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Abstract
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1 Introduction

The average cost of higher education in the US has been growing nearly eight times

faster than median household income over the last two decades. Due to the lack of insur-

ance against labor market uncertainties, this rise in college costs can reduce investment in

higher education. At the same time, policymakers have been concerned about the seemingly

insufficient amount of private retirement savings. Raising the welfare of retirees with more

generous social security benefits would require imposing distortionary taxes, which makes

policies that increase private savings preferable. Though human capital investment and re-

tirement savings are usually treated as separate policy issues, this paper argues that they

are interdependent when people are present-biased.

There are currently multiple policy proposals in the US that suggest making retirement

savings contingent on student loan repayment, which establishes a link between retirement

and education policies. These proposals are based on a pathbreaking IRS ruling in 2018

that allowed a company to make contributions to the retirement plans of employees who are

paying off their student debt even if they do not make any 401(k) contributions.1 In essence,

individuals automatically save for retirement while repaying student loans. Other private

employers have since offered similar benefits. Following these developments, the Retirement

Parity for Student Loans Act and the Retirement Security and Savings Act were introduced

in Congress. Both bills allow employer 401(k) matching based on student loan payments.

Despite the enthusiasm of policymakers, the benefit of connecting student loan repayment

to retirement savings is not apparent. This paper provides a theoretical guidance in linking

education with retirement savings—two seemingly unrelated areas of government policy.

We study a Mirrlees life-cycle model with present-biased agents. We focus on present-

biased agents to capture the self-control problem documented in recent empirical studies on

the underinvestment in education (Cadena and Keys, 2015) and insufficient retirement sav-

ings (Angeletos et al., 2001; Laibson et al., 2017). In our framework, agents initially differ in

their innate ability which could either be high or low. Based on their innate ability, agents

choose their level of education: college or high school. Afterwards, they work before they re-

tire. The likelihood of having higher productivity when working increases with innate ability

and education status. Both innate ability and productivity are the agents’ private informa-

tion, so the government sequentially screens the agents and designs policies conditioned on

the observed education investment and income. Crucially, the government separates agents

so that high innate ability agents go to college while low innate ability agents do not. The

government also attempts to paternalistically offset the present bias.

1It was revealed that the company involved in the ruling was Abbott Laboratories, a health care company.
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Our theoretical framework characterizes the optimal interdependence between retirement

savings and education investment. When agents are saving for retirement, college graduates

are rewarded with a retirement savings subsidy. Intuitively, present-biased agents who are

deciding on their education investment want to prevent their future-selves from under-saving

for retirement. Therefore, the optimal retirement savings policy incentivizes human capital

investment by providing college graduates with a savings vehicle that offsets their present

bias. For non-college graduates, the retirement savings subsidy is lower and it is monoton-

ically decreasing in income. Since high innate ability agents are more likely to earn higher

income, a savings subsidy for non-college graduates that decreases with income discourages

high innate ability agents from entering the workforce without a college degree.

We also show that the usual inverse Euler equation for time-consistent agents does not

hold. When agents invest in higher education, the inverse marginal utility of consumption

is strictly higher than the working period’s expected inverse marginal utility. This implies

that consumption is more front-loaded for college graduates compared to the time-consistent

case. As a result, the optimal student loans are more generous to gratify the present-biased

agents and encourage the ones with high innate ability to invest in college.

We also derive the optimal labor wedge for our environment. Though the theoretical

characterization differs from those obtained with time-consistent agents, we show quantita-

tively that the optimal labor wedge with present-biased agents is very close to the one for

time-consistent agents. More precisely, two new opposing forces are introduced when agents

are present-biased. First, present-biased agents are less sensitive to future incentives. As

a result, the labor distortion decreases to mitigate the present-biased agents’ tendency to

undervalue future incentives. Second, by helping agents commit to saving for retirement, the

government is distorting intertemporal decisions from the present-biased agents’ perspective.

Therefore, the introduction of commitment increases labor distortions. In the quantitative

analysis, we show that these two economic forces approximately offset each other.

We consider two ways of decentralizing the constrained efficient allocations. For one

of them, we introduce retirement accounts with income and education contingent savings

subsidies. We also consider one where non-college graduates rely mainly on social security

benefits during retirement, while college graduates are supplemented with deposits worth a

fraction of their student loan repayments in their retirement savings accounts. This latter

implementation is inspired by the recent IRS ruling and policy proposals that treat student

loans repayment as salary reduction contribution to retirement accounts. For both schemes,

the government provides individuals with income-contingent student loans.

