+1}∞
t=0 given initial bonds b0 and the

seed value for the realization of income y−1; it is the ex-ante payoff from t = 0 onwards. In addition, q−1 is
the price generated by thepolicy d0.
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W (y0, b1(y0)) for any y0 ∈ Y, b1(y0) ≥ 0 such that:

(d0 (y0) , b1 (y0)) ∈ argmaxd̂∈{0,1},b̂≥0

(
1− d̂

) {[
u
(

y0 − b0 + q (y) b̂
)
+ βv (y)

]
+d̂
[
u (y0) + βEy1|y0

Vd(y0)
]}

i.e.(d0 (y0) , b1 (y0)) is in the argmax of Vv0(·),q0(·) (b0, y0);

v−1 = Ey0|y−1

{
Vv0(·),q0(·) (y0, b0)

}
;

q−1 =
Ey0|y−1

[1− d0 (y)]
1 + r

.

We define
σg (y−1, b0, q−1) = (d0 (y0) , b1 (y0))

where, for further reference, h0 = (y−1, b0, q−1) and

σm (y−1, b0, q−1, y0, d0, b1) = q0

where h0
m = (y−1, b0, q−1, y0, d0, b1). Because (v0 (y0) , q0 (y0)) ∈ W (y0, b1(y0)) and W

is self-generating, we know that for any realization of y0, we can find policy functions
(d1 (y1) , b2 (y1)) and values (v1 (y1) , q1 (y1, b2 (y1))) ∈ B (W) (y1, b2 (y1)) such that the
policies (d(y1), b2(y1)) are in the argmax of Vv1(·),q1(·) (b1, y1) and

v0 (y0) = Ey1|y0

(
Vv1(·),q1(·) (b1, y1)

)
,

σg

(
h1
)
= (d1 (y1) , b2 (y1))

σm

(
h1

m

)
= q1 (y1, b2(y1)) =

Ey1|y0
[1− d1 (y)]
1 + r

.

Note that h1 = (h0, y0, b1, q0) and h1
m = (h0, y0, b1, q0, y1, d1, b2). It is clear that the strategy

profiles σm and σg thta are defined for all histories of type h1 and h1
m satisfy the definition

of an SPE. By doing this process recursively for all finite t, we can then prove by induction
(as in Abreu et al. (1990) original’s proof) that this profile forms an SPE with initial values
(v−1, q−1), as we stated. The finiteness of the value function is guaranteed because the set
W is bounded. There are no one shot deviations by construction.

Proposition 15. The correspondence E (y−, b) is the largest correspondence (in the set order) that
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is a fixed point of B. That is, V (·) satisfies:

B (E) (y−, b) = E (y−, b) , (D.1)

for all y ∈ Y, b ≥ 0. If another operator W (·) also satisfies condition D.1, then W (y−, b) ⊆
E (y−, b) for all y ∈ Y, b ≥ 0.

Proof. It is sufficient to show that E (y−, b) is self-generating. As in APS, we start with
any strategy profile σ =

(
σg, σm

)
, and are associated with (v0−1, q−1) and with initial

income y− and debt b. From the definition of SPE, we know that the policies d0 (y0) =

dσg
(
h0, y0

)
and b′ (y0) = bσg

1

(
h0, y0

)
are implementable with functions q

(
y0, b̂

)
= qσ

m

(y0, d (y0) , b′ (y0)) and v
(

y0, b̂
)
= V

(
σ | h1

(
y0, b̂

))
, where

h1
(

y0, b̂
)

:= (h0, y0, d0 (y0) , b′ (y0) , q(y0, b̂)).

Moreover, because σ is an SPE strategy profile, it is also an SPE for the continuation game
starting with initial bonds b = b̂; therefore,(

v
(

y1, b̂
)

, q
(

y1, b̂
))
∈ E

(
y1, b̂

)
.

This then means that (v0, q0) ∈ B (E) (y−, b), and hence E (·) is a self-generating corre-
spondence.

Step 1.4: Bang Bang Property. Next, we are going to relate the characterization in Abreu et
al. (1990) with the objects introduced in the main text and in section C of the Online Ap-
pendix. First, note that the (singleton) set {(v, q)} =

{(
0, Ey|y−Vaut(y)

)}
, correspond-

ing to the price and utility of autarky subgame perfect equilibria is itself self-generating
and hence an equilibrium value. Second, also note that for a given (y−, b), the values
{(v, q)} =

{(
q (y−, b) , V(y−, b)

)}
are the expected utility, and the debt price associated

with the best equilibrium is also self-generating and hence an equilibrium value.

Proposition 16. Suppose that (d (·) .b′ (·)) is an enforceable policy on E (y−, b). This policy can
be enforced by the following continuation value functions:

vBB
(

y, d̂(y), b̂′(y)
)
=

V (y, b′ (y)) if d̂(y) = d (y) = 0 and b̂′(y) = b′ (y)

Ey′|yVaut(y′) otherwise
(D.2)
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and

qBB
(

y, d̂(y), b̂′(y)
)
=

q (y, b′ (y)) d̂(y) = d (y) = 0 and b̂′(y) = b′ (y)

0 otherwise.
(D.3)

Proof. Note that the functions v (·) , q (·) satisfy the restriction
(
vBB (·, ·, ·) , qBB (·, ·, ·)

)
∈

E
(

y, d̂(y), b̂′(y)
)

for all y ∈ Y. Since (d (·) , b′ (·)) are enforceable, there exist functions
(ṽ (·) , q̃ (·)) such that for all y ∈ Y where d (y) = 0 it holds that:

u
[
y− b + q̃

(
y, d(y), b′ (y)

)
b′ (y)

]
+ βṽ

(
y, d(y), b′ (y)

)
≥ u

[
y− b + q̃

(
y, d̂(y), b̂′(y)

)
b̂′ (y)

]
(D.4)

+ βṽ
(

y, d̂(y), b̂′(y)
)

for all y ∈ Y and any alternative policy d̂, b̂′. The left hand side of (D.4) is an equilib-
rium value. Thus, because it is generated by an equilibrium policy, its value must be less
than the best equilibrium value for the government, characterized by q = q (y, b′ (y)) and
v = V (y, b′ (y)). Note that denotes V (y, b′ (y)) the best equilibrium from tomorrow on
starting at a debt value of b̂ = b′ (y), for any income realization y. From these observa-
tions we know that:

u
[
y− b + q

(
y, b′ (y)

)
b′ (y)

]
+ βV

(
y, b′ (y)

)
≥

u
[
y− b + q̃

(
y, d(y), b′ (y)

)
b′ (y)

]
+ βṽ

(
y, d(y), b′ (y)

)
. (D.5)

For later reference, recall that

Vnd (b, y, b′ (y)
)
= u

[
y− b + q

(
y, b′ (y)

)
b′ (y)

]
+ βV

(
y, b′ (y)

)
.

On the other hand, it holds that that autarky is the worst equilibrium value (since it co-
incides with the min-max payoff). Because q̃

(
y, d̂(y), b̂′(y)

)
and ṽ

(
y, d̂(y), b̂′(y)

)
are

equilibrium values, it must be the case that:

u
[
y− b + q̃

(
y, d̂(y), b̂′(y)

)
b̂′ (y)

]
+ βṽ

(
y, d̂(y), b̂′(y)

)
≥ u (y) + βEy′|yVaut(y′) (D.6)

for all y ∈ Y. Combining (D.5) and (D.6) we obtain:

u
[
y− b + q

(
y, b′ (y)

)
b′ (y)

]
+ βV

(
y, b′ (y)

)
≥ u (y) + βEy′|yVaut(y′) (D.7)
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which is the enforceability constraint (conditional on not defaulting) of the proposed
functions

(
vBB, qBB) in equations (D.2) and (D.3). To finish the proof, we need to show

that if it is indeed optimal to choose d (y) = 0 under the functions (ṽ (·) , q̃ (·)) , then it will
also be so under functions

(
vBB (·) , qBB (·)

)
. This is readily given by condition (D.7) since

punishment for defaulting coincides with the value of deviating from the bond issue rule
b̂ = b′ (y). Hence, (v (·) , q (·)) also enforce (d (·) , b′ (·)).

The previous proposition greatly simplifies the characterization of the implementable
policies. In particular, the next corollary will be useful for the characterization in the next
subsection.

Corollary 3. A policy (d (·) , b′ (·)) is enforceable on E (y, b′(y)) if and only if d (y) = 0 implies

Vnd (b, y, b′ (y)
)
≥ Vd (y) .

Step 1.5: Monotonicity and an Iterative Procedure. One can show that W (y−, b) ⊆W ′ (y−, b)
implies that B (W) (y−, b) ⊆ B (W ′) (y−, b). This is an iterative procedure used to com-
pute the set of equilibrium payoffs that was first suggested by Abreu et al. (1990) and
extended for public state variables in Atkeson (1991), Chang (1998a) and Phelan and Stac-
chetti (2001). In particular, starting from a compact W0 (y−, b) and defining Wn (y−, b) =
B (Wn−1) (y−, b), it holds that:

E (y−, b) = lim
n→∞

Wn (y−, b) .

Remark 1. Note that because we already characterized the best and worst equilibria, in
Section C, there is no need to perform this iterative procedure for the model of sovereign
debt. When the best and worst equilibria are not readily available (for example, in the
general model in Section 5 of this paper), the iterative procedure, developed by Judd et
al. (2003), will need to be implemented.

D.2 Step 2: Computing v (y−, b, q−)

The function v (y−, b, q−) gives the highest expected utility that a government can obtain
if they raised debt at price q− and issued b bonds given an income realization of y−. This
is the Pareto frontier in the set of equilibrium values. We now discuss how we compute
v (y−, b, q−), which can be redefined using the equilibrium correspondence:

v (y−, b, q−) := max {v : ∃q̂ ≥ 0 such that (v, q̂) ∈ E (y−, b) and q̂ ≤ q−} (D.8)
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Note that we focus on a relaxed version of the problem, where we replace the equality
q̂ = q by the inequality q̂ ≤ q. We will show obtain a result that will enable us to compute
v (y−, b, q−). The proof of Proposition 17 follows from the next three lemmas (1, 2, 3).

Proposition 17. For all q ∈ [0, q(y−, b)] the maximum continuation value v (y−, b, q−) solves

v (y−, b, q−) = max
d(·)∈[0,1]Y

Ey|y−

[
d (y)Vd (y) + [1− d (y)]Vnd

(b, y)
]

subject to

q− =
Ey|y− [1− d(y)]

1 + r
(D.9)

Furthermore, v (y−, b, q−) is non-decreasing and concave in q−.

Lemma 1. (Characterization of v). For all q ∈ [0, q (y−, b)) the maximum continuation value
v (y−, b, q−) solves

v (y−, b, q−) = max
d(·)∈[0,1]Y

Ey|y−

[
d (y)Vd (y) + [1− d (y)]Vnd

(b, y)
]

(D.10)

subject to

q− ≥
Ey|y− [1− d(y)]

1 + r
. (D.11)

The constraint D.11 is always binding for all q− ≥ 0.

Proof. By definition, the ex-post best continuation value function, is given by:

v (y−, b, q−) := max {v : ∃q̂ ≥ 0 such that (v, q̂) ∈ E (y−, b) and q̂ ≤ q−} .

Take any ṽ in this set; i.e.,

ṽ ∈ {v : ∃q̂ ≥ 0 such that (v, q̂) ∈ E (y−, b) and q̂ ≤ q−} .

Because ṽ is an equilibrium value, there exists an enforceable policy
(
d̃ (·) , b̃ (·)

)
and

ṽ(y), q̃(y) such that:

ṽ = Ey|y−

[(
1− d̃ (y)

) [
u(y− b + q̃(y)b′(y)) + βṽ(y)

]
+ d̃(y)Vd(y)

]
d̃ (y) , b̃ (y) ∈ arg max

d(y),b′(y)
(1− d (y))

[
u(y− b + q̃(y)b′(y)) + βṽ(y)

]
+ d(y)Vd(y) (D.12)

q− ≥
Ey|y−

[
1− d̃(y)

]
1 + r

.
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From Proposition 16, we know that d̃ (y) , b̃ (y) is also implementable with bang bang
continuation values. Therefore, we can rewrite equation (D.12) as:

d̃ (y) , b̃ (y) ∈ arg max
d(y),b′(y)

(1− d (y))
[
u(y− b + q̄(y, b′(y))b′(y)) + βV

(
y, b′ (y)

)]
+ d(y)Vd(y).

Recall that Vnd
(b, y, b′(y)) is defined as

Vnd
(b, y, b′(y)) = u(y− b + q̄(y, b′(y))b′(y)) + βV

(
y, b′ (y)

)
.

For a given choice of b′(y), it follows from Corollary (3), that the choice of d (y) can be
summarized as follows:

d(y) = 0 ⇐⇒ Vnd
(b, y, b′(y)) ≥ Vd(y).

Therefore, to maximize the arbitrary ṽ, the program will now be

v (y−, b, q−) = maxd(·),b′(·) Ey|y−
[
(1− d (y))Vnd (b, y, b′ (y)) + d(y)Vd(y)

]
subject to

d(y) = 0 ⇐⇒ Vnd
(b, y, b′(y)) ≥ Vd(y) (D.13)

q− ≥
Ey|y−

[
1− d̃(y)

]
1 + r

.

Note that by choosing the optimal b′(y) the constraint (D.13) can be relaxed and the ob-
jective function and the value ṽ increase. Therefore:

v (y−, b, q−) = maxd(·) Ey|y−

[
(1− d (y))Vnd

(b, y) + d(y)Vd(y)
]

subject to
d(y) = 0 ⇐⇒ Vnd

(b, y) ≥ Vd(y)

q− ≥
Ey|y−

[
1− d̃(y)

]
1 + r

Note that we can drop the constraint that characterizes d(y) = 0 because to maximize the
function you never want to violate that constraint.

Finally, note that v (y−, b, q−) is weakly increasing in q−. Furthermore, note that if we
remove the price constraint, then the agent will choose the default rule to obtain price
q (y−, b) (the one associated with the best equilibrium), so for any q < q (y−, b) this con-
straint must be binding.
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The program that characterizes v in the previous lemma is a linear programming prob-
lem in d (·), which as we will see is easy to solve. If tractable, this lemma will help us map
the boundaries of the equilibrium correspondence E (y−, b) for any given q. The follow-
ing proposition solves the programming problem shown in Lemma 1, by reducing it to
solving a problem of one equation in one unknown.

Lemma 2. Given(y−, b, q−) there exists a constant γ = γ (y−, b, q−) such that:

v (y−, b, q−) = Ey|y−

[
d̂ (y)Vd (y) +

(
1− d̂ (y)

)
Vnd

(b, y)
]

where
d̂ (y) = 0 ⇐⇒ Vnd

(b, y) ≥ Vd (y) + γ (y−, b, q−) for all y ∈ Y

and γ is the (maximum) solution for the single variable equation:

1
1 + r

Py|y−

{
y : Vnd

(b, y) ≥ Vd (y) + γ (y−, b, q−)
}
= q−.

Proof. From the previous lemma recall that:

v (y−, b, q−) = maxd(·),b′(·) Ey|y−

[
(1− d (y))Vnd

(b, y) + d(y)Vd(y)
]

subject to

q− ≥
Ey|y− [1− d(y)]

1 + r
.

Note that d(·) ∈ {0, 1}. Following steps that are similar to the ones we followed in Propo-
sition 5, we will solve a relaxed version of this problem in which d (y) ∈ [0, 1]. Recall
that the solution will be in the corners, because we are solving a linear program. The
Lagrangian is:

L = Ey|y−

[
(1− d (y))Vnd

(b, y) + d (y)Vd (y)
]
+

+ Ey|y−µ (y) [1− d (y)]
[
Vnd

(b, y)−Vd (y)
]
+

+ λ
(

q (1 + r)− 1 + Ey|y−d (y)
)

.

The first order condition with respect to d (y) is given by:

∂L
∂ [d (y)]

=
[
−Vnd

(b, y) + Vd (y) + λ
]

dF (y | y−)

where dF (y | y−) denotes the conditional probability of state y. This implies that the
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optimal default rule is:

d (y) =

0 if Vnd
(b, y) ≥ Vd (y) + λ

1 otherwise
.

for every y ∈ Y, such that Vnd
(b, y) ≥ Vd (y). Defining γ ≡ λ we obtain the desired

result. We finally need to show that the price constraint is binding at the optimum. If
this was not the case, then we could increase the objective by defaulting in fewer states of
nature.

Lemma 3. (Concavity v). The function

v (y−, b, q−) = max {v : ∃q̂ ≤ q− such that (v, q̂) ∈ E (y−, b)}

is concave in q−.

Proof. From Lemma 1 we know that the feasible set of the program

v (y−, b, q−) = max {v : ∃q̂ ≤ q− such that (v, q̂) ∈ E (y−, b)}

is convex and has a linear objective function and an affine restriction. For this case q0, q1 ∈
[0, q (y−, b)] and λ ∈ [0, 1]. We need to show that:

v (y−, b, λq0 + (1− λ) q1) ≥ λv (y−, b, q0) + (1− λ) v (y−, b, q1)

We define the functional:

G[d(·)] =: Ey|y−

[
d (y)Vd (y) + [1− d (y)]Vnd

(b, y)
]

.

Note that this is the objective function of the maximization in (D.10), and the objective
function of Lemma 1. Let d0 (y) be one of the solutions for the program when q = q0;
likewise, let d1 (y) be one of the solutions of the relaxed program when q = q1. Define:

dλ (y) =: λd0 (y) + (1− λ) d1 (y) .

Clearly, this is not a feasible default policy as it is, since dλ may be in (0, 1), but it is
feasible in the relaxed program of Lemma 1. Note that it is feasible when q = qλ :=
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λq0 + (1− λ) q1, since

Ey|y−(1− dλ(y))
1 + r

= λ
Ey|y−(1− d0(y))

1 + r
++ (1− λ)

Ey|y−(1− d1(y))
1 + r

≤ λq0 + (1− λ) q1

= qλ.

Therefore, the optimal continuation value at q = qλ must be greater than the objective
function evaluated at dλ because the optimum will be at a corner even in the relaxed
problem, which implies that:

v (b, qλ) ≥ G [dλ (·)]
= λG [d0 (·)] + (1− λ) G [d1 (·)]
= λv (y−, b, q0) + (1− λ) v (y−, b, q1)

using in the first equality the fact that G [d (·)] is an affine functional in d (·) and in the
second one the fact that both d0 (·) and d1 (·) are the optimizers at q0 and q1 respectively.
This concludes the proof of the lemma. From the three previous lemma’s, we obtain the
proof of the proposition.
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E Main Results of the General Model

The proofs of Propositions 7 and 8 follow the proof of Proposition 4 almost line by line„
including the preliminary results that are provided in the Online Appendix D regard-
ing the construction of the equilibrium value correspondence. As in the first section of
Online Appendix D Proposition 14, we construct the equilibrium value correspondence
as the largest fixed point of the “generating values correspondence” such that for every
value correspondence W (y−, b) ⊆ Rk+1 i t gives a set of generating equilibrium values
B (W) (y−, b) ⊆ Rk+1.

The first result for the general model is Proposition 7. We need continuity of the utility
function and continuity, compact-valuedness and non-emptiness of the feasibility corre-
spondence to guarantee that E (y−, q) is non-empty and compact-valued, which implies
that v (y−, b, q) and U (b, y) are well-defined objects. The proof of Proposition Proposition
7 follows the proof of Proposition 4 for the case of no sunspots.

When we allow for sunspots in Proposition 8, we need to add an assumption to be
able to use the same best continuation value function v (y−, b, q) and the worst lifetime
utility U (b, y). To do this, we need first that the equilibrium value correspondence must
be convex-valued. This condition would be enough to make v (y−, b, q) concave in q.
However, since q enters non-linearly in the contemporaneous utility function of the long-
lived player, the convexity of the equilibrium value set is not enough to guarantee that
E = E s; for this to occur, the contemporaneous utility function u (·) must be concave in
q, as is the case in the sovereign debt model example. Armed with these two conditions
(the convexity of E and the concavity of u (·)) we can show the result of Proposition 8
, which which relies on the fact that E = E s plus the concavity of the auxiliary function
D = u + βv to obtain the same results as those in Proposition 4. Using this proposition,
E = E s and so are the best continuation function vs = v and Us = U. We change the
variable in the integration since ζ enters only through q (y, ζ). This implicitly defines a
measure across prices, according to∫

q̂∈Q(yt,bt+1)
[u (bt, yt, dt, bt+1, q̂) + βv (yt, bt+1, q̂)] dQt (q̂) ≥ U (yt, bt)

which shows the desired result.
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