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1 Introduction

Rational Expectations Equilibrium is a fundamental equilibrium concept in economics to study an

economy with asymmetric information. However, there is a conceptual difficulty in understanding

the informational role of prices in its framework without an explicit model of price formation.1

Indeed, leaving the price formation unmodelled has raised several conceptual paradoxes.2

In a seminal paper, Forges and Minelli (1997) studied an economy with a continuum of

agents where agents are classified into a finite number of types. Agents with the same type

have the same initial endowment, preferences and private information. They then proposed a

public communication extension of the “sell-all” market game of Shapley and Shubik (1977) that

consists of two stages. In the first stage, agents report their private signals to a mediator who

then publicly announces a price vector depending on the reports.3 In the second stage, players

observe this publicly announced price and play the “sell-all” market game with asymmetric

information in which a player’s bid for each non-monetary commodity is a function of the publicly

announced price and the player’s privately observed signal. The outcome of the communication

game specifies market price and final allocations.4 They introduced the notion of an incentive

compatible self-fulfilling mechanism in which honestly reporting true signals in the first stage and

following the mediator’s “recommended” actions in the second stage is a Bayes Nash Equilibrium

of the communication game.5 Then they showed that the set of allocations realized by incentive

compatible self-fulfilling mechanisms coincides with the set of rational expectations equilibrium

allocations of the underlying economy.
1In his seminal paper on the generic existence of REE, Radner (1979) also pointed out this problem as he

wrote, “A thorough theoretical analysis of this situation probably requires a more detailed specification of the
trading mechanism than is usual in general equilibrium analysis.”

2See Grossman and Stiglitz (1980), Milgrom (1981), and Dubey et al. (1987) for more detailed discussions.
3In this paper, we use private signal and private information interchangeably.
4The “sell-all” market game was first introduced by Shapley and Shubik (1977) and requires one commodity

to function as money. Codognato and Ghosal (2003) proved the same equivalence result as in Forges and Minelli
(1997) with a different market game called windows model which does not require the existence of money in the
economy.

5The mechanism studied in Forges and Minelli (1997) and this paper is different from the canonical commu-
nication mechanism in the sense that in the second stage only a public signal is revealed to all agents instead of
private signal for each agent. See section 4.2 for detailed discussion.
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The assumptions in Forges and Minelli (1997) have two important consequences. First, the

action of an individual player has no effect on the price in the market game of stage two given a

continuum of players. Second, each player of a given type receives the same private information

implying that the model exhibits the property of non-exclusive information. Consequently, incen-

tive compatibility does not pose any real difficulties. It is our goal in this paper to show that the

essential conclusions in Forges and Minelli (1997) are robust when we move to an economy with

finitely many agents and a nontrivial information structure. We consider a sequence of replica

economies with n types of consumers and r consumers of each type. As in Forges and Minelli

(1997), each of the r consumers of type i has the same utility function and initial endowment.

Unlike Forges and Minelli (1997), however, we allow agents with the same type to receive differ-

ent private information. Now we have two technical issues to deal with. First, actions matter in

the sense that, by changing his action in the strategic market game of the second stage, a player

can affect the price. Second, incentive compatibility, i.e., the need to induce players to honestly

report their private signals in the first stage, is a more difficult problem since non-exclusive in-

formation is no longer present. It is reasonable to conjecture that, when r is large, the influence

of a single player’s action on the price in the strategic market game of stage two will be small

and this is indeed the case. It is also reasonable to conjecture that the influence of an individual

player’s reported signal on the publicly announced price in stage one will also be small if r is

large. To formalize this idea, we consider sequences of economies in which the agents’ signals

are independent conditional on an underlying but unobserved state of nature. This allows us to

bring to bear the machinery developed in McLean and Postlewaite (2004, 2005, 2017) and we

are able to show that players become informationally small as r becomes large.

The main results in this paper are two approximation results for a large enough replica

economy. Theorem 1 asserts that the allocations realized by any incentive compatible self-

fulfilling mechanism are approximate rational expectations equilibrium allocations. Theorem

2 asserts that we can associate with any given rational expectations equilibrium an incentive

compatible self-fulfilling mechanism whose equilibrium allocations approximately coincide with
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the rational expectations equilibrium allocations.

The remainder of this paper is organized as follows. Section 2 sets up an r-replica econ-

omy. Section 3 introduces the concept of type symmetric rational expectations equilibrium (type

symmetric REE) in an r-replica economy. Section 4 discusses the communication extension of

the “sell-all” market game with incomplete information and introduces the concept of incentive

compatible self-fulfilling equilibrium (ICSFM) in this game. Section 5 states the main results

and section 6 concludes.

2 The Environment: Replica Economy

In this paper, we will focus on a sequence of replica economies. An r−replica economy Er consists

of the following:

• A finite set of agents Nr = N × Jr, where N = {1, 2, . . . , n} and Jr = {1, 2, . . . , r};6

• A finite set of commodities L = {1, 2, . . . , L+ 1};

• A finite set of states of nature Θ = {θ1, θ2, . . . , θm};

• For each i ∈ N , a utility function ui : RL+1
+ × Θ → R such that uis(·, ·) = ui(·, ·) for all

s ∈ Jr;

• For each i ∈ N , a state-independent initial endowment wi ∈ RL+1
++ such that wis = wi for

all s ∈ Jr;

The state of nature is unobservable but each agent (i, s) receives a private signal, tis ∈ Ti,

which is correlated with nature’s choice of θ. Here Ti is a finite set of possible private signals

that agent (i, s) might receive. Note that, for agents with the same type but in different cohorts,

the set of possible signals is the same. Denote T = T1 × T2 × · · · × Tn and T r = T × T × · · · × T

as the r-fold Cartesian product of r copies of T . Let tr = (t(1), . . . , t(r)) denote a generic signal
6In the rest of the paper, we read agent (i, s) as the type i agent in cohort s.
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profile in T r where t(s) = (t1s, t2s, . . . , tns). If tr ∈ T r, we will often write tr = (tr−is, tis). We

assume that there exists a common prior P r ∈ ∆(Θ× T r). We will take the point of view that

P r is the distribution of an (rn+ 1)−dimensional random vector (θ̃, t̃(1), . . . , t̃(r)) taking values

in Θ× T r where

P r(θ, tr) = P r(θ, t(1), . . . , t(r)) = Prob{θ̃ = θ, t̃(1) = t(1), . . . , t̃(r) = t(r)}.

For tr ∈ T r, let P r(·|tr) ∈ ∆(Θ) denote the induced conditional probability measure on Θ and,

for θ ∈ Θ, let P r(·|θ) ∈ ∆(T r) be the induced conditional probability measure on T r. Let

Iθ ∈ ∆(Θ) denote the Dirac measure that assigns probability one to state θ. We assume that

P r(θ, t(1), . . . , t(n)) > 0 for all (θ, t(1), . . . , t(n)) ∈ Θ × T r and that for every θ, θ̂ with θ ̸= θ̂,

there exists a tr ∈ T r such that P r(tr|θ) ̸= P r(tr|θ̂). Moreover, we make the following conditional

independence assumption: there exists a probability measure λ ∈ ∆(Θ) and for each θ ∈ Θ, each

i ∈ N there exists a probability measure ρi(·|θ) ∈ ∆(Ti) such that 7

P r(tr|θ) =
∏

(i,s)∈Nr

ρi(tis|θ) =
r∏

s=1

n∏
i=1

ρi(tis|θ),

and

P r(tr, θ) = P r(tr|θ)λ(θ).

That is, conditional on the event θ̃ = θ, the nr random variables t̃11, t̃21, · · · , t̃n1, · · · , t̃1r, t̃2r, · · · , t̃nr

are stochastically independent. This completes our description of an r-replica economy Er de-

noted as:

Er = {Nr,L,Θ, (wi)(i)∈N , (ui)(i)∈N , (Ti)i∈N , P
r}.

7This assumption is stronger than the notion of a conditionally independent sequence introduced in McLean
and Postlewaite (2002) since we assume individual independence rather than cohort independence.
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3 Type Symmetric Rational Expectations Equilibrium

We next formulate a notion of type symmetric rational expectations equilibrium in an r-replica

economy analogous to that of Forges and Minelli (1997) for the continuum framework. We first

recall some ideas in McLean and Postlewaite (2002). Given an r-replica economy Er and tr ∈ T r,

let fi(·|tr) denote a probability measure on Ti, the “empirical frequency distribution,” defined

for each τi ∈ Ti as follows:

fi(τi|tr) =
|{s ∈ Jr|tis = τi}|

r
. (1)

Then we define f(tr) = (f1(·|tr), f2(·|tr), · · · , fn(·|tr)). Now we are ready to define a type sym-

metric rational expectations equilibrium in an r-replica economy.

Definition 1: A type symmetric rational expectations equilibrium (type symmetric REE) in an

r-replica economy Er is a pair (qr, (zris)(i,s)∈Nr) consisting of a price function qr : T r → RL+1
+ with

qr,L+1(tr) = 1 and an allocation function zris : T
r → RL+1

+ for each (i, s) ∈ Nr satisfying:

(i) For any tr ∈ T r and t̂r ∈ T r,

f(tr) = f(t̂r) ⇒ qr(tr) = qr(t̂r). (2)

(ii) For each (i, s) ∈ Nr, and tr ∈ T r,

zris(t
r) ∈ argmax

xi∈βi(qr(tr))

∑
θ∈Θ

ui(xi, θ)P
r(θ|qr(tr), tis), (3)

where

βi(q
r(tr)) = {y ∈ RL+1

+ |
L∑
l=1

qr,l(tr)yl + yL+1 ≤
L∑
l=1

qr,l(tr)wl
i + wL+1

i },

and

P r(θ|qr(tr), tis) =

∑
t̂r−is:

qr(t̂r−is,tis)=qr(tr)

P r(θ, t̂r−is|tis)

∑
t̂r−is:

qr(t̂r−is,tis)=qr(tr)

P r(t̂r−is|tis)
.
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(iii) For each tr ∈ T r, ∑
i

∑
s

zris(t
r) = r

∑
i

wi. (4)

(iv) For any tr ∈ T r, t̂r ∈ T r, (i, s) ∈ Nr and (i, s′) ∈ Nr,

tis = t̂is′ , q
r(tr) = qr(t̂r) ⇒ zris(t

r) = zris′(t̂
r). (5)

Condition (i) says that if two signal profiles have the same empirical frequency distribution,

then the corresponding type symmetric REE prices are the same. Therefore, it is the empirical

frequency distribution that determines the type symmetric REE price. Condition (iii) is the

market clearing condition for each tr ∈ T r.

According to Condition (ii), agent (i,s) chooses a bundle that maximizes expected utility

conditional on the observed price qr(tr) and his observed signal tis. Finally, Condition (iv) is

the type symmetry condition requiring that type i agents in different cohorts who receive the

same signal and observe the same price must choose the same maximizer of the expected utility

maximization problem. As a consequence of Condition (iv), we record the following:

Remark 1: For a given tr ∈ T r, condition (iv) implies that for any (i, s) ∈ Nr and any

(i, s′) ∈ Nr,

tis = tis′ ⇒ zris(t
r) = zris′(t

r). (6)

Next, we introduce the definition of a type symmetric ε− rational expectations equilibrium.

Definition 2: A type symmetric ε−rational expectations equilibrium (type symmetric ε−REE)

in an r-replica economy Er is a pair (qr, (zris)(i,s)∈Nr) consisting of a price function qr : T r → RL+1
+

with qr,L+1(tr) = 1 and an allocation function zris : T
r → RL+1

+ for each (i, s) ∈ Nr satisfying (i),

(iii) and (iv) in definition 1. Furthermore, there exists a set Sr ⊆ T r such that

Prob{t̃r ∈ Sr} ≥ 1− ε. (7)
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and for each tr ∈ Sr, (i, s) ∈ Nr, and xi ∈ βi(q
r(tr)),

∑
θ

[ui(z
r
is(t

r), θ)− ui(xi, θ)]P
r(θ|qr(tr), tis) ≥ −ε. (8)

where βi(q
r(tr)) and P r(θ|qr(tr), tis) are defined as in definition 1. In words, a type symmetric

ε−REE pair requires that, for most signal profiles tr, the allocation zris(t
r) is almost maximizing

the conditional expected utility of agent (i, s).

4 Type Symmetric Incentive Compatible Self-fulfilling Mech-

anisms

4.1 A Market Game with Incomplete Information

Following Forges and Minelli (1997), we associate with each r-replica economy Er a “sell-all”

market game of Shapley and Shubik (1977) with incomplete information, GEr . The game consists

of |Nr| = nr agents. Each agent (i, s) ∈ Nr, after receiving his private signal tis ∈ Ti, chooses an

action ais ∈ Ai where

Ai ≡ {
(
a1i , ...a

L
i

)
∈ RL

+|
L∑
l=1

ali ≤ wL+1
i }.

Each action profile, ar = (a11, a21, · · · , an1, · · · , a1r, a2r, · · · , anr), gives rise to a price for each

commodity l ̸= L+ 1, defined as

πl(ar) =

∑
i

∑
s

alis

r
n∑

j=1

wl
j

.

The price of commodity L + 1 is fixed at 1 irrespective of agents’ actions, i.e. πL+1(ar) =

1 for each ar. One common interpretation goes as follows: there exists a trading post for each

commodity l ∈ {1, · · · , L} and commodity L+1 plays the role of “money”. At each trading post

l, each agent chooses the amount of commodity L + 1 to bid and is required to put up for sale

the entire endowment of commodity l. The final holdings of good l ∈ {1, ..., L} of agent (i, s), as
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a function of the action profile ar, is defined as xis[a
r] = (x1

is[a
r], .., xL

is[a
r], xL+1

is [ar]) where

xl
is[a

r] =
alis

πl(ar)
if l ̸= L+ 1;

xL+1
is [ar] = wL+1

i +
L∑
l=1

πl(ar)wl
i −

L∑
l=1

alis.

with xl
is[a

r] = 0 if πl(ar) = 0. The strategy of each agent (i, s) is a function σis : Ti → Ai and

denote σr = (σ11, σ21, · · · , σn1, · · · , σ1r, σ2r, · · · , σnr) and σr(tr) = {σr
is(tis)}(i,s)∈Nr . The payoff

to agent (i, s) when agents choose the strategy profile σr is

vis(σ
r) =

∑
tr∈T r

∑
θ∈Θ

ui(xis[σ
r(tr)], θ)P r(θ, tr).

where P r ∈ ∆(Θ × T r) is the common prior of the r-replica economy. This completes our

description of the market game with incomplete information GEr denoted as:

GEr = {Θ, Nr, (σis)(i,s)∈Nr , (vi)i∈N , (Ti)i∈N , P
r}.

4.2 Incentive Compatible Self-fulfilling Mechanisms

We next present the communication extension of GEr , which is our finite analogue of the extension

in Forges and Minelli (1997). In this communication extension, a mechanism is a mapping

µr : T r → Ar and the communication game proceeds in the following way:

1. Nature chooses θ ∈ Θ with probability λ(θ) and chooses tis for each (i, s) with probability

ρi(tis|θ). Then each agent i in cohort s is informed of her private signal tis;

2. Every agent (i, s) submits a report t̂is ∈ Ti, which is not necessarily equal to tis, to a

mediator;

3. The mediator assembles the reported signal profile t̂r ∈ T r and publicly announces a price

π(µr(t̂r)). The function π ◦ µr : T r → RL+1 is assumed to be common knowledge;
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4. After observing the publicly announced price π(µr(t̂r)), agents play the sell-all market game

with incomplete information and then the final allocations are determined.

It is important to note that this mechanism is not a canonical mechanism. That is, the

mediator does not privately recommend µr
is(t̂

r) ∈ Ai to agent (i, s) as he does in a canonical

mechanism. The action µr
is(t̂

r) is only “contemplated” by the mediator. All µr
is(t̂

r) taken to-

gether give rise to a publicly announced price π(µr(t̂r)) which is observable by all agents.8 By

incorporating a mechanism µr into GEr , we get an augmented game with public communication:

Γµr(GEr). Then in this extended game with communication, the strategy for agent (i, s) is to

choose a reported signal t̂is ∈ Ti and an action mapping δi : Ti × Ti ×RL+1 → Ai that specifies a

choice of an action as a function of his true signal, his reported signal and the publicly announced

price. Moreover, we restrict ourselves to type symmetric mechanisms as defined below.

Definition 3: A mechanism µr : T r → Ar is type symmetric if for any tr, t̂r ∈ T r and ss′ ∈ Jr,

f(tr) = f(t̂r), tis = t̂is′ ⇒ µr
is(t

r) = µr
is′(t̂

r) for each i ∈ N.

Remark 2: For a given tr ∈ T r and a type symmetric mechanism µr, then for any ss′ ∈ Jr,

tis = tis′ ⇒ µr
is(t

r) = µr
is′(t

r). (9)

This definition of type symmetry generalizes the one in Forges and Minelli (1997) by allowing

agents with the same type but in different cohorts to have different private signals. Therefore, in

a type symmetric mechanism, if f(tr) = f(t̂r) and tis = t̂is′ then the mediator will contemplate

the same action for agent i in the cohort s and in the cohort s′. Furthermore, the mediator

must ensure that the action contemplated for (i, s) is measurable with respect to the publicly

announced price and the private signal received by (i, s). This requires the mechanism to be
8We can certainly construct a canonical mechanism that replicates the equilibrium of the public communica-

tion device studied in this paper. However, the choice of a public communication mechanism aims to capture the
idea of price being a public communication system. Admittedly, as pointed out in Forges and Minelli (1997), this
choice does entail a loss of generality on the output side. FOOTNOTE NEEDS CLARIFICATION
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adapted.

Definition 4: A mechanism µr : T r → Ar is adapted if for any tr, t̂r ∈ T r, and any agent

(i, s) ∈ Nr,

π(µr(tr)) = π(µr(t̂r)), tis = t̂is ⇒ µr
is(t

r) = µr
is(t̂

r).

This adaptedness condition together with the type symmetry condition correspond to condition

(iv) in definition 1 of type symmetric REE. Next, we introduce the notion of incentive compatible

self-fulfilling mechanism.

Definition 5: A mechanism µr : T r → Ar is a type symmetric incentive compatible self-fulfilling

mechanism (type symmetric ICSFM) if it is type symmetric and for each (i, s) ∈ Nr, tis ∈ Ti,

t′i ∈ Ti and δi : RL+1
+ → Ai,

∑
tr−is

∑
θ

ui(xis[µ
r
−is(t

r), µr
is(t

r)], θ)P r(θ, tr−is|tis)

≥
∑
tr−is

∑
θ

ui(xis[µ
r
−is(t

r
−is, t

′
i), δi(π(µ

r(tr−is, t
′
i))], θ)P

r(θ, tr−is|tis).

In other words, µr : T r → Ar is a type symmetric ICSFM if, for each agent (i, s), honestly

reporting the true signal and then choosing µr
is(t

r) ∈ Ai yield a Bayes Nash equilibrium in

Γµr(GE).9 In a type symmetric ICSFM, each agent chooses to tell the truth and the publicly

announced price directs each agent to choose the mediator’s contemplated action.

Finally, we introduce the definition of a type symmetric ε−incentive compatible self-fulfilling

mechanism.

Definition 6: A mechanism µr : T r → Ar is a type symmetric ε−incentive compatible self-

fulfilling mechanism (type symmetric ε−ICSFM) if the following condition is satisfied: there

exists a set Sr ⊆ T r such that

Prob{t̃r ∈ Sr} ≥ 1− ε (10)
9Furthermore, in this two-stage communication game every information set will be reached under any BNE

and the belief is therefore uniquely determined. As a consequence, the set of BNE coincides with the set of PBE.
CHECK THIS
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and for each tr ∈ Sr, each (i, s) ∈ Nr, tis ∈ Ti, t
′
i ∈ Ti and δi : RL+1

+ → Ai, we have

∑
tr−is

∑
θ

ui(xis[µ
r
−is(t

r), µr
is(t

r)], θ)P r(θ, tr−is|tis)

≥
∑
tr−is

∑
θ

ui(xis[µ
r
−is(t

r
−is, t

′
i), δi(π(µ

r(tr−is, t
′
i))], θ)P

r(θ, tr−is|tis)− ε. (11)

In addition, we say the mechanism µr is a type symmetric ε−restricted incentive compatible self-

fulfilling mechanism (type symmetric ε−RICSFM) if (11) holds only for continuous function δi.

That is to say, if µr is an ε−ICSFM, then for most of the signal profiles, honestly reporting and

following the mediator’s contemplated action almost maximize an agent’s payoff in Γµr(GEr). If

µr is an ε−RICSFM, then for most of the signal profiles, honestly reporting and following the

mediator’s contemplated action almost maximize an agent’s payoff in Γµr(GEr) with respect to

continuous deviations in the second stage.

5 Main Results

In this section, we study the relationship between the set of type symmetric REE allocations

in an r-replica economy and the set of allocations realized by type symmetric ICSFM in its

associated communication game. Forges and Minelli (1997) showed that, in an economy with

a continuum of agents, if all agents with the same type receive the same private signal, those

two sets are exactly the same. In our finite-agent economy in which agents with the same type

are allowed to receive different private signals, we show that for a large enough economy the

following are true: the allocation realized by any type symmetric ICSFM is an approximate

type symmetric REE allocation; conversely, any type symmetric REE allocation is close to the

allocation associated with an type symmetric ICSFM. This section proceeds as follows: section

5.1 discusses the assumptions; section 5.2 and 5.3 state the main results and provide an informal

sketch for each result. All formal proofs are in the Appendix.
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5.1 Assumptions

First, we make two regularity assumptions that are similar to assumptions made in Forges and

Minelli (1997).

ASSUMPTION A.1: For each i ∈ N , ui(·, θ) is continuously differentiable, strictly concave

and monotonic10; Furthermore, ui(0, θ) = 0 and
∑
i∈N

wi ≫ 0.

ASSUMPTION A.2: For each l ̸= L+ 1 there exist K l, Ql ∈ R++ such that, for each θ ∈ Θ,

i ∈ N and x ∈ RL+1
+ ,

Ql∂ui(x, θ)

∂xL+1
≤ ∂ui(x, θ)

∂xl
≤ K l∂ui(x, θ)

∂xL+1
. (12)

and for each ti ∈ Ti,

wL+1
i ρi(ti|θ) > L max

l ̸=L+1
[K l

∑
i∈N

wl
i]. (13)

Assumption A.1 and A.2 are conditions imposed on the replica economy to ensure that utility

functions are well-behaved and that the economy has enough “money”. In (12) of assumption

A.2, there is a lower bound for the marginal rate of substitution which is not present in Forges

and Minelli (1997). We use this assumption to show that the price determined in any type

symmetric ICSFM is positive uniformly with respect to r. In particular, πl(µr(tr)) ≥ Ql > 0 for

all l ̸= L+1 and large r. This is the analogue of the activeness assumption in page 396 of Forges

and Minelli (1997), namely that the price determined in the ICSFM at each state is positive. We

could have made a similar “uniform activeness” assumption to avoid the situation in which as r

goes to infinity some announced price might converge to 0. Instead, we have chosen to impose

our lower bound assumption on the primitives and, as shown by step 1 in the proof of Theorem

1, this lower bound assumption is enough to deduce uniform activeness.

In (13) of assumption A.2, since we are allowing agents with the same type but in different

cohorts to receive different private signals, there is an extra ρi(ti|θ) on the left hand side of the

inequality for each ti that does not appear in the corresponding Assumption 2 in Forges and

Minelli (1997). When r is large, one can interpret ρi(ti|θ) as the (approximate) fraction of i type
10ui(·, θ) is monotonic: if x, y ∈ RL+1

+ , x ≥ y and x ̸= y, then ui(x, θ) > ui(y, θ).
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agents receiving private signal ti conditional on the event θ̃ = θ. Moreover, we need one more

“uniform continuity” assumption on the sequence of type symmetric REE prices for the second

approximation result.

ASSUMPTION A.3: Let {Er : r ≥ 1} be a sequence of replica economies and suppose that

{(qr, (zris)(i,s)∈Nr) : r ≥ 1} is an associated sequence of type symmetric REE. Then for every

ε > 0, there exists a δ > 0 and r̂ > 0 such that for any r > r̂ and any tr, t̂r ∈ T r,

||f(tr)− f(t̂r)|| < δ ⇒ ||qr(tr)− qr(t̂r)|| < ε. (14)

Note that δ is only a function of ε. Recall condition (i) in definition 1 of type symmetric REE,

which says that type symmetric REE prices are defined as a function of empirical frequency

distributions. This assumption requires that, in a large enough economy, whenever the empirical

frequency distributions of two signal profiles are close, then their corresponding type symmetric

REE prices are also close.

5.2 From Incentive Compatible Self-fulfilling Mechanism to Approx-

imate Rational Expectations Equilibrium

In this section, we present our first approximation result stating that, in a large enough replica

economy, the allocation realized by any adapted type symmetric ICSFM is a type symmetric

ε−REE allocation.

Theorem 1. Suppose A.1 and A.2 hold. Let {Er}∞r=1 be a sequence of r-replica economies and

suppose that {µr}r≥1 is a sequence of adapted, type symmetric ICSFMs. Then for every ε > 0,

there exists an integer r̂ > 0 such that for all r > r̂, (qr(·), {zris(·)}(i,s)∈Nr) is a type symmetric

ε−REE where for each tr ∈ T r

qr(tr) = π(µr(tr)),

zris(t
r) = xis[µ

r(tr)].

13



According to this theorem, there exists a Sr ⊆ T r such that Prob{t̃r ∈ Sr} ≈ 1 for any large

enough r and, for each tr ∈ Sr and agent (i, s), the allocation xis[µ
r(tr)] realized by the ICSFM

µr is almost maximizing agent (i, s)’s expected utility given the price π(µr(tr)) determined by

the market game.

In proving Theorem 1, the IC property of a type symmetric ICSFM plays no role. However, in

contrast to the continuum setup of Forges and Minelli (1997), actions do “matter” in our model.

That is, an action that (i, s) chooses in Ai changes the price (and therefore the allocation) in the

strategic market game. However, it is reasonable to conjecture that in a large replica economy,

actions will not matter too much. This is indeed the case and allows us to derive the existence

of approximate type symmetric REE allocations. Having said that, our proof is complicated by

the need to provide bounds for certain objects that are independent of r. The analogous bounds

in Forges and Minelli (1997) are obtained more easily in the continuum framework.

We now provide an informal sketch of the argument. Fixing ε > 0, we apply certain machinery

developed in McLean and Postlewaite (2002) (See Lemma 1 in Appendix A) to show that, for large

enough r, T r can be partitioned into (m + 1) subsets, Br
0, B

r
1, . . . , B

r
m with Prob{t̃r ∈ Br

0} ≈ 0.

Defining Sr = ∪m
k=1B

r
k , it follows that Prob{t̃r ∈ Sr} ≈ 1. To proceed, we choose a large enough

r, a tr ∈ Sr and an agent (i, s) and then modify the argument in Forges and Minelli (1997)

according to the following steps:

Step 1: We first show that πl(µr(tr)) ≤ K l for each l ̸= L + 1. Note that K l is a uniform

upper bound that is independent of r. Next, we show that there exists a positive constant C,

also independent of r, such that
L∑
l=1

µr,l
is (t

r) ≤ C < wL+1
i . The existence of such a constant C is

critical for our approximation result since it avoids the situation where
L∑
l=1

µr,l
is (t

r) → wL+1
i as r

goes to infinity. Finally, we show that Ql ≤ πl(µr(tr)) for each l ̸= L + 1. This uniform lower

bound is the analogue of the activeness assumption in Forges and Minelli (1997).

Step 2: Choose ξi ∈ βi(q
r(tr)). Given the uniform upper bound on π(µr(tr)) and the existence

14



of C in step 1, we can construct a feasible action σis(t
r, α) ∈ Ai for agent (i, s) defined as

σl
is(t

r, α) = αql(tr)ξli + (1− α)µr,l
is (t

r)

for 1 ≤ l ≤ L where α ∈ (0, 1) is independent of r. Next, we use the uniform lower bound on

π(µr(tr)) established in step 1 to show that

xis[µ−is(t
r), σis(t

r, α)] ≈ αξi + (1− α)xis[µ
r(tr)]. (15)

for sufficiently large r. Therefore, for sufficiently large r, we have

∑
θ

ui(xis[µ
r(tr)], θ)P r(θ|qr(tr), tis)

≥
∑
θ

ui(xis[µ
r
−is(t

r), σis(t
r, α)], θ)P r(θ|qr(tr), tis) (Definition 5 of type symmetric ICSFM)

>
∑
θ

ui(αξi + (1− α)xis[µ
r(tr)], θ)P r(θ|qr(tr), tis)− αε ( By (15))

≥ α
∑
θ

ui(ξi, θ)P
r(θ|qr(tr), tis) + (1− α)

∑
θ

ui(xis[µ
r(tr)], θ)P r(θ|qr(tr), tis)− αε (Concavity)

and it follows that

∑
θ

ui(xis[µ
r(tr)], θ)P r(θ|qr(tr), tis) ≥

∑
θ

ui(ξi, θ)P
r(θ|qr(tr), tis)− ε.

5.3 From Rational Expectations Equilibrium to Approximate Incen-

tive Compatible Self-fulfilling Mechanism

Now we state our second result which asserts that, in a large enough replica economy, we can

associate with any given type symmetric REE a type symmetric ε−ICSFM whose equilibrium

allocation coincides with the type symmetric REE allocation, except for the “money” commodity.

Theorem 2. Suppose A.1 and A.2 hold. Let {Er}∞r=1 be a sequence of replica economies and

15



suppose {(qr, (zris)(i,s)∈Nr)}r≥1 is a sequence of type symmetric REE. Furthermore, suppose the

sequence {qr}r≥1 of the type symmetric REE prices satisfies A.3. Then for every ε > 0, there

exists an integer r̂ > 0 such that for all r > r̂ there exists a type symmetric ε−ICSFM µr(·) such

that for any (i, s) ∈ Nr and any tr ∈ T r,

||π(µr(tr))− qr(tr)|| < ε, (16)

xl
is[µ

r(tr)] = zr,lis (t
r) for all l ̸= L+ 1 . (17)

|xL+1
i,s [µr(tr)]− zr,L+1

i,s (tr)| < ε. (18)

To understand our result, let us first recall the result in Forges and Minelli (1997). With

a continuum of agents and non-exclusive information, Forges and Minelli (1997) showed that

for any given type symmetric REE there exists a type symmetric self-fulfilling mechanism whose

equilibrium allocation and price coincide with the type symmetric REE allocation and price. Our

theorem 2, however, shows that in our finite-agent setup with a nontrivial information structure,

for any given type symmetric REE, there exists an approximate type symmetric incentive com-

patible self-fulfilling mechanism whose equilibrium allocation coincides with the type symmetric

REE allocation for all commodities except the L+ 1 commodity, i.e., the “money.” The equilib-

rium price realized by the approximate type symmetric ICSFM is close to the type symmetric

REE price, which renders the approximate equivalence of the “money” commodity.

The proof uses the machinery of informational size formally developed in McLean and Postle-

waite (2002) to address the issue of incentive compatibility that is absent in Forges and Minelli

(1997). If an agent’s informational size is small, then the profitability of misreporting is also

small. As shown in McLean and Postlewaite (2002), each agent’s informational size can be made

arbitrarily small for a large enough replica economy. Therefore, we can construct a mechanism

µr in which honest reporting and following the contemplated action is almost maximizing each

agent’s payoff.

Now we provide an informal sketch of the argument. Fixing ε > 0, similar to the proof
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of Theorem 1, we apply certain machinery developed in McLean and Postlewaite (2002) (See

Lemma 1 in Appendix A) to show that, for a large enough r, T r can be partitioned into (m+1)

subsets, Br
0, B

r
1, · · · , Br

m with the following properties: 1) Prob{t̃r ∈ Br
0} ≈ 0 ; 2) For each k ≥ 1,

if tr, t̂r ∈ Br
k, then f(tr) ≈ f(t̂r). Defining Sr = ∪m

k=1B
r
k, it follows that Prob{t̃r ∈ Sr} ≈ 1.

Choosing a large enough r, we proceed in the following steps:

Step 1: As in the sketch of the proof of Theorem 1, we begin by showing that there exist bounds

K l, Ql, independent of r, such that for each l ̸= L+ 1 and each tr ∈ T r,

Ql ≤ qr(tr) ≤ K l.

Step 2: Construct the mechanism µr : T r → Ar in the following way: first, for each k ∈ Jm

choose a t̄r,k ∈ Br
k and let q̄rk = qr(t̄r,k). Second, for each (i, s) and each l ̸= L+ 1, let

µr,l
i,s(t

r) =


q̄r,lk zr,li,s(t

r) if tr ∈ Br
k

qr,l(tr)zr,li,s(t
r) if tr ∈ Br

0.

Note first that π(µ(tr)) = q̄rk for all tr ∈ Br
k. Then by property 2) of the partition and assumption

A.3, for any tr ∈ Br
k it follows that f(tr) ≈ f(t̄r,k). Consequently, π(µ(tr)) = q̄rk ≈ qr(tr), implying

that xis[µ
r(tr)] ≈ zris(t

r). Similar to Forges and Minelli (1997), we use the uniform upper bound

on the type symmetric REE prices established in step 1 to show that the constructed mechanism

µr is feasible for all tr ∈ Sr.

Step 3: To show the construct mechanism µr satisfies (11) in the definition of ε-ICSFM, we

choose an agent (i, s), her signal ti ∈ Ti, a t′i ∈ Ti and δi : RL+1 → Ai. Then we break agent

(i, s)’s deviation into two parts: the first part isolates the effect of misreporting and the second

part isolates the effect of choosing a different action.
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Step 3.1: To isolate the effect of misreporting, consider

M1 =
∑
tr−is

∑
θ

ui(xis[µ−is(t
r
−is, ti), δi(π(µ(t

r
−is, ti)))], θ)−ui(xis[µ−is(t

r
−is, t

′
i), δi(π(µ(t

r
−is, t

′
i)))], θ)]P

r(θ, tr−is|ti)

Since Prob{t̃r ∈ Br
0} ≈ 0 and Prob{(t̃−is, ti) ∈ Br

k and (t̃−is, t
′
i) ∈ Br

0} ≈ 0, it follows that11

M1 ≥
∑
k

∑
tr−is

:(tr−is,ti)∈Br
k

(tr−is,t
′
i)∈Br

k

∑
θ

[ui(xis[µ−is(t
r
−is, ti), δi(q̄

r
k)], θ)− ui(xis[µ−is(t

r
−is, t

′
i), δi(q̄

r
k)], θ)]P

r(θ, tr−is|ti)−
ε

4

≥ −ε

2
.

The first inequality follows from small informational size. To justify the second inequality,

note that (tr−is, ti) ∈ Br
k and (tr−is, t

′
i) ∈ Br

k, then the construction of the mechanism implies that

π(µr(tr−is, ti)) = q̄rk = π(µr(tr−is, t
′
i)). Therefore, we have

xis[µ−is(t
r
−is, ti), δi(q̄

r
k)] ≈ xis[µ−is(t

r
−is, t

′
i), δi(q̄

r
k)].

Step 3.2: First, define Q(ti) = {qr(tr−is, ti)|(tr−is, ti) ∈ T r\Br
0}. By the condition (ii) in definition

1 of type symmetric REE, there exists a function ẑis(q, ti) such that zris(tr−is, ti) = ẑis(q, ti) for all

tr−is satisfying qr(tr−is, ti) = q. Next, for any ai ∈ Ai and q ∈ RL
++ define

yis[ai|q] ≡ (
a1i
q1
, · · · , a

L
i

qL
, wL+1

i +
L∑
l=1

qlwl
i −

L∑
l=1

ali).

In words, yis[ai|q] is the allocation for agent (i, s) if he chooses action ai and the market game

price is exogenously given as q. Note that yis[ai|q] ∈ βi(q) by definition. Furthermore, for a large

enough r, we can use the uniform lower bound on the type symmetric REE prices established in
11See step 2 in the proof of Theorem 2 in Appendix C.
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step 1 to show that xis[µ
r
−is(t

r), ai] ≈ yis[ai|qr(tr)]. Now we consider the second part:

∑
tr−is

∑
θ

[ui(xis[µ(t
r
−is, ti)], θ)− ui(xis[µ−is(t

r
−is, ti), δi(π(µ(t

r
−is, t

′
i)))], θ)]P

r(θ, tr−is|ti)

( xis[µ(t
r
−is, ti)] ≈ zis(t

r
−is, ti). )

≥
∑
tr−is

∑
θ

[ui(zis(t
r
−is, ti), θ)− ui(xis[µ−is(t

r
−is, ti), δi(π(µ(t

r
−is, t

′
i)))], θ)]P

r(θ, tr−is|ti)−
ε

16

( Prob{t̃r ∈ Br
0} ≈ 0 and zris(t

r
−is, ti) = ẑis(q, ti). )

≥
∑

q∈Q(ti)

∑
k

∑
tr−is:

(tr−is,ti)∈Br
k

q(tr−is,ti)=q

∑
θ

[ui(ẑis(q, ti), θ)− ui(xis[µ−is(t
r
−is, ti), δi(q̄

r
k)], θ)]P

r(θ, tr−is|ti)−
ε

8

(xis[µ−is(t
r
−is, ti), δi(q̄

r
k)] ≈ yi,s[δi(q̄

r
k)|q].)

≥
∑

q∈Q(ti)

∑
k

∑
tr−is:

(tr−is,ti)∈Br
k

q(tr−is,ti)=q

∑
θ

[ui(ẑis(q, ti), θ)− ui(yis[δi(q̄
r
k)|q], θ)]P r(θ, tr−is|ti)−

ε

4
(19)

(By Step 2 in the proof of Theorem 2 in Appendix C.)

≥
∑

q∈Q(ti)

∑
k

[ui(ẑis(q, ti), θk)− ui(yis[δi(q̄
r
k)|q], θk)]

∑
tr−is:

q(tr−is,ti)=q

P r(θk, t
r
−is|ti)

∑
tr−is:

q(tr−is,ti)=q

P r(tr−is|ti)
∑
tr−is:

q(tr−is,ti)=q

P r(tr−is|ti)−
ε

2

(20)

=
∑

q∈Q(ti)

{
∑
k

[ui(ẑis(q, ti), θk)− ui(yis[δi(q̄
r
k)|q], θk)]P r(θk|q, ti)}

∑
tr−is:

q(tr−is,ti)=q

P r(tr−is|ti)−
ε

2

(By definition 1 of type symmetric REE and xis[δi(q̄
r
k)|q] ∈ βi(q))

≥ −ε

2
.

Remark 4: Our construction of the mechanism in Theorem 2 is different from the more “natural”

construction in Forges and Minelli (1997) which is µr,l(tr) = qr,l(tr)zr,lis (t
r) for each (i, s), each

l ̸= L + 1 and each tr ∈ T r. Formally, this is due to the critical step from (19) to (20) where
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we want to move the summation over tr−is with respect to q to be in front of P r(θ, tr−is|ti).

If we constructed the mechanism as in Forges and Minelli (1997), then yis[δi(π(µ
r(tr)))|q] =

yis[δi(q
r(tr−is, ti))|q] would depend on the choice tr−is and therefore the logic from (19) to (20)

would no longer hold. We can however make the construction in Forges and Minelli (1997) work,

if we restrict ourselves to type symmetric ε−RICSFM. In this case, the continuity of δi implies

that yis[δi(π(µ
r(tr)))|q] = yis[δi(q

r(tr−is, ti))|q] ≈ yis[δi(q̄
r
k)|q]. Now we state our Theorem 3.

Theorem 3. Suppose A.1 and A.2 hold. Let {Er}∞r=1 be a sequence of replica economies and

suppose {(qr, (zris)(i,s)∈Nr)}r≥1 is a sequence of type symmetric REE. Furthermore, suppose the

sequence {qr}r≥1 of the type symmetric REE prices satisfies A.3. Then for every ε > 0, there

exists an integer r̂ > 0 such that for all r > r̂ there exists an ε−TSRICSFM µr(·) such that for

any (i, s) ∈ Nr and any tr ∈ T r,

π(µr(tr)) = qr(tr), (21)

xis[µ
r(tr)] = zris(t

r) . (22)

6 Discussion

1. In this paper, we follow Forges and Minelli (1997) by using the so-called “sell-all” market

game to model the price formation. There are several other strategic market games that are

more complicated and perhaps more realistic than the “sell-all” market game, such as the one

studied in Postlewaite and Schmeidler (1978). However, the main focus of this paper is to

carefully address the issue of incentive compatibility which arises naturally in our setup. It is

certainly worthwhile to check the robustness of our results for other formulations of strategic

market game.

2. In this paper, we use the strong Law of Large Numbers to obtain the approximate equivalence

result. One interesting extension is to use the exact Law of Large Numbers introduced by Sun

(2006) to obtain an exact equivalence result with a continuum of agents and with more general
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information structure like the one studied in this paper.

3. Regarding the interpretation of the mediator in our mechanism, it is not reasonable to believe

that there does exist a central authority that functions in the way we described in this paper.

However, Forges and Minelli (1997) showed that the self-fulfilling mechanism can be replicated by

a stationary nash equilibrium in an infinitely repeated market game. Therefore, the “mediator”

does not need to be an actual central authority. The extension of their results in our setup is an

interesting question for future research.
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Appendix

Appendix A: Preliminary Lemmas

First, given a replica economy Er and ε > 0, we define the partition Πr(ε) = {Br
0(ε), B

r
1(ε), . . . , B

r
m(ε)} of T r as

the following:12

Br
k(ε) = {tr ∈ T r : ||P r(·|tr)− Iθk || ≤ ε} for all k ∈ Jm,

and
Br

0(ε) = T r \ (∪k∈Jm
Br

k(ε)),

where Jm = {1, 2, . . . ,m}.
Lemma 1(McLean and Postlewaite (2002)): Let {Er}∞r=1 be a sequence of replica economies. For every
ε > 0, there exists an r̂ such that for any r > r̂ and associated partition Πr(ε) = {Br

0(ε), . . . , B
r
m(ε)} of T r the

following hold:

i)
Prob{t̃r ∈ ∪k∈JmBr

k(ε)} ≥ 1− ε. (23)

ii) For each (i, s), each tis and each t′i,

m∑
k=1

∑
tr−is:

(tr−is,tis)∈Br
k(ε)

(tr−is,t
′
i)/∈Br

k(ε)∪Br
0 (ε)

P r(tr−is|tis) ≤ ε, (24)

and ∑
tr−is:

(tr−is,tis)∈Br
0 (ε)

P r(tr−is|tis) ≤ ε. (25)

iii) For each (i, s) and each tis, ∑
k

|P r(θk|tis)− Prob{t̃r ∈ Br
k(ε)|t̃is = tis}| ≤ ε. (26)

iv) For each k, each tr ∈ Br
k(ε) and each i,∑

ti∈Ti

|fi(ti|tr)− ρi(ti|θk)| < ε. (27)

Lemma 2: Suppose {xr}∞r=1 and {yr}∞r=1 are sequences in R1. Suppose that lim
r→∞

(xr − yr) = 0 and yr ≥ A > 0

for all r. Then lim
r→∞

( 1
xr

− 1
yr
) = 0.

Proof. Choose ε > 0. First note that there exists an r̂1 > 0 such that for any r > r̂1, xr > yr− A
2 ≥ A

2 . Moreover,
there exists an r̂2 such that for any r > r̂2, |xr − yr| < A2ε

2 . Then, it follows that there exists an r̂ = max{r̂1, r̂2}
such that for any r > r̂,

| 1
xr

− 1

yr
| = |yr − xr

xryr
| < ε.

12Here, we need ε < 1√
2

so that {Br
k(ε) : k ∈ Jm} are disjoint subsets of T r. For the rest of the proof, we

assume ε < 1√
2
.
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That is, lim
r→∞

( 1
xr

− 1
yr
) = 0.

Appendix B: Proof of Theorem 1
From now on, to simplify notations, we will write µ(tr) for µr(tr), q(tr) for qr(tr) and zi,s(t

r) for zri,s(t
r).

Step 0: First, note that by (13) in assumption A.2 there exists a positive number C such that for each θ, each
i ∈ N and each ti ∈ Ti,

wL+1
i > C >

L max
l ̸=L+1

[Kl
∑
i∈N

wl
i]

ρi(ti|θ)
.

Choose 0 < η∗ < ρi(ti|θ) so that for each θ, each i ∈ N and each ti ∈ Ti,

C >

L max
l ̸=L+1

[Kl
∑
i∈N

wl
i]

ρi(ti|θ)− η
. (28)

Step 1: For any η ∈ (0, η∗), there exists an r̂ > 0 such that for any r > r̂, any k ∈ Jm , any tr ∈ Br
k(η) and any

l ̸= L+ 1,
Ql ≤ πl(µ(tr)) ≤ Kl.

To begin, first choose η ∈ (0, η∗) and then we proceed in the following steps.

Step 1.1: There exists an r̂1 > 0 such that for any r > r̂1, any l ̸= L+ 1 and any tr ∈ T r,

πl(µ(tr)) ≤ Kl.

To prove this by contradiction, first suppose that for any r̂1 > 0 there exists an r > r̂1, a l̂ ̸= L+1 and a tr ∈ T r

such that
K l̂ < πl̂(µ(tr)). (29)

Then choose r̂1 > 0 such that there exists an r > r̂1, a l̂ ̸= L+ 1 and a tr ∈ T r such that

πl̂(µ(tr))− wL+1
i

r
n∑

i=1

W l̂
i

>
K l̂

2
. (30)

Applying assumption A.2, it follows that for agent (i, s)∑
θ

∂ui(xis[µ(t
r)],θ)

∂xl̂
P r(θ|π(µ(tr)), tis)∑

θ

∂ui(xis[µ(tr)],θ)
∂xL+1 P r(θ|π(µ(tr)), tis)

=
∑
θ

 ∂ui(xis[µ(t
r)],θ)

∂xl̂
P r(θ|π(µ(tr)), tis)∑

θ

∂ui(xis[µ(tr)],θ)
∂xL+1 P r(θ|π(µ(tr)), tis)


=

∑
θ

[ ∂ui(xis[µ(t
r)],θ)

∂xl̂
P r(θ|π(µ(tr)), tis)

∂ui(xis[µ(tr)],θ)
∂xL+1 P r(θ|π(µ(tr)), tis)

] ∂ui(xis[µ(t
r)],θ)

∂xL+1 P r(θ|π(µ(tr)), tis)∑
θ

∂ui(xis[µ(tr)],θ)
∂xL+1 P r(θ|π(µ(tr)), tis)


≤ K l̂ (By (12)).

Together with (29), we obtain∑
θ

∂ui(xis[µ(t
r)],θ)

∂xl̂
P r(θ|π(µ(tr)), tis)∑

θ

∂ui(xis[µ(tr)],θ)
∂xL+1 P r(θ|π(µ(tr)), tis)

≤ K l̂ < πl̂(µ(tr)). (31)
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The definition of πl̂(µ(tr)) implies that there exists an agent (i, s) ∈ Nr such that µl̂
is(t

r) ≥ πl̂(µ(tr))wl̂
i. Since

πl̂(µ(tr)) > K l̂ > 0, it follows that µl̂
is(t

r) ≥ πl̂(µ(tr))wl̂
i > K l̂wl̂

i > 0. For γ ≤ µl̂
is(t

r), consider ais(γ) ∈ Ai where

ais(γ) = (µ1
is(t

r), · · · , µl̂
is(t

r)− γ, · · · , µL
is(t

r)).

Its corresponding allocation is

xl
is[µ−is(t

r), ais(γ)] = xl
is[µ(t

r)] for any l ̸= l̂;

xl̂
is[µ−is(t

r), ais(γ)] =
µl̂
is(t

r)− γ

πl̂(µ(tr))− γ

r
∑
i
wl̂

i

;

xL+1
is [µ−is(t

r), ais(γ)] = xL+1
is [µ(tr)] + γ(1− wl̂

i

r
∑
j

wl̂
j

).

Let xis(r, γ) = xis[µ−is(t
r), ais(γ)] and vi(r, γ) =

∑
θ

ui(xis(r, γ), θ)P
r(θ|π(µ(tr)), tis). Note that xis(r, 0) =

xis[µ(t
r)] and vi(r, 0) =

∑
θ

ui(xis[µ(t
r)], θ)P r(θ|π(µ(tr)), tis). We will show that γ can be chosen so that ais(γ)

is an element of Ai and vi(r, γ) > vi(r, 0). This contradiction will complete the proof of step 1.1.
Next, define

g(δ) =
δπl̂(µ(tr))

δ

r
∑
i
wl̂

i

+ [πl̂(µ(tr))− µl̂
is(t

r)

r
∑
i
wl̂

i

]
.

for each δ ≥ 0. Note that

xl
is[µ−is(t

r), ais(g(δ))] = xl
is[µ(t

r)] for any l ̸= l̂;

xl̂
is[µ−is(t

r), ais(g(δ))] =
µl̂
is(t

r)− δ

πl̂(µ(tr))
;

xL+1
is [µ−is(t

r), ais(g(δ))] = xL+1
is [µ(tr)] + g(δ)(1− wl̂

i

r
∑
j

wl̂
j

).

By (30), πl̂(µ(tr)) − µl̂
is(t

r)

r
∑
i
wl̂

i

is positive. Therefore, g(δ) > 0 for all δ > 0 and g(0) = 0. Furthermore, g is

differentiable at δ = 0 with

g′(0) =
πl̂(µ(tr))

πl̂(µ(tr))− µl̂
is(t

r)

r
∑
i
wl̂

i

.

Therefore, the derivative of vi(r, g(δ)) with respect to δ is

∂vi(r, g(δ))

∂δ
=

∑
θ

−∂ui(xis(r, δ), θ)

∂xl̂

1

πl̂(µ(tr))
+

∂ui(xis(r, δ), θ)

∂xL+1
g′(δ)(1− wl̂

i

r
∑
j

wl̂
j

)

P r(θ|π(µ(tr)), tis).

Note that µl̂
is(t

r) ≥ πl̂(µ(tr))wl̂
i implies that

g′(0)(1− wl̂
i

r
∑
j

wl̂
j

) =

πl̂(µ(tr))r
∑
j

wl̂
j − πl̂(µ(tr))wl̂

i

πl̂(µ(tr))r
∑
j

wl̂
j − µl̂

is(t
r)

≥ 1.
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Together with (31), at δ = 0 we have∑
θ

∂ui(xis[µ(t
r)], θ)

∂xl̂
P r(θ|π(µ(tr)), tis)

1

πl̂(µ(tr))
<

∑
θ

∂ui(xis[µ(t
r)], θ)

∂xL+1
P r(θ|π(µ(tr)), tis)

≤
∑
θ

∂ui(xis[µ(t
r)], θ)

∂xL+1
g′(0)(1− wl̂

i

r
∑
j

wl̂
j

)P r(θ|π(µ(tr)), tis).

Therefore ∂vi(r,g(δ))
∂δ |δ=0 > 0 implies that there exists a δ∗ > 0 such that for any 0 < δ < δ∗,

vi(r, g(δ)) > vi(r, g(0)) = vi(r, 0).

By (30), we have limδ→0 g(δ) = 0. Therefore, choose 0 < δ < δ∗ such that µl̂
is(t

r) − g(δ) > 0. It follows that
ais(g(δ)) ∈ Ai is feasible for agent (i, s) and vi(r, g(δ)) > vi(r, 0). This contradicts the assumption that µ is an
ICSFM.

Step 1.2: There exists an r̂2 > 0 such that for any r > r̂2 , any k ∈ Jm , any tr ∈ Br
k(η) and any (i, s) ∈ Nr,

L∑
l=1

µl
is(t

r) ≤ C < wL+1
i . (32)

To prove (32) by contradiction, suppose that for any r̂2 > 0 , there exists an r > r̂2, an agent (i, s) ∈ Nr, a
k ∈ Jm and a type profile tr ∈ Br

k(η) such that

L∑
l=1

µl
is(t

r) > C.

It follows that there exists an l̂ such that
µl̂
is(t

r) >
C

L
. (33)

Applying step 1.1 and Lemma 1.iv), we choose r̂2 such that there exists an r > r̂2, an agent (i, s) ∈ Nr, a k ∈ Jm,
a type profile tr ∈ Br

k(η) and an commodity l̂ satisfying (33), K l̂ ≥ πl̂(µ(tr)) and

fi(ti|tr) > ρi(ti|θk)− η. (34)

If tris = ti, then it follows that

K l̂ ≥ πl̂(µ(tr)) (Step 1.1)

=

∑
i

∑
s
µl̂
is(t

r)

r
∑
i

wl̂
i

=

∑
s
µl̂
is(t

r)

r
∑
i

wl̂
i

+

∑
j ̸=i

∑
s
µl̂
js(t

r)

r
∑
i

wl̂
i

≥

∑
s
µl̂
is(t

r)

r
∑
i

wl̂
i

>
Cfi(ti|tr)
L
∑
i

wl̂
i

(By (1),(9) and (33))

>
C[ρi(ti|θk)− η]

L
∑
i

wl̂
i

(By (34)).

which contradicts with (28).
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Step 1.3: There exists an r̂3 > 0 such that for any r > r̂3, any k ∈ Jm , any tr ∈ Br
k(η) and any l ̸= L+ 1,

πl(µ(tr)) ≥ Ql.

To prove this by contradiction, first suppose that for any r̂3 > 0 such that there exists an r > r̂3, a k ∈ Jm, a
l̂ ̸= L+ 1 and a tr ∈ Br

k(η) such that
πl̂(µ(tr)) < Ql̂.

By (12) in assumption A.2, we have

πl̂(µ(tr)) < Ql̂ ≤

∑
θ

∂ui(xis[µ(t
r)],θ)

∂xl̂
P r(θ|π(µ(tr)), tis)∑

θ

∂ui(xis[µ(tr)],θ)
∂xL+1 P r(θ|π(µ(tr)), tis)

. (35)

Note that the definition of πl(µ(tr)) implies that there exists an agent (i, s) ∈ Nr such that µl̂
is(t

r) ≤ πl̂(µ(tr))wl̂
i.

Choose r̂3 > r̂2. We conclude from step 1.2 that xL+1
is [µ(tr)] > 0. For sufficiently small γ, consider ais(γ) ∈ Ai

where
ais(γ) = (µ1

is(t
r), · · · , µl̂

is(t
r) + γ, · · · , µL

is(t
r)).

Similarly, let xis(r, γ) = xis[µ−is(t
r), ais(γ)] and vi(r, γ) =

∑
θ

ui(xis(r, γ), θ)P
r(θ|π(µ(tr)), tis). Note that xis(r, 0) =

xis[µ(t
r)] and vi(r, 0) =

∑
θ

ui(xis[µ(t
r)], θ)P r(θ|π(µ(tr)), tis). We will show that γ can be chosen so that ais(γ)

is an element of Ai and vi(r, γ) > vi(r, 0). This contradiction will complete the proof of step 1.3.
Next, define

g(δ) =
δ

1− wl̂
i

r
∑
i
wl̂

i

.

for each δ ≥ 0 and note that

xl
is[µ−is(t

r), ais(g(δ))] = xl
is[µ(t

r)] for any l ̸= l̂;

xl̂
is[µ−is(t

r), ais(g(δ))] =
µl̂
is(t

r) + g(δ)

πl̂(µ(tr)) + g(δ)

r
∑
i
wl̂

i

;

xL+1
is [µ−is(t

r), ais(g(δ))] = xL+1
is [µ(tr)]− δ.

Note g(δ) > 0 for all δ > 0 and g(0) = 0. Furthermore, g is differentiable with

g′(δ) =
1

1− wl̂
i

r
∑
i
wl̂

i

.

Therefore, the derivative of vi(r, g(δ)) with respect to δ is

∂vi(r, g(δ))

∂δ
=

∑
θ

[
∂ui(xis(r, δ), θ)

∂xl̂

∂xl̂

∂δ
− ∂ui(xis(r, δ), θ)

∂xL+1

]
P r(θ|π(µ(tr)), tis). (36)

where

∂xl̂

∂δ
=

πl̂(µ(tr))− µl̂
is(t

r)

r
∑
i
wl̂

i

[πl̂(µ(tr)) + g(δ)

r
∑
i
wl̂

i

]2
g′(δ).

26



Note that µl̂
is(t

r) ≤ πl(µ(tr))wl̂
i implies

∂xl̂

∂δ
|
δ=0

=
1

πl̂(µ(tr))

1− µl̂
is(t

r)

r
∑
i
wl̂

i

1

πl̂(µ(tr))

1− wl̂
i

r
∑
i
wl̂

i

≥ 1

πl̂(µ(tr))
.

Together with (35), at δ = 0 we have∑
θ

∂ui(xis[µ(t
r)], θ)

∂xL+1
P r(θ|π(µ(tr)), tis) <

∑
θ

∂ui(xis[µ(t
r)], θ)

∂xl̂
P r(θ|π(µ(tr)), tis)

1

πl̂(µ(tr))

≤
∑
θ

∂ui(xis[µ(t
r)], θ)

∂xl̂

∂xl̂

∂δ
|
δ=0

P r(θ|π(µ(tr)), tis).

So by (36) it follows that ∂vi(r,g(δ))
∂δ |δ=0 > 0, which implies that there exists a δ∗ > 0 such that for any 0 < δ < δ∗,

vi(r, g(δ)) > vi(r, g(0)) = vi(r, 0).

Therefore, choose 0 < δ < δ∗ such that xL+1
is [µ(tr)] − δ > 0. It follows that ais(g(δ)) ∈ Ai is feasible for agent

(i, s) and vi(r, g(δ)) > vi(r, 0). This contradicts the assumption that µ is an ICSFM.

Step 1.4: Given the choice of r̂1, r̂2 and r̂3 in step 1.1-1.3, we let r̂ = max{r̂1, r̂2, r̂3}. This completes the proof of
step 1.

Step 2: For each r, each (i, s) ∈ Nr, each ai ∈ Ai and each tr ∈ T r,∑
θ

ui(xis[µ(t
r)], θ)P r(θ|q(tr), tis) ≥

∑
θ

ui(xis[µ−is(t
r), ai)], θ)P

r(θ|q(tr), tis).

Since µ is an ICSFM, so for every function δi : RL+1 → Ai, we have∑
tr−is

∑
θ

ui(xis[µ(t
r)], θ)P r(θ, tr−is|tis) ≥

∑
tr−is

∑
θ

ui(xis[µ−is(t
r), δi(π(µ(t

r))], θ)P r(θ, tr−is|tis).

Now fix tr = (tr−is, tis) ∈ T r and ai ∈ Ai and define δi(·) : RL+1
+ → Ai so that

δi(π(µ(t̂
r
−is, tis))) = δi(q(t̂

r
−is, tis))) =

{
ai if q(t̂r−is, tis) = q(tr−is, tis)

µis(t̂
r
−is, tis) otherwise.

Then it follows that∑
t̂−is

:q(t̂r−is,tis)

=q(tr−is,tis)

∑
θ

ui(xis[µ(t̂
r
−is, tis)], θ)P

r(θ, t̂−is|tis) ≥
∑
t̂−is

:q(t̂r−is,tis)

=q(tr−is,tis)

∑
θ

ui(xis[µ−is(t̂
r
−is, tis), ai)], θ)P

r(θ, t̂−is|tis).

Note that

P r(θ|q(tr−is, tis), tis) =

∑̂
t−is

:q(t̂r−is,tis)

=q(tr−is,tis)

P r(θ, t̂−is|tis)

∑̂
t−is

:q(t̂r−is,tis)

=q(tr−is,tis)

P r(t̂−is|tis)
.
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If q(t̂r−is, tis) = q(tr−is, tis), then π(µ(t̂r−is, tis)) = π(µ(tr−is, tis)). Since µ is adapted, µis(t̂
r
−is, tis) = µis(t

r
−is, tis).

Therefore q(t̂r−is, tis) = q(tr−is, tis) implies that

πl(µ(t̂r−is, tis), ai) =

∑
i′

∑
s′

µl
i′,s′(t̂

r
−is, tis) + ali − µis(t̂

r
−is, tis)

r
n∑

i=1

wl
i

=

∑
i′

∑
s′

µl
i′s′(t̂

r
−is, tis)

r
n∑

i=1

wl
i

+
ali − µis(t̂

r
−is, tis)

r
n∑

i=1

wl
i

= πl(µ(t̂r−is, tis)) +
ali − µl

is(t̂
r
−is, tis)

r
n∑

i=1

wl
i

= πl(µ(tr−is, tis)) +
ali − µl

is(t
r
−is, tis)

r
n∑

i=1

wl
i

=

∑
i′

∑
s′

µl
i′s′(t

r
−is, tis) + ali − µis(t

r
−is, tis)

r
n∑

i=1

wl
i

= πl(µ(tr−is, tis), ai).

Consequently, q(t̂r−is, tis) = q(tr−is, tis) implies that

xl
is[µ−is(t̂

r
−is, tis), ai] =

ali
πl(µ(t̂r−is, tis), ai)

=
ali

πl(µ(tr−is, tis), ai)
= xl

is[µ
r(tr−is, tis), ai] = xl

is[µ(t
r), ai],

and (letting ali = µl
is(t

r
−is, tis) = µl

is(t̂
r
−is, tis)), it follows that

xl
is[µ(t̂

r
−(is), tis)] =

µl
is(t̂

r
−is, tis))

πl(µ(t̂r−is, tis))
=

µl
is(t

r
−is, tis)

πl(µr(tr−is, tis))
= xl

is[µ(t
r)].

Then we conclude that for any ai ∈ Ai∑
θ

ui(xis[µ(t
r)], θ)P r(θ|q(tr), tis) ≥

∑
θ

ui(xis[µ−is(t
r), ai)], θ)P

r(θ|q(tr), tis).

Step 3: First, for any ai ∈ Ai and q ∈ RL
++ define

yis[ai|q] ≡ (
a1i
q1

, · · · , a
L
i

qL
, wL+1

i +

L∑
l=1

qlwl
i −

L∑
l=1

ali).

In words, yis[ai|q] is the allocation for agent (i, s) if he chooses action ai and the market game price is exogenously
given as q. Then we prove the following claim.
Claim 1: For any ρ > 0 and any η ∈ (0, η∗), there exists an r̂ > 0 such that for any r > r̂, any k ∈ Jm, any
tr ∈ Br

k(η), any (i, s) ∈ Nr, and any ai ∈ Ai,

||xis[µ−is(t
r), ai]− yis[ai|π(µ(tr))]|| < ρ.

Here || · || is the L1 norm.
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Proof. Choose ρ > 0 and η ∈ (0, η∗). By step 1, there exists an r̂1 > 0 such that for any r > r̂1, any k ∈ Jm ,
any tr ∈ Br

k(η) and any l ̸= L+ 1, we have πl(µ(tr)) ≥ Ql > 0. Then note that

πl(µ−is(t
r), ai) = πl(µ(tr)) +

ali − µl
is(t

r)

r
∑
i

wl
i

.

Since ali and µl
is(t

r) are bounded, it follows that lim
r→∞

[πl(µ−is(t
r), ai)− πl(µ(tr))] = 0. Therefore, there exists an

r̂L+1
2 > 0 such that for all r > r̂L+1

2 ,

|xL+1
is [µ−is(t

r), ai]− yL+1
is [ai|π(µ(tr))]| <

ρ

L+ 1
.

By Lemma 2, for each l ̸= L+ 1, let xr = πl(µ−is(t
r), ai), yr = πl(µ(tr)) and A = Ql, then it follows that there

exists an r̂l2 > 0 such that for all r > r̂l2,

| 1

πl(µ−is(tr), ai)
− 1

πl(µ(tr))
| < ρ

wL+1
i (L+ 1)

.

Since ali < wL+1
i , so it follows that

|xl
is[µ−is(t

r), ai]−
ali

πl(µ(tr))
| < ρ

L+ 1
.

Therefore, there exists a r̂ = max{r̂1, r̂12, · · · , r̂L+1
2 } > 0 such that each r > r̂, each i, each ai ∈ Ai, each k ∈ Jm

and each tr ∈ Br
k(η),

||xis[µ−is(t
r), ai]− yis[ai|π(µr(tr))]|| <

L+1∑
l=1

ρ

L+ 1
= ρ.

Step 4: For any η ∈ (0, η∗), there exists an r̂ > 0 and a compact set D ∈ RL+1 such that for any r > r̂, any
k ∈ Jm, any tr ∈ Br

k(η) , any (i, s) ∈ Nr , and any ai ∈ Ai,

xis[µ−is(t
r), ai] ∈ D;

yis[ai|π(µ(tr))] ∈ D.

To see this, choose η ∈ (0, η∗). By step 1, there exists an r̂1 > 0 such that for any r > r̂1, any k ∈ Jm , any
tr ∈ Br

k(η) and any l ̸= L+1, we have πl(µ(tr)) ≥ Ql > 0. For simplicity, let q̄ = min
l

Ql and w̄L+1 = max
i

wL+1
i .

Applying Claim 1 of step 3, there exists a r̂2 > 0 such that for all r > r̂2,

||xis[µ−is(t
r), ai]− yis[ai|π(µ(tr))]|| <

w̄L+1

q̄
. (37)

Since πl(µ(tr)) ≥ q̄ and ali ≤ w̄L+1, it follows that for all l,

ali
πl(µ(tr))

≤ w̄L+1

q̄
. (38)

For good L+ 1, we have

wL+1
i +

L∑
l=1

πl(µ(tr))wl
i −

L∑
l=1

ali ≤ wL+1
i +

L∑
l=1

Klwl
i := Mi. (39)

29



Let r̂ = max{r̂1, r̂2}. Then for all r > r̂, let M ≡ max
i

Mi and define the compact set

D = {x ∈ RL+1
+ |xl ≤ 2w̄L+1

q̄
for all l and xL+1 ≤ M +

w̄L+1

q̄
}.

Note by (38) and (39), we have yis[ai|π(µ(tr))] ∈ D. Moreover, from (37), xl
is[µ−is(t

r), ai] ≤ 2w̄L+1

q̄ and
xL+1
is [µ−is(t

r), ai] ≤ M + w̄L+1

q̄ . Therefore, xis[µ−is(t
r), ai] is also in D.

Step 5: For any ρ > 0 and any η ∈ (0, η∗), there exists an r̂ > 0 such that for any r > r̂, any k ∈ Jm, any
tr ∈ Br

k(η), any (i, s) ∈ Nr, and any ai ∈ Ai,

|ui(xis[µ−is(t
r), ai], θ)− ui(yis[ai|π(µ(tr))], θ)| < ρ. (40)

Proof. Choose ρ > 0 and η ∈ (0, η∗). By step 4, there exists an r̂1 > 0 and a compact set D ∈ RL+1 such that
for any r > r̂1, any k ∈ Jm, any tr ∈ Br

k(η) , any (i, s) ∈ Nr and any ai ∈ Ai,

xis[µ−is(t
r), ai] ∈ D;

yis[ai|π(µ(tr))] ∈ D.

By the uniform continuity of ui(·, θ) in D for each θ, there exists a δ such that for any xi ∈ D and any yi ∈ D,

||xi − yi|| < δ ⇒ ||ui(xi, θ)− ui(yi, θ)|| < ρ. (41)

By claim 1 of step 3, there exists a r̂2 such that for any r > r̂2,

||xis[µ−is(t
r), ai]− yis[ai|π(µr(tr))]|| < δ. (42)

Hence, let r̂ > max{r̂1, r̂2}. Then, for any r > r̂, by (41) and (42) we have

|ui(xis[µ−is(t
r), ai], θ)− ui(yis[ai|π(µ(tr))], θ)| < ρ.

Step 6: Choose ε > 0. We now show that (π(µ(·)), {xis[µ(·)]}(i,s)∈Nr
) is a type symmetric ε−REE. Pick

η < min{η∗, ε}. By Lemma 1.i), there exists a r̂1 such that for any r > r̂1 and associated partition Πr(η),

Prob{t̃r ∈ ∪m
k=1B

r
k(η)} ≥ 1− η ≥ 1− ε. (43)

Moreover, step 1.2 implies that there exists an r̂2 such that for any r > r̂2, k ∈ Jm, tr ∈ Br
k(η), (i, s) ∈ Nr, and

ai ∈ Ai,
L∑

l=1

µl
is(t

r) ≤ C < wL+1
i .

Choose a constant α ∈ (0, 1) that is close to 0 such that

α[

L∑
l=1

Klwl
i + wL+1

i ] + (1− α)C < wL+1
i . (44)

Applying step 5, there exists an r̂3 > 0 such that for any r > r̂3, k ∈ Jm, tr ∈ Br
k(η), (i, s) ∈ Nr, and ai ∈ Ai,

|ui(xis[µ−is(t
r), ai], θ)− ui(yis[ai|π(µ(tr))], θ)| < αε. (45)

Therefore, let r̂ = max{r̂1, r̂2, r̂3}. Fix r > r̂. Let Sr = ∪k∈Jm
Br

k(η). By (43), it follows that (7) holds. Then
to show (π(µ(·)), {xis[µ(·)]}(i,s)∈Nr

) satisfies (2),(4) and (5), choose tr, t̂r ∈ Sr, (i, s) ∈ Nr and (i, s′) ∈ Nr. If
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f(tr) = f(t̂r), then by type symmetry we have

πl(µ(tr)) =

∑
i

∑
τi

∑
s:tis=τi

µl
is(t

r
−is, τi)

r
∑
j

wl
j

=

∑
i

∑
τi

µl
is(t

r
−is, τi)fi(τi|tr)

r
∑
j

wl
j

=

∑
i

∑
τi

µl
is(t̂

r
−is, τi)fi(τi|tr)

r
∑
j

wl
j

= πl(µ(t̂r))

If q(tr) = q(t̂r), tis = t̂is, then π(µ(tr)) = π(µ(t̂r)), tis = t̂is implying that µis(t̂
r) = µis(t

r) since µ is adapted.
Therefore,

zlis(t
r) =

µl
is(t

r)

ql(tr)
=

µl
is(t̂

r)

ql(t̂r)
= zlis(t̂

r).

Moreover, ∑
i

∑
s

zlis(t
r) =

∑
i

∑
s

µl
is(t

r)

πl(µ(tr))
=

∑
i

∑
s µ

l
is(t

r)∑
i

∑
s µ

l
is(t

r)

[
r
∑
i

wl
i

]
= r

∑
i

wl
i.

Next, choosing tr ∈ Sr, (i, s) ∈ Nr and ξi ∈ βi(q(t
r)), we are left to show that∑

θ

ui(zis(t
r), θ)P r(θ|q(tr), tis) ≥

∑
θ

ui(ξi, θ)P
r(θ|q(tr), tis)− ε.

Since ξi ∈ βi(q(t
r)), applying step 1 again we have

L∑
l=1

ql(tr)ξli ≤
L∑

l=1

ql(tr)wl
i + wL+1

i ≤
L∑

l=1

Klwl
i + wL+1

i .

By (44), it follows that
L∑

l=1

[αql(tr)ξli + (1− α)µl
is(t

r)] < wL+1
i .

Defining
ηis(t

r, α) = αq(tr)ξi + (1− α)µis(t
r),

we have
l∑

l=1

ηlis(t
r, α) < wL+1

i

implying ηis(t
r, α) ∈ Ai. Also, note that

yis[ηis(t
r, α)|π(µ(tr))] = αξi + (1− α)xis[µ(t

r)]. (46)

Then it follows that∑
θ

ui(xis[µ(t
r)], θ)P r(θ|q(tr), tis)

≥
∑
θ

ui(xis[µ−is(t
r), ηis(t

r, α)], θ)P r(θ|q(tr), tis) (Applying Step 2)

>
∑
θ

ui(yis[ηis(t
r, α)|π(µ(tr))], θ)P r(θ|q(tr), tis)− αε (By (45))

=
∑
θ

ui(αξi + (1− α)xis[µ(t
r)], θ)P r(θ|q(tr), tis)− αε (By (46))

≥ α
∑
θ

ui(ξi, θ)P
r(θ|q(tr), tis) + (1− α)

∑
θ

ui(xis[µ(t
r)], θ)P r(θ|q(tr), tis)− αε (Concavity).
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We conclude that ∑
θ

ui(xis[µ(t
r)], θ)P r(θ|q(tr), tis) ≥

∑
θ

ui(ξi, θ)P
r(θ|q(tr), tis)− ε.

Appendix C: Proof of Theorem 2
Step 1: For each l, each r, and each tr ∈ T r,

Ql ≤ ql(tr) ≤ Kl.

To see this, first we show that ql(tr) ≤ Kl. Suppose that there exist a l, an r, and a tr ∈ T r such that

ql(tr) > Kl.

Together with (12) in assumption A.2, we have

ql(tr) > Kl ≥

∑
θ

∂ui(xis,θ)
∂xl P r(θ|q(tr), tis)∑

θ

∂ui(xis,θ)
∂xL+1 P r(θ|q(tr), tis)

. (47)

By the market clearing condition for good l at tr, there exists an agent (i, s) ∈ Nr such that zlis(tr) > 0. Consider
the following feasible allocation zis(t

r, γ) ∈ βi(q(t
r)) for agent (i, s):

zis(t
r, γ) = (z1is(t

r), · · · , zlis(tr)−
γ

ql(tr)
, · · · , zLis(tr), zL+1

is (tr) + γ).

where 0 < γ < zlis(t
r)ql(tr). Let vi(r, γ) =

∑
θ∈Θ

ui(zis(t
r, γ))P r(θ|q(tr), tis). Then by (47) we have

∂vi(r, γ)

∂γ
|
γ=0

=
∑
θ

[
−∂ui(xis, θ)

∂xl

]
P r(θ|q(tr), tis) +

∑
θ

[
∂ui(xis, θ)

∂xL+1
ql(tr)

]
P r(θ|q(tr), tis) > 0.

This contradicts with the assumption that zis(t
r) is a part of type symmetric REE. Similarly, now we show that

ql(tr) ≥ Ql. Suppose that there exist a l, an r, and a tr ∈ Sr such that

ql(tr) < Ql.

Together with (12) in assumption A.2, we have

ql(tr) < Ql ≤

∑
θ

∂ui(xis,θ)
∂xl P r(θ|q(tr), tis)∑

θ

∂ui(xis,θ)
∂xL+1 P r(θ|q(tr), tis)

. (48)

By the market clearing condition for good l at tr, there exists an agent (i, s) ∈ Nr such that zL+1
is (tr) > 0.

Consider the following feasible allocation for agent (i, s):

zis(t
r, γ) = (z1is(t

r), · · · , zlis(tr) +
γ

ql(tr)
, · · · , zLis(tr), zL+1

is (tr)− γ).

where 0 < γ < zL+1
is (tr). Let vi(r, γ) =

∑
θ∈Θ

ui(zis(t
r, γ))P r(θ|q(tr), tis). Then by (48) we have

∂vi(r, γ)

∂γ
|
γ=0

=
∑
θ

[
∂ui(xis, θ)

∂xl

]
P r(θ|q(tr), tis) +

∑
θ

[
−∂ui(xis, θ)

∂xL+1
ql(tr)

]
P r(θ|q(tr), tis) > 0.
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This contradicts with the assumption that zis(t
r) is a part of an REE.

Step 2: For any ρ > 0, there exists an r̂ > 0 and a γ ∈ (0, ρ) such that for any r > r̂, any (i, s) ∈ Nr, any tis ∈ Ti

and k ∈ Jm the following are true:
i) ∑

tr−is:

(tr−is,tis)∈Br
0 (γ)

P r(tr−is|tis) ≤ ρ. (49)

ii) For any t′i ∈ Ti,
m∑

k=1

∑
tr−is:

(tr−is,tis)∈Br
k(γ)

(tr−is,t
′
i)/∈Br

k(γ)∪Br
0 (γ)

P r(tr−is|tis) ≤ ρ. (50)

iii) For any tr ∈ Br
k(γ),

(1− P r(θk|tr)) +
∑
κ̸=k

P r(θκ|tr) ≤ ρ. (51)

iv) For any Mr ∈ T r,∑
tr−is:

(tr−is,tis)∈Br
k(γ)

(tr−is,tis)∈Mr

P r(tr−is|tis) ≤
∑
tr−is:

(tr−is,tis)∈Mr

P r(θk, t
r
−is|tis) + ρ

∑
tr−is:

(tr−is,tis)∈Br
k(γ)

(tr−is,tis)∈Mr

P r(tr−is|tis). (52)

v) For any t′i ∈ Ti, ∑
k∈Jm

∑
tr−is

:(tr−is,tis)∈Br
k(γ)

(tr−is,t
′
i)∈Br

0 (γ)

P r(tr−is|tis) ≤ ρ. (53)

Proof. Choose ρ > 0. By Lemma 1.ii) and iii), there exists an r′1 such that for any r > r′1 and associated partition
Πr(ρ), (49) - (51) hold. Next, applying Lemma 1.i) again, there exists a r′2 such that for any r > r′2 and associated
partition Πr( ρ

m ), tr ∈ Br
k(

ρ
m ),

P r(θj |tr) ≤
ρ

m
for all j ̸= k. (54)

Choose Mr ∈ T r and it follows that∑
tr−is:

(tr−is,tis)∈Br
k(

ρ
m )

(tr−is,tis)∈Mr

P r(tr−is|tis) =
∑
tr−is:

(tr−is,tis)∈Br
k(

ρ
m )

(tr−is,tis)∈Mr

[P r(θk, t
r
−is|tis) +

∑
j≠k

P r(θj , t
r
−is|tis)]

≤
∑
tr−is:

(tr−is,tis)∈Mr

P r(θk, t
r
−is|tis) +

∑
tr−is:

(tr−is,tis)∈Br
k(

ρ
m )

(tr−is,tis)∈Mr

[
∑
j ̸=k

P r(θj |tr−is, tis)]P
r(tr−is|tis)

≤
∑
tr−is:

(tr−is,tis)∈Br
k(

ρ
m )

(tr−is,tis)∈Mr

P r(θk, t
r
−is|tis) + ρ

m− 1

m

∑
tr−is:

(tr−is,tis)∈Br
k(

ρ
m )

(tr−is,tis)∈Mr

P r(tr−is|tis) (By (54))

≤
∑
tr−is:

(tr−is,tis)∈Br
k(

ρ
m )

(tr−is,tis)∈Mr

P r(θk, t
r
−is|tis) + ρ

∑
tr−is:

(tr−is,tis)∈Br
k(

ρ
m )

(tr−is,tis)∈Mr

P r(tr−is|tis)
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Next, by the analysis in the proof of Theorem 2 in McLean and Postlewaite (2002)(see Page 2449), there exists
λ > 0 and an integer r′3 such that for any r > r′3,

||f(tr)− P r(·|θk)|| < λ ⇒ ||P r(·|tr)− Iθk || <
ρ

2
for all tr and k ∈ Jm; (55)

||f(tr−is, tis)− f(tr−is, t
′
i)|| <

λ

2
for all ti, t′i ∈ Ti and all tr and all i; (56)

and

Prob{tr−is : ||f(tr−is, t̃is)− P r(·|θk)|| <
λ

2
|t̃is = tis, θ̃ = θk} > 1− ρ for all ti, t′i ∈ Ti and k ∈ Jm. (57)

Choose ti, t
′
i ∈ Ti, and r > r̂. Note from (55), it follows that for all tr and k ∈ Jm,

||P r(·|tr)− Iθk || ≥
ρ

2
⇒ ||f(tr)− P r(·|θk)|| ≥ λ. (58)

Combining (56) and (58), we have

||f(tr−is, tis)− P r(·|θk)|| = ||f(tr−is, tis)− f(tr−is, t
′
i) + f(tr−is, t

′
i)− P r(·|θk)||

≥ |{||f(tr−is, t
′
i)− P r(·|θk)||} − {||f(tr−is, tis)− f(tr−is, t

′
i)||}|

≥ λ

2
. (59)

Then, it follows that

Prob{tr−is : ||P r(·|tr−is, t
′
i)− Iθk || >

ρ

2
for all k|t̃ris = tis, θ̃ = θk}

≤ Prob{tr−is : ||P r(·|tr−is, t
′
i)− Iθk || >

ρ

2
|t̃ris = tis, θ̃ = θk}

= Prob{tr−is : ||P r(·|tr−is, t
′
i)− Iθk || >

ρ

2
and ||f(tr−is, tis)− f(tr−is, t

′
i)|| <

λ

2
|t̃ris = tis, θ̃ = θk}

≤ Prob{tr−is : ||f(tr)− P r(·|θk)|| ≥ λ and ||f(tr−is, tis)− f(tr−is, t
′
i)|| <

λ

2
|t̃ris = tis, θ̃ = θk} (By (58))

≤ Prob{tr−is : ||f(tr−is, t̃
r
is)− P r(·|θk)|| ≥

λ

2
|t̃ris = tis, θ̃ = θk} (By (59))

≤ ρ (By (57)).

Therefore,
Prob{tr−is : ||P r(·|tr−is, t

′
i)− Iθk || >

ρ

2
for all k|t̃ris = tis} ≤ ρ.

Note that ∑
tr−is

:(tr−is,t
′
i)∈Br

0 (
ρ
2 )

P r(tr−is|tis) = Prob{tr−is : ||P r(·|tr−is, t
′
i)− Iθk || >

ρ

2
for all k|t̃ris = tis}.

So it follows that∑
k∈Jm

∑
tr−is

:(tr−is,tis)∈Br
k(

ρ
2 )

(tr−is,t
′
i)∈Br

0 (
ρ
2 )

P r(tr−is|tis) =
∑
tr−is

:(tr−is,tis )̸∈Br
0 (

ρ
2 )

(tr−is,t
′
i)∈Br

0 (
ρ
2 )

P r(tr−is|tis) ≤
∑
tr−is

:(tr−is,t
′
i)∈Br

0 (
ρ
2 )

P r(tr−is|tis) ≤ ρ.

Therefore, choose r̂ = max{r′1, r′2, r′3} and γ = min{ ρ
m−1 ,

ρ
2}. This complete the proof of step 2.
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Step 3: For any ρ > 0, there exists an r̂ > 0 and a γ > 0 such that for any r > r̂, any k ∈ Jm,

tr, t̂r ∈ Br
k(γ) ⇒ ||q(tr)− q(t̂r)|| < ρ.

To see this, by assumption A.3, there exists a r′1 and δ > 0 such that for any r > r′1,

||f(tr)− f(t̂r)|| < δ ⇒ ||q(tr)− q(t̂r)|| < ρ. (60)

Next, by lemma 1.iv) and triangle inequality, there exists an r′2 and δ
2 such that for any r > r′2 and associated

partition Πr( δ2 ), k ∈ Jm,

tr, t̂r ∈ Br
k(

δ

2
) ⇒ ||f(tr)− f(t̂r)|| < δ. (61)

Therefore, by (60) and (61) there exists an r̂ = max{r′1, r′2} and γ = δ
2 such that for any r > r̂ and associated

partition Πr(γ), k ∈ Jm,
tr, t̂r ∈ Br

k(γ) ⇒ ||q(tr)− q(t̂r)|| < ρ.

Step 4: In this step, we construct the mechanism µ : T r → Ar. First, choose a t̄r ∈ Br
k(γ) for each k ∈ Jm,

denoted t̄r,k. Let q̄rk = q(t̄r,k) be the corresponding type symmetric REE price at t̄r,k. Then the mechanism µ is
constructed as follows: for each (i, s) and each l ̸= L+ 1,

µl
i,s(t

r) =

{
q̄r,lk zli,s(t

r) if tr ∈ Br
k(γ)

ql(tr)zlis(t
r) if tr ∈ Br

0(γ).

Note that the price determined by the mechanism is the following: for tr ∈ Br
k,

πl(µ(tr)) =

n∑
i=1

r∑
s=1

µl
is(t

r)

r
n∑

i=1

wl
i

=

q̄rk
r∑

s=1

n∑
i=1

zlis(t
r)

r
n∑

i=1

wl
i

= q̄rk.

and the corresponding allocation is

xl
is[µ(t

r)] =
µl
is(t

r)

πl(µr(tr))
=

q̄rkz
l
is(t

r)

q̄rk
= zlis(t

r) if l ̸= L+ 1;

xL+1
is [µ(tr)] = wL+1

i +

L∑
l=1

πl(µ(tr))wl
i −

L∑
l=1

µl
is(t

r)

= wL+1
i +

L∑
l=1

q̄rkw
l
i −

L∑
l=1

q̄rkz
l
is(t

r).

To proceed, we first prove the following claim.
Claim: There exists an r̂ > 0 and a compact set D such that for any r > r̂, any (i, s) ∈ Nr, any ai ∈ Ai and any
tr ∈ T r,

xis[µ−is(t
r), ai] ∈ D;

yis[ai|q(tr)] ∈ D.

Proof. Choose (i, s) ∈ Nr and tr ∈ T r. First, step 1 implies that π(µ(tr)) ∈ [Q,K]. Let q̄ = minl Q
l. Then it

follows that for any yi ∈ βi(q(t
r)) we have

L∑
l=1

ql(tr)yli+yL+1
i ≤

L∑
l=1

ql(tr)wl
i+wL+1

i ⇒ yli ≤
L∑

l=1

Kl

q̄
wl

i+
wL+1

i

q̄
for all l ̸= L+ 1 and yL+1

i ≤
L∑

l=1

Klwl
i+wL+1

i .
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Define Mi ≡ max{
L∑

l=1

Kl

q̄ wl
i+

wL+1
i

q̄ ,
L∑

l=1

Klwl
i+wL+1

i } and M ≡ max
i

{Mi}. Therefore it follows that ylis[ai|q(tr)] ≤

M for all l. Next, following the same analysis in the proof of Claim 1 in the proof of Theorem 1, there exists a r̂
such that for any r > r̂,

||xis[µ−is(t
r), ai]− yis[ai|q(tr)]|| < M. (62)

Defining a compact set D as follow:
D = {x ∈ RL+1

+ |xl ≤ 2M}.

It follows that xis[µ−is(t
r), ai] ∈ D and yis[ai|q(tr)] ∈ D.

Step 5: For any ρ > 0, there exists an r̂ > 0 and a γ > 0 such that for any r > r̂, k ∈ Jm, θk ∈ Θ, and ai ∈ Ai

the following are true:

ui(xi,s[µ(t
r)], θk)− ui(zi,s(t

r), θk) ≥ −ρ; (63)
ui(xis[µ−is(t

r), ai]), θk)− ui(yis[ai|q(tr)], θk) ≥ −ρ; (64)
ui(xis[µ−is(t

r), ai]), θk)− ui(xis[µ−is(t
r
−is, t

′
i), ai]), θk) ≥ −ρ. (65)

whenever tr = (tr−is, tis) ∈ Br
k(γ) and (tr−is, t

′
i) ∈ Br

k(γ).

Proof. Choose ρ > 0. Applying the Claim in step 4, we have that there exists an r′1 and a compact set D such
that for any r > r′1, ai ∈ Ai and tr ∈ T r,

xis[µ−is(t
r), ai] ∈ D;

yis[ai|q(tr)] ∈ D.

Also, zi,s(tr) ∈ D. Since ui(·, θ) is uniformly continuous in D for each θ, It follows that there exists a δ > 0 such
that for any xi ∈ D, yi ∈ D and θ ∈ Θ,

||xi − yi|| < δ ⇒ |ui(xi, θ)− ui(yi, θ)| < ρ. (66)

By step 3 and Lemma 2, there exists an r′2 > 0 and a δ > 0 such that for any r > r′2 , tr = (tr−is, ti) ∈ Br
k(δ),

k ∈ Jm and ai ∈ Ai,

||xi,s[µ(t
r)]− zi,s(t

r)|| < δ

2
; (67)

||yis[ai|q(tr−is, ti)]− yis[ai|q̄rk]|| <
δ

2
. (68)

To show (64). Note that by the Claim 1 of the proof of Theorem 1 there exists an r′3 > 0 such that for any r > r′3
and tr ∈ Br

k(δ),

||xis[µ−is(t
r), ai]− yis[ai|q̄rk]|| <

δ

2
. (69)

It follows from (66) that for any r > r′3 and tr ∈ Br
k(δ),

ui(yis[ai|q(tr)], θ)− ui(xis[µ−is(t
r), ai]), θ) ≥ −ρ.

Consequently, (63) also hold. To show (65). Note that for any (tr−is, ti) ∈ Br
k(δ) and any (tr−is, t

′
i) ∈ Br

k(δ), we
have

yis[ai|π(µ(tr−is, ti))] = yis[ai|q̄rk] = yis[ai|π(µ(tr−is, t
′
i))]

Then by (69) and triangle inequality we have

||xis[µ−is(t
r), ai]− xis[µ−is(t

r
−is, t

′
i), ai]|| < δ.

Then by (66), it follows that for any r > r′4,

ui(xis[µ−is(t
r), ai]), θ)− ui(xis[µ−is(t

r
−is, t

′
i), ai]), θ) ≥ −ρ.
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Therefore, there exists an r̂ = max{r′1, r′2, r′3} and a γ = δ such that for any r > r̂, θ and ai ∈ Ai, (64) and (65)
hold.

Step 6: There exists an r̂ > 0 and a γ > 0 such that for any r > r̂, any (i, s) ∈ Nr, any k ∈ Jm and any
tr ∈ Br

k(γ),
L∑

l=1

µl
is(t

r) < wL+1
i .

To see this, first by (13) in assumption A.2 we have that for each θ ∈ Θ, each i ∈ N and each ti ∈ Ti,

wL+1
i >

L max
l ̸=L+1

[Kl
∑
i∈N

wl
i]

ρi(ti|θ)
.

By continuity, choose γ > 0 so that for each θ ∈ Θ , each i ∈ N and each ti ∈ Ti,

wL+1
i >

L max
l ̸=L+1

[Kl
∑
i∈N

wl
i]

ρi(ti|θ)− γ
. (70)

Then Lemma 1.i) and iv) imply that there exists an r̂ such that for any r > r̂ and associated partition Πr(γ),
i ∈ N , k ∈ Jm, tr ∈ Br

k(γ) and ti ∈ Ti,

Prob{t̃r ∈ ∪k∈Jm
Br

k(γ)} ≥ 1− γ, (71)

and
fi(ti|tr) > ρi(ti|θk)− γ. (72)

Choose tr ∈ Br
k and (i, s) ∈ Nr. Suppose tis = ti. By the market clearing condition for tr and the type symmetry

condition (6), it follows that for each l,

r
∑
i

wl
i =

∑
i

∑
s

zlis(t
r) =

∑
i

∑
τi∈Ti

∑
s:tis=τi

zlis(t
r
−is, τi) =

∑
i

∑
τi∈Ti

zlis(t
r
−is, τi)[rfi(τi|tr)].

Hence,
zlis(t

r)fi(ti|tr) = zlis(t
r
−is, ti)fi(ti|tr) ≤

∑
i

wl
i. (73)

It follows that
L∑

l=1

µl
is(t

r) =

L∑
l=1

q̄rkz
l
is(t

r)

≤
L∑

l=1

Klzlis(t
r) (Applying Step 1)

≤ Lmax
l

[Klzlis(t
r)]

= Lmax
l

[Kl zlis(t
r)

fi(ti|tr)
fi(ti|tr)]

≤ Lmax
l

[Kl

∑
i

wl
i

fi(ti|tr)
] (By (73))

≤ Lmax
l

[Kl

∑
i

wl
i

ρi(ti|θ)− γ
] (By (72))

< wL+1
i (By (70)).
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Step 7:13 For any ρ > 0, there exists an r̂ > 0 such that for any r > r̂, any (i, s) ∈ Nr, any ti ∈ Ti, any t′i ∈ Ti

and any δi : RL+1 → Ai,∑
tr−is

∑
θ

[ui(xis[µ(t
r
−is, ti))], θ)− ui(xis[µ−is(t

r
−is, t

′
i), δi(π(µ(t

r
−is, t

′
i)))], θ)]P

r(θ, tr−is|ti) ≥ −(12K1 + 2)ρ.

In particular, we want to show the following:∑
tr−is

∑
θ

[ui(xis[µ(t
r
−is, ti)], θ)− ui(xis[µ−is(t

r), δi(π(µ(t
r
−is, ti)))], θ)]P

r(θ, tr−is|ti) +
∑
tr−is

∑
θ

[ui(xis[µ−is(t
r), δi(π(µ(t

r
−is, ti)))], θ)

−ui(xis[µ−is(t
r
−is, t

′
i), δi(π(µ(t

r
−is, t

′
i)))], θ)]P

r(θ, tr−is|ti) ≥ −(12K1 + 3)ρ. (74)

To see this, first choose ρ > 0. Pick r̂ > 0 which satisfies the hypotheses of all previous steps. By the claim in
step 4, we define the highest possible utility any agent can get in the compact set as:

K1 = max
θ

max
i

{ui(2Me; θ)}

where e = (1, 1, · · · , 1) ∈ RL+1. Next we divide the proof in the following two sub-steps.

Step 7.1: First, define
Q(ti) = {q(tr−is, ti)|(tr−is, ti) ∈ T r \Br

0}.

For any q ∈ Q(ti), by condition (ii) in the definition of REE, there exists a function ẑis(q, ti) such that

zris(t
r
−is, ti) = ẑis(q, ti). (75)

for all tr−is satisfying q(tr−is, ti) = q. Now we consider the first part of (76) which is only about choosing a different
action.∑
tr−is

∑
θ

[ui(xis[µ(t
r
−is, ti)], θ)− ui(xis[µ−is(t

r
−is, ti), δi(π(µ(t

r
−is, ti)))], θ)]P

r(θ, tr−is|ti)

(By (49) and π(µ(tr−is, ti)) = q̄rk if (tr−is, ti) ∈ Br
k. )

≥
∑
k

∑
tr−is:

(tr−is,ti)∈Br
k

∑
θ

[ui(xis[µ(t
r
−is, ti)], θ)− ui(xis[µ−is(t

r
−is, ti), δi(q̄

r
k)], θ)]P

r(θ, tr−is|ti)− 2K1ρ

(By (63))

≥
∑
k

∑
tr−is:

(tr−is,ti)∈Br
k

∑
θ

[ui(z
r
is(t

r
−is, ti), θ)− ui(xis[µ−is(t

r
−is, ti), δi(q̄

r
k)], θ)]P

r(θ, tr−is|ti)− 2K1ρ− ρ

(By (75))

=
∑

q∈Q(ti)

∑
k

∑
tr−is:

(tr−is,ti)∈Br
k

q(tr−is,ti)=q

∑
θ

[ui(ẑis(q, ti), θ)− ui(xis[µ−is(t
r
−is, ti), δi(q̄

r
k)], θ)]P

r(θ, tr−is|ti)− 2K1ρ− ρ

=
∑

q∈Q(ti)

∑
k

∑
tr−is:

(tr−is,ti)∈Br
k

q(tr−is,ti)=q

∑
θ

[ui(ẑis(q, ti), θ)− ui(yis[δi(q̄
r
k)|q], θ)]P r(θ, tr−is|ti)

+
∑

q∈Q(ti)

∑
k

∑
tr−is:

(tr−is,ti)∈Br
k

q(tr−is,ti)=q

∑
θ

[ui(yis[δi(q̄
r
k)|q], θ)− ui(xis[µ−is(t

r
−is, ti), δi(q̄

r
k)], θ)]P

r(θ, tr−is|ti)− 2K1ρ− ρ

13In this step, we suppress the dependency of Br
k on γ to simplify notations.
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(By (64))

≥
∑

q∈Q(ti)

∑
k

∑
tr−is:

(tr−is,ti)∈Br
k

q(tr−is,ti)=q

∑
θ

[ui(ẑis(q, ti), θ)− ui(yis[δi(q̄
r
k)|q], θ)]P r(θ, tr−is|ti)− 2K1ρ− 2ρ

=
∑

q∈Q(ti)

∑
k

∑
tr−is:

(tr−is,ti)∈Br
k

q(tr−is,ti)=q

∑
θ

[ui(ẑis(q, ti), θ)− ui(yis[δi(q̄
r
k)|q], θ)]P r(θ|tr−is, ti)P

r(tr−is|ti)− 2K1ρ− 2ρ

(By (51))

≥
∑

q∈Q(ti)

∑
k

∑
tr−is:

(tr−is,ti)∈Br
k

q(tr−is,ti)=q

[ui(ẑis(q, ti), θk)− ui(yis[δi(q̄
r
k)|q], θk)]P r(tr−is|ti)− 4K1ρ− 2ρ

=
∑

q∈Q(ti)

∑
k

[ui(ẑis(q, ti), θk)− ui(yis[δi(q̄
r
k)|q], θk)]

∑
tr−is:

(tr−is,ti)∈Br
k

q(tr−is,ti)=q

P r(tr−is|ti)− 4K1ρ− 2ρ

=
∑

q∈Q(ti)

∑
k

[ui(ẑis(q, ti), θk)− ui(yis[δi(q̄
r
k)|q], θk)]

∑
tr−is:

(tr−is,ti)∈Br
k

q(tr−is,ti)=q

P r(tr−is|ti)

∑
tr−is:

q(tr−is,ti)=q

P r(tr−is|ti)
∑
tr−is:

q(tr−is,ti)=q

P r(tr−is|ti)− 4K1ρ− 2ρ

(By (52))

≥
∑

q∈Q(ti)

∑
k

[ui(ẑis(q, ti), θk)− ui(yis[δi(q̄
r
k)|q], θk)]

∑
tr−is:

q(tr−is,ti)=q

P r(θk, t
r
−is|ti)

∑
tr−is:

q(tr−is,ti)=q

P r(tr−is|ti)
∑
tr−is:

q(tr−is,ti)=q

P r(tr−is|ti)− 6K1ρ− 2ρ

=
∑

q∈Q(ti)

{
∑
k

[ui(ẑis(q, ti), θk)− ui(yis[δi(q̄
r
k)|q], θk)]P r(θk|q, ti)}

∑
tr−is:

q(tr−is,ti)=q

P r(tr−is|ti)− 6K1ρ− 2ρ

(By the definition of REE and xis[δi(q̄
r
k)|q] ∈ βi(q))

≥ −6K1ρ− 2ρ.

Step 7.2: Now we consider the second part of (76) which is only about misreporting.∑
tr−is

∑
θ

ui(xis[µ−is(t
r
−is, ti), δi(π(µ(t

r
−is, ti)))], θ)− ui(xis[µ−is(t

r
−is, t

′
i), δi(π(µ(t

r
−is, t

′
i)))], θ)]P

r(θ, tr−is|ti)

(By (49))

≥
∑
k

∑
tr−is:

(tr−is,ti)∈Br
k

∑
θ

[ui(xis[µ−is(t
r
−is, ti), δi(q(t

r
−is, ti))], θ)− ui(xis[µ−is(t

r
−is, t

′
i), δi(q(t

r
−is, t

′
i))], θ)]P

r(θ, tr−is|ti)− 2K1ρ

=
∑
k

∑
tr−is

:(tr−is,ti)∈Br
k

(tr−is,t
′
i )̸∈Br

k∪Br
0

∑
θ

[ui(xis[µ−is(t
r
−is, ti), δi(q(t

r
−is, ti))], θ)− ui(xis[µ−is(t

r
−is, t

′
i), δi(q(t

r
−is, t

′
i))], θ)]P

r(θ, tr−is|ti)
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+
∑
k

∑
tr−is

:(tr−is,ti)∈Br
k

(tr−is,t
′
i)∈Br

k

∑
θ

[ui(xis[µ−is(t
r
−is, ti), δi(q(t

r
−is, ti))], θ)− ui(xis[µ−is(t

r
−is, t

′
i), δi(q(t

r
−is, t

′
i))], θ)]P

r(θ, tr−is|ti)

+
∑
k

∑
tr−is

:(tr−is,ti)∈Br
k

(tr−is,t
′
i)∈Br

0

∑
θ

[ui(xis[µ−is(t
r
−is, ti), δi(q(t

r
−is, ti))], θ)− ui(xis[µ−is(t

r
−is, t

′
i), δi(q(t

r
−is, t

′
i))], θ)]P

r(θ, tr−is|ti)− 2K1ρ

(By (53))

≥
∑
k

∑
tr−is

:(tr−is,ti)∈Br
k

(tr−is,t
′
i )̸∈Br

k∪Br
0

∑
θ

[ui(xis[µ−is(t
r
−is, ti), δi(q(t

r
−is, ti))], θ)− ui(xis[µ−is(t

r
−is, t

′
i), δi(q(t

r
−is, t

′
i))], θ)]P

r(θ, tr−is|ti)

+
∑
k

∑
tr−is

:(tr−is,ti)∈Br
k

(tr−is,t
′
i)∈Br

k

∑
θ

[ui(xis[µ−is(t
r
−is, ti), δi(q(t

r
−is, ti))], θ)− ui(xis[µ−is(t

r
−is, t

′
i), δi(q(t

r
−is, t

′
i))], θ)]P

r(θ, tr−is|ti)− 4K1ρ

(By (50))

≥
∑
k

∑
tr−is

:(tr−is,ti)∈Br
k

(tr−is,t
′
i)∈Br

k

∑
θ

[ui(xis[µ−is(t
r
−is, ti), δi(q̄

r
k)], θ)− ui(xis[µ−is(t

r
−is, t

′
i), δi(q̄

r
k)], θ)]P

r(θ, tr−is|ti)− 6K1ρ

(By (65))
≥ −ρ− 6K1ρ.

To sum up, we have∑
tr−is

∑
θ

[ui(xis[µ(t
r))], θ)− ui(xis[µ−is(t

r
−is, t

′
i), δi(π(µ(t

r
−is, t

′
i)))], θ)]P

r(θ, tr−is|ti) ≥ −(12K1 + 3)ρ.

Step 8: In this step, we will show that for any ε > 0 there exists a r̂ > 0 such that for any r > r̂ the constructed
mechanism µ is a type symmetric ε−ICSFM. Choose ε > 0. By step 6, choose γ ≤ ε and let Sr = ∪k∈Jm

Br
k(γ).

Then according to (71) we have

Prob{t̃r ∈ Sr} = Prob{t̃r ∈ ∪k∈Jm
Br

k(γ)} ≥ 1− γ ≥ 1− ε.

Therefore, (10) holds. Moreover, we know that by step 6 the constructed mechanism is feasible for any tr ∈ Sr.
Choose ρ = ε

12K1+3 . Then step 7 implies that there exists a r̂ > 0 such that for any r > r̂,∑
tr−is

∑
θ

[ui(xis[µ(t
r))], θ)− ui(xis[µ−is(t

r
−is, t

′
i), δi(π(µ(t

r
−is, t

′
i)))], θ)]P

r(θ, tr−is|ti) ≥ −ε.

Appendix D: Proof of Theorem 3
The proof of Theorem 3 is almost identical to the proof of Theorem 2. The only differences appear in step 4
where we construct the mechanism and step 7 where we show that the constructed mechanism is an approximate
ICSFM. Therefore, in this section, we will merely write down the differences and the reader could substitute them
into the proof of Theorem 2 as the proof of Theorem 3.
Step 4: In this step, we construct the mechanism µ : T r → Ar as follows: for each (i, s), each tr ∈ T r and each
l ̸= L+ 1,

µl
is(t

r) = ql(tr)zlis(t
r).
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Note that the price determined by the mechanism is the following:

πl(µ(tr)) =

n∑
i=1

r∑
s=1

µl
is(t

r)

r
n∑

i=1

wl
i

=

ql(tr)
r∑

s=1

n∑
i=1

zlis(t
r)

r
n∑

i=1

wl
i

= ql(tr).

and the corresponding allocation is

xl
is[µ(t

r)] =
µl
is(t

r)

πl(µr(tr))
=

ql(tr)zlis(t
r)

ql(tr)
= zlis(t

r) if l ̸= L+ 1;

xL+1
is [µ(tr)] = wL+1

i +

L∑
l=1

πl(µ(tr))wl
i −

L∑
l=1

µl
is(t

r)

= wL+1
i +

L∑
l=1

ql(tr)wl
i −

L∑
l=1

ql(tr)zlis(t
r)

= zL+1
is (tr).

Step 7:14 For any ρ > 0, there exists an r̂ > 0 such that for any r > r̂, any (i, s) ∈ Nr, any ti ∈ Ti, any t′i ∈ Ti

and any δi : RL+1 → Ai,∑
tr−is

∑
θ

[ui(xis[µ(t
r
−is, ti))], θ)− ui(xis[µ−is(t

r
−is, t

′
i), δi(π(µ(t

r
−is, t

′
i)))], θ)]P

r(θ, tr−is|ti) ≥ −(12K1 + 3)ρ.

In particular, we want to show the following:∑
tr−is

∑
θ

[ui(xis[µ(t
r
−is, ti)], θ)− ui(xis[µ−is(t

r
−is, ti), δi(π(µ(t

r
−is, t

′
i)))], θ)]P

r(θ, tr−is|ti)

+
∑
tr−is

∑
θ

[ui(xis[µ−is(t
r
−is, ti), δi(π(µ(t

r
−is, t

′
i)))], θ)− ui(xis[µ−is(t

r
−is, t

′
i), δi(π(µ(t

r
−is, t

′
i)))], θ)]P

r(θ, tr−is|ti) ≥ −(12K1 + 3)ρ.

(76)

To see this, first choose ρ > 0. Pick r̂ > 0 which satisfies the hypotheses of all previous steps. In particular,
by the continuity of δi and assumption A.3, we have that for each k ∈ Jm there exists a t̄r,k such that for any
tr ∈ Br

k,
||ui(xis[µ−is(t

r
−is, ti), δi(q(t̄

r,k))], θk)− ui(xis[µ−is(t
r
−is, ti), δi(q(t

r))], θk)|| ≥ −ρ. (77)

Next we divide the proof in the following two sub-steps.

Step 7.1: First consider the first part of (76) which is only about choosing a different action.∑
tr−is

∑
θ

[ui(xis[µ(t
r
−is, ti)], θ)− ui(xis[µ−is(t

r
−is, ti), δi(π(µ(t

r
−is, t

′
i)))], θ)]P

r(θ, tr−is|ti)

≥
∑

q∈Q(ti)

∑
k

∑
tr−is:

(tr−is,ti)∈Br
k

q(tr−is,ti)=q

[ui(ẑis(q, ti), θk)− ui(yis[δi(q(t
r
−is, t

′
i))|q], θk)]P r(tr−is|ti)− 4K1ρ− ρ

(By (77))

≥
∑

q∈Q(ti)

∑
k

∑
tr−is:

(tr−is,ti)∈Br
k

q(tr−is,ti)=q

[ui(ẑis(q, ti), θk)− ui(yis[δi(q(t̄
r,k))|q], θk)]P r(tr−is|ti)− 4K1ρ− 2ρ

14In this step, we suppress the dependency of Br
k on γ to simplify notations.

41



=
∑

q∈Q(ti)

∑
k

[ui(ẑis(q, ti), θk)− ui(yis[δi(q(t̄
r,k))|q], θk)]

∑
tr−is:

(tr−is,ti)∈Br
k

q(tr−is,ti)=q

P r(tr−is|ti)− 4K1ρ− 2ρ

≥
∑

q∈Q(ti)

{
∑
k

[ui(ẑis(q, ti), θk)− ui(yis[δi(q(t̄
r,k))|q], θk)]P r(θk|q, ti)}

∑
tr−is:

q(tr−is,ti)=q

P r(tr−is|ti)− 6K1ρ− 2ρ

(By the definition of REE and xis[δi(q(t̄
r,k))|q] ∈ βi(q))

≥ −6K1ρ− 2ρ.

Step 7.2: Now we consider the second part of (76) which is only about misreporting. Following the same steps
in the proof of Theorem 2, we have∑
tr−is

∑
θ

ui(xis[µ−is(t
r
−is, ti), δi(π(µ(t

r
−is, t

′
i)))], θ)− ui(xis[µ−is(t

r
−is, t

′
i), δi(π(µ(t

r
−is, t

′
i)))], θ)]P

r(θ, tr−is|ti) ≥ −ρ− 6K1ρ.

To sum up, we have∑
tr−is

∑
θ

[ui(xis[µ(t
r))], θ)− ui(xis[µ−is(t

r
−is, t

′
i), δi(π(µ(t

r
−is, t

′
i)))], θ)]P

r(θ, tr−is|ti) ≥ −(12K1 + 3)ρ.
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