We bring our model to the US data by calibrating the structural parameters and by

approximating the current tax system to infer realistic distributions of skills among high
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school and college graduates.2 We show that our theoretical predictions are quantitatively

significant. The optimal tax schedules involve extensive use of the intertemporal wedge

during working life which, crucially, differs across income and education groups. College

graduates are offered savings subsidies to smooth their consumption over the life cycle, which

ex-ante incentivizes them to choose college education. The difference in savings subsidies

between the two education groups declines with income, because the utility is close to linear

at high levels of income which results in low gains from consumption smoothing. Finally, we

show that the welfare gains from our optimal tax are potentially significant, exceeding 1% of

lifetime consumption relative to the world with optimal policies dedicated to time-consistent

agents.

1.1 Related Literature

This paper contributes to the literature on optimal human capital policies. Bovenberg

and Jacobs (2005) studies optimal education and income policies in an environment where

schooling increases productivity. However, human capital investment in their environment is

riskless. This is contrary to empirical studies that find returns to human capital investments

to be risky (Cunha and Heckman, 2007). This paper captures the risky returns to education

by modeling productivity as a random draw from a distribution determined by human capital.

There are other papers that have studied how risk from human capital investments affects the

design of optimal policy. Anderberg (2009) finds that how human capital affects the degree

of wage risk matters for optimal policy. Grochulski and Piskorski (2010) focuses on the

optimal capital taxation in an environment where agents share the same innate ability and

human capital investment is unobservable. Craig (2019) studies a setting where employers

observe informative but imperfect signals to infer the human capital investment of ex-ante

heterogeneous workers. In contrast, our paper focuses on how initial differences in innate

ability affects the design of policies when investment in education is observable.

Several papers have also examined the optimal policy for human capital acquisition over

the working age. Bohacek and Kapicka (2008) and Kapicka (2015) study the optimal tax

policy when human capital investment is deterministic while the agent works. Stantcheva

(2017) studies an environment where agents make monetary investments in each period to

build up their stock of human capital. Makris and Pavan (2019) examine the learning-by-

doing aspect of human capital accumulation, so human capital is acquired stochastically as

a by-product from labor effort. Kapicka and Neira (2019) considers risky but unobservable

human capital investment, so tax policies are not conditional upon this investment. In

2Our calibration uses an extended definition of college that includes Master’s, Doctoral and Professional
degrees.
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contrast, our work focuses on human capital acquired before agents enter the labor force.

Gary-Bobo and Trannoy (2015) and Findeisen and Sachs (2016) consider environments

most similar to ours. They examine optimal education and income tax policies in a setting

where agents differ in initial ability and make risky investments in education before they

enter the labor market. Our paper models initial ability and the risk from human capital in-

vestment in a similar fashion to their paper. However, we consider present-biased agents. In

our setting, we demonstrate the importance of linking retirement policies to education out-

comes. For time-consistent agents, as in their papers, introducing distortions in retirement

savings does not increase investments in human capital.

Our paper contributes to the literature on Mirrlees taxation when agents have behavioral

biases. Farhi and Gabaix (2019) use sparse maximization (Gabaix, 2014) to study optimal

taxation of behavioral agents in a static setting. Lockwood (2018) studies optimal income

taxation with present-biased agents where wages depend on past work effort. He shows how

present bias has a potentially large effect on the optimal marginal income tax rate. We find

an economic force similar to the one in Lockwood (2018). However, we also discover a novel

opposing force that quantitatively negates the effect of present bias on the optimal labor

wedge. There are also papers that focus on the design of retirement savings policies for

time-inconsistent agents in a Mirrlees setting. Moser and de Souza e Silva (2019) consider

a multi-dimensional screening environment, where agents are heterogeneous in present bias

and productivity. Yu (2019a) examines a multi-dimensional screening environment, where

the agents’ degree of present bias, productivity and level of sophistication are hidden.

The rest of the paper is organized as follows. Section 2 presents the dynamic life-cycle

model and Section 3 characterizes the optimal savings and labor wedges. In Section 4, we

calibrate the model and present the quantitative results and welfare analysis. Section 5

demonstrates two policies that decentralizes the optimum. Section 6 extends the theory to

include differences in present bias and also considers the case with näıve agents.

2 Model

We consider a life-cycle model with three periods: t = 0, 1, 2. At t = 0, agents learn their

innate ability γ ∈ {H,L} with H > L, and proceed to choose their education investment

e ∈ {eL, eH} where eH ≥ eL. We will refer to agents with innate ability γ as γ-agents. The

share of γ-agents is πγ ∈ (0, 1) with πH + πL = 1. The level of education investment e

represents the binary decision of whether to invest in higher-education (invest eH) or not

(invest eL). Human capital depends on both γ and e, which we denote as κ (e, γ) . We

assume κ is strictly increasing in both arguments. Intuitively, this captures the fact that
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education helps raise human capital, and also how H-agents are more effective in human

capital accumulation than L-agents. The government observes e while κ and γ are the

agents’ private information. We refer to γ as the ex-ante private information.

At t = 1, agents enter the labor market, and privately learn their productivity θ ∈ Θ =[
θ, θ
]
⊂ R+. Productivity is drawn from a differentiable distribution with c.d.f. F (θ|κ) ,

which depends on human capital κ and is ranked according to first order stochastic domi-

nance: if κ > κ′, F (θ|κ) < F (θ|κ′) ,∀θ ∈ Θ. Also, let f (θ|κ) denote the p.d.f. and assume

f (θ|κ) is bounded away from zero for any θ and κ. This models the riskiness of human

capital investment, where agents with higher human capital are more likely to be produc-

tive. An agent with productivity θ who provides work effort l produces output y = θl. The

government observes output y, but not productivity θ nor labor supply l. We refer to θ as

the ex-post private information. Finally, at t = 2, agents retire and consume their savings.

To model present bias, we adopt the quasi-hyperbolic discounting model (Laibson, 1997).

Let β < 1 denote the short-run discount factor, which represents the degree of present bias.

Let δ denote the long-run discount factor. Agents of type (γ, θ) have the following utility at

t = 1 :

U1 (c1, c2, y; γ, θ, e) = u (c1)− h
(y
θ

)
+ βδ2u (c2) .

The flow utilities u and h are defined for consumption ct ≥ 0 and output y ≥ 0, respectively.

Utility from consumption u is twice differentiable, strictly increasing, and strictly concave:

u′,−u′′ > 0. Disutility from labor h (l) is twice differentiable, strictly increasing, and strictly

convex: h′, h′′ > 0, with h (0) = 0. Agents with innate ability γ have the following utility at

t = 0 :

U0 ({ct} , e, y; γ) = δ0 (e)u (c0) + βδ1 (e)

∫
Θ

[
u (c1)− h

(y
θ

)
+ δ2u (c2)

]
f (θ|κ (e, γ)) dθ.

The length of each period is different, so the long-run discount factor δt is determined

by the annual discount factor and the number of years in that period. Furthermore, the

length of the schooling period (t = 0) is different across education groups. Therefore, the

long-run discount factors δ0 and δ1 are functions of e to reflect how the number of years in

school affects the length of t = 0. We assume that all agents work the same number of years

in t = 1, so δ2 is constant across education groups. Under our specification, the flow utility

and allocations are in annual terms. For example, (c1, y) is the annual consumption-output

bundle during the working period (t = 1). More details are provided in Section 4.

Crucially, since β < 1, present-biased agents discount the immediate future more than

the distant future. As a result, agents in t = 0 dislike the fact that their future-selves in

t = 1 under-save for retirement.
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2.1 Planning Problem

To characterize the constrained efficient allocation, we use the direct mechanism—agents

report their private information to the government. This theoretical characterization is

useful because, in later sections, we will use it as a blueprint to decentralize the optimum as

a competitive equilibrium. The government designs

P =
{
c0 (γ) , [c1 (γ, θ) , c2 (γ, θ) , y (γ, θ)]θ∈Θ

}
γ∈{H,L} .

Since agents privately learn their innate ability γ and productivity θ sequentially, we require

P to be incentive compatible for each period (Myerson, 1986). Let U1 (θ′; γ, θ) denote the

utility of a type (γ, θ) agent who reported γ truthfully and reports θ′ ∈ Θ in t = 1. The

ex-post incentive compatibility constraints ensure the agents report θ truthfully: ∀θ, θ′ ∈ Θ,

U1 (γ, θ) ≡ U1 (θ; γ, θ) ≥ U1 (θ′; γ, θ) . (1)

Let the utility in t = 0 of γ-agents who reported innate ability γ′ be denoted as

U0 (γ′; γ) = δ0 (eγ′)u (c0 (γ′)) + βδ1 (eγ′)

∫
Θ

[U1 (γ′, θ) + (1− β)δ2u (c2 (γ′, θ))] dF (θ|κγ′,γ) ,

where κγ′,γ = κ (eγ′ , γ) and let κγ,γ = κγ. Then, the ex-ante incentive compatibility con-

straints ensure that the agents report γ truthfully at t = 0 : for any innate ability γ, γ′,

U0 (γ) ≡ U0 (γ; γ) ≥ U0 (γ′; γ) . (2)

The government is paternalistic in that it treats present bias as an error and attempts to

correct it. The basis for this is because β 6= 1 reflects a self-control problem that agents dis-

approve of in every other period (O’Donoghue and Rabin, 1999). The government attempts

to increase investment in education and raise retirement savings by maximizing the sum of

long-run utilities:

∑
γ

πγ

{
δ0 (eγ)u (c0 (γ))+δ1 (eγ)

∫
Θ

[
u (c1 (γ, θ))− h

(
y (γ, θ)

θ

)
+ δ2u (c2 (γ, θ))

]
f (θ|κγ) dθ

}

subject to the ex-post incentive constraints (1), the ex-ante incentive constraints (2) and the

resource constraint

∑
γ

πγ

{
−c0 (γ)− eγ
R0 (eγ)

+
1

R1 (eγ)

∫
Θ

[
y (γ, θ)− c1 (γ, θ)− 1

R2

c2 (γ, θ)

]
f (θ|κγ) dθ

}
≥ 0,
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where Rt denotes the gross rate of return. We will assume that δtRt = 1.

It is worth emphasizing that, apart from the inherent investment risk, education is costly

for two additional reasons. First, it is costly in terms of resources. Second, it is costly in

terms of time, because receiving education delays entry into the labor market. Due to these

reasons, present-biased agents are less willing to invest in human capital.

2.2 Characterizing Incentive Compatibility

Here, we derive a lemma that simplifies ex-post incentive compatibility and discuss

the difficulties in theoretically characterizing ex-ante incentive compatibility. The follow-

ing lemma characterizes the set of policies that are ex-post incentive compatible. Its proof

is standard so it is omitted.

Lemma 1 For any γ, P is ex-post incentive compatible if and only if (i.) y (γ, θ) is

non-decreasing in θ, and (ii.) U1 (γ, θ) is absolutely continuous in θ, with ∂U1(γ,θ)
∂θ

=
y(γ,θ)
θ2

h′
(
y(γ,θ)
θ

)
.

There are three main difficulties in characterizing ex-ante incentive compatibility for

time-inconsistent agents. First, local ex-ante incentive compatibility does not necessarily

imply global ex-ante incentive compatibility when agents are time-inconsistent (Halac and

Yared, 2014; Galperti, 2015; Yu, 2019b). This paper simplifies the problem by examining

the case with two levels of innate ability.

The second difficulty lies in the direction of the relevant deviation at t = 0. Usually, the

relevant deviation is downwards when agents are time consistent. Findeisen and Sachs (2016)

showed that part of the sufficient condition for this to be true requires output y (γ, θ) to be

weakly increasing with innate ability γ. However, Yu (2019b) showed that the optimal alloca-

tions are usually non-monotonic with respect to ex-ante information. The non-monotonicity

helps relax the ex-ante incentive constraints when agents are time-inconsistent. Therefore,

it is unclear in which direction the ex-ante incentive constraints binds. For our theoreti-

cal analysis, we focus on the case where only the downward ex-ante incentive compatibility

constraint—the incentive constraint for H-agents—binds. Then, in our quantitative analysis,

we verify that the downward ex-ante incentive constraint is indeed the relevant constraint.

Finally, it is unclear whether the government should screen ex-ante private information in

the first place. Given the parameters of the model, it is difficult to theoretically determine

who should go to college: everyone, no one, or only the H-agents. For our theoretical

analysis, we will focus on the case where only the H-agents go to college, and verify that

this is indeed optimal given the cost of college in our quantitative analysis.
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2.3 Wedges

To understand how present-bias and informational frictions affect the optimal tax policy,

the paper will focus on characterizing the optimal intertemporal and labor wedges.

The intertemporal wedge in t = 0 for innate ability γ is

τ k0 (γ) = 1− u′ (c0 (γ))

Eθ [u′ (c1 (γ, θ)) |γ]
,

and the intertemporal wedge in t = 1 for type (γ, θ) is

τ k1 (γ, θ) = 1− u′ (c1 (γ, θ))

u′ (c2 (γ, θ))
.

When τ k 6= 0, then consumption is not smoothed across time. More specifically, if τ kt > 0,

then savings is restricted in t. Similarly, if τ kt < 0, then savings is distorted upwards in t.

The labor wedge in t = 1 for type (γ, θ) is

τw(γ, θ) = 1−
h′
(
y(γ,θ)
θ

)
θu′ (c1 (γ, θ))

.

Since agents’ equilibrium wage is equal to their productivity θ in a competitive labor market,

if τw 6= 0, then agents are not working at the efficient level. In particular, if τw > 0, then

there is an under-supply of labor given the market wage. On the other hand, if τw < 0, then

agents are over-supplying labor given the market wage.

3 Theoretical Results

In this section, we derive the optimal intertemporal and labor wedges, which are crucial

for determining the optimal tax policies.

3.1 Intertemporal Wedges

The following proposition provides the inverse Euler equations for present-biased agents.

Proposition 1 The constrained efficient allocation satisfies (i.) the inverse Euler equation

in aggregate: ∑
γ

πγ
u′ (c0 (γ))

=
∑
γ

πγEθ
(

1

u′ (c1 (γ, θ))

∣∣∣∣γ) , (3)
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(ii.) for any γ ∈ {H,L} ,

Eθ
(

1

u′ (c1 (γ, θ))

∣∣∣∣γ) = Eθ
(

1

u′ (c2 (γ, θ))

∣∣∣∣γ) , (4)

and (iii.) for any θ ∈ Θ,

1

βu′ (c2 (H, θ))
=

1

u′ (c1 (H, θ))
+

(
1− β
β

)(
πH + βµ

πH + µ

)
1

u′ (c0 (H))
(5)

1

βu′ (c2 (L, θ))
=

1

u′ (c1 (L, θ))
+

(
1− β
β

)πL − βµ
(
f(θ|κL,H)
f(θ|κL)

)
πL − µ

 1

u′ (c0 (L))
, (6)

where µ = [u′ (c0 (L))− u′ (c0 (H))]
[
u′(c0(L))

πL
+ u′(c0(H))

πH

]−1

.

Proposition 1 follows from considering variations around any incentive compatible allo-

cation that preserve incentive compatibility. The optimal allocation minimizes the resources

expended, which satisfies (3) and (4).

To understand Proposition 1, first consider the standard inverse Euler equation at t = 0

for time-consistent agents:

1

u′ (c0 (γ))
= Eθ

(
1

u′ (c1 (γ, θ))

∣∣∣∣γ) for any γ.

By Jensen’s inequality, the inverse Euler equation for time-consistent agents implies

u′ (c0 (γ)) < Eθ [u′ (c1 (γ, θ))] for any γ. Due to informational constraints, the transfer of

consumption from t = 0 to t = 1 for time-consistent agents is restricted regardless of their

ex-ante private information.3 By restricting savings, the government can induce effort in

t = 1 at a lower cost, which relaxes the ex-post incentive constraint. Therefore, the in-

tertemporal wedge τ k0 is strictly positive for any innate ability γ.

With present-biased agents, intertemporal distortions have an additional effect on welfare.

The government can relax the ex-ante incentive compatibility constraint by increasing the

intertemporal wedge for H-agents while decreasing the wedge for L-agents at t = 0. To see

this, if we take expectation of (5) and (6) with respect to θ, then by (4) we can derive the

following inverse Euler inequalities:

1

u′ (c0 (H))
> Eθ

(
1

u′ (c1 (H, θ))

∣∣∣∣H)
3See Golosov et al. (2003) for more on the inverse Euler equation for time-consistent agents.
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and
1

u′ (c0 (L))
< Eθ

(
1

u′ (c1 (L, θ))

∣∣∣∣L) .
Comparing it with the standard inverse Euler equation, the consumption for H-agents is even

more front-loaded while the consumption is relatively back-loaded for L-agents.4 In other

words, the government exacerbates the intertemporal distortion for H-agents to satisfy their

temptation, encouraging them to accumulate human capital. Furthermore, the less front-

loaded consumption path for L-agents helps discourage downward deviations. As a result,

the best the government can do is to choose consumption such that the inverse marginal

utility is equalized in aggregate, which is implied by (3).

Next, note that the optimal intertemporal decision at t = 1 for time-consistent agents

satisfies the standard Euler equation:

u′ (c1 (γ, θ)) = u′ (c2 (γ, θ)) for any γ, θ.

This implies that it is optimal for time-consistent agents to smooth consumption between

work and retirement periods. This is because there is no additional uncertainty beyond

t = 1, so the government does not face informational constraints in the future. As a result,

there is no need to distort the intertemporal margin at t = 1.

From the government’s perspective, present-biased agents save too little for their retire-

ment. In essence, if present-biased agents were allowed to save freely, then u′ (c1 (γ, θ)) =

βu′ (c2 (γ, θ)) , so the intertemporal wedge would be τ k1 (γ, θ) = 1 − β > 0 for any type

(γ, θ) . In contrast, by (5) and (6), it is optimal for the intertemporal wedge τ k1 to depend

on reported innate ability and productivity. This is because, with present-biased agents, an

intertemporal wedge in t = 1 that depends on the reported innate ability relaxes the ex-ante

incentive constraint. To see why, recall that agents at t = 0 are concerned that they will not

save enough at t = 1. Thus, they have demand for a commitment device that incentivizes

them to save more. By introducing a wedge on retirement savings that depends on past

reports, the government is able to influence the incentives for education attainment.

More specifically, by (5), we immediately notice that

u′ (c1 (H, θ))

u′ (c2 (H, θ))
> β.

4Grochulski and Piskorski (2010) found that the inverse marginal utility of consumption is a strict
supermartingale when agents are time consistent and ex-ante identical. In their paper, human capital
investments are unobservable, so under investing in education is complementary to shirking in future periods.
Hence, in addition to the usual distortion to deter over-saving, the optimal policy makes the intertemporal
distortion worse at the education stage to deter under-investing in education. If education investment was
observable in their environment, like ours, then the intertemporal distortion disappears.
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In other words, the government helps the H-agents save for retirement. The government

essentially rewards H-agents for going to college with a commitment device that helps them

smooth consumption across work and retirement. This commitment device helps substitute

part of the information rent to H-agents.

By (6), for L-agents, the marginal rate of intertemporal substitution is

u′ (c1 (L, θ))

u′ (c2 (L, θ))


> β if πL > βµ

f(θ|κL,H)
f(θ|κL)

= β if πL = βµ
f(θ|κL,H)
f(θ|κL)

< β if πL < βµ
f(θ|κL,H)
f(θ|κL)

.

Notice that the retirement savings for L-agents depend on the likelihood ratio
f(θ|κL,H)
f(θ|κL)

. If

f(θ|κL,H)
f(θ|κL)

is relatively large, meaning that the observed productivity is likely to have come

from an agent with high innate ability, then it is optimal to distort the retirement savings

such that the present bias is exacerbated. The government uses this additional intertemporal

distortion to deter the H-agents from under-investing in education. It is also a cost effective

method since L-agents are unlikely to have that level of productivity. On the other hand, if
f(θ|κL,H)
f(θ|κL)

is relatively small, meaning that the observed productivity is unlikely to have come

from a H-agent, then the government helps offset the present bias.

Assumption 1 f satisfies the monotone likelihood ratio property: f(θ|κ)
f(θ|κ′) is increasing in θ

for any κ > κ′.

Assumption 1 implies that higher productivity θ is more likely to come from higher

accumulated human capital κ. When Assumption 1 holds, the optimal intertemporal wedge

for L-agents increases with productivity. This implies that the government helps the L-

agents who are less productive with their retirement savings, while the retirement savings

of L-agents who are highly productive are restricted. This is because Assumption 1 implies

that H-agents who do not invest in higher education are more likely than L-agents to be

productive. As a result, the government exacerbates the present bias of low-educated and

productive agents to relax the ex-ante incentive constraint and induce H-agents to increase

education attainment. We assume Assumption 1 holds for the rest of the paper.5

The intertemporal distortion of τ k1 described above provides us with the theoretical basis

for linking retirement savings to education investent. Hence, it is worth noting that the

intertemporal wedge τ k1 is distorted because γ is the private information of present-biased

5Assumption 1 implies first order stochastic dominance.
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agents. If the government can observe γ, then the standard Euler equation would hold:

u′ (c1 (γ, θ)) = u′ (c2 (γ, θ)) for any γ and θ. As was mentioned before, if agents were time-

consistent instead, then the standard Euler equation for t = 1 also holds. As a result, the

interdependence between retirement savings and education investment is solely used to relax

the ex-ante incentive compatibility constraint of present-biased agents.

Also, if productivity θ is a deterministic function of human capital κ, so human capital

investment is riskless, then there will also be no intertemporal distortions. In fact, Yu (2019a)

showed that the government can implement the full-information efficient optimum through

the use of off-path policies when there is no dynamic private information.

3.2 Labor Wedge

The dynamic incentive problem and the agents’ present bias also affects the labor wedge.

To separate the economic forces that determine the optimal labor distortions, we define

Aγ(θ) =
1− F (θ|κγ)
θf (θ|κγ)

,

Bγ(θ) = 1 +

y(γ,θ)
θ
h′′
(
y(γ,θ)
θ

)
h′
(
y(γ,θ)
θ

) ,

Cγ(θ) =

∫ θ

θ

u′ (c1 (γ, θ))

u′ (c1 (γ, x))

[
1− u′ (c1 (γ, x))

φ

]
f (x|κγ)

1− F (θ|κγ)
dx,

Dγ(θ) = u′ (c1 (γ, θ))

[
1

u′ (c0 (γ))
− 1

φ

]
,

Eγ(θ) =

[
u′ (c1 (γ, θ))

βu′ (c2 (γ, θ))
− 1

]
−
(

1− β
β

)
u′ (c1 (γ, θ))

φ
,

where φ > 0 is the shadow price on the resource constraint.

Proposition 2 The labor wedge for any θ ∈ Θ satisfies

τw (H, θ)

1− τw (H, θ)
= AH (θ)BH (θ) [CH (θ)−DH (θ) + EH (θ)] , (7)

τw (L, θ)

1− τw (L, θ)
= AL (θ)BL (θ)

[
CL (θ)−

(
1− F (θ|κL,H)

1− F (θ|κL)

)
DL (θ) +

g (θ|κL)

g (θ|κL,H)
EL (θ)

]
, (8)

where g (θ|κ) = f(θ|κ)
1−F (θ|κ)

and 1
φ

= Eγ
[
Eθ
(

1
u′(c1(γ,θ))

∣∣∣∣γ)] .
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Proposition 2 presents the optimal labor wedge for present-biased agents in a sequential

screening environment. Following Golosov et al. (2016), we decompose the economic forces

into three distinct components: intratemporal, intertemporal and present-bias components.

The intratemporal component summarizes the trade-off between production efficiency and

insurance against productivity differences. The intertemporal component captures how labor

distortions affect the education decision in the previous period. Unique to our paper, the

present-bias component encompasses the effects of time inconsistency on the optimal labor

distortions. We rewrite (7) and (8) to pinpoint each component:

τw (H, θ)

1− τw (H, θ)
= AH (θ)BH (θ)CH (θ)︸ ︷︷ ︸

intratemporal component

−AH (θ)BH (θ)DH (θ)︸ ︷︷ ︸
intertemporal component

+AH (θ)BH (θ)EH (θ)︸ ︷︷ ︸
present-bias component

,

τw (L, θ)

1− τw (L, θ)
= AL (θ)BL (θ)CL (θ)︸ ︷︷ ︸

intratemporal component

−
(

1− F (θ|κL,H)

1− F (θ|κL)

)
AL (θ)BL (θ)DL (θ)︸ ︷︷ ︸

intertemporal component

+
g (θ|κL)

g (θ|κL,H)
AL (θ)BL (θ)EL (θ)︸ ︷︷ ︸

present-bias component

.

All components are affected by Aγ (θ) and Bγ (θ) . To understand these terms, first note

that by introducing a labor wedge for type (γ, θ) agents, their labor supply changes according

to their Frisch elasticity of labor supply, which is Bγ (θ) . Furthermore, an increase in the

labor distortion for agents of type (γ, θ) decreases their total output in proportion to θf (θ|κ) .

Meanwhile, the incentive constraints for higher productivity agents of mass 1− F (θ|κ) are

relaxed. This trade-off is captured by Aγ (θ) .

Without dynamic information, the optimal labor wedge is determined by the intratem-

poral component, which summarizes the economic forces in static models, such as Diamond

(1998) and Saez (2001). In addition to Aγ (θ) and Bγ (θ) , the intratemporal component

also consists of Cγ (θ) , which captures the strength of the government’s insurance motive

against the productivity shock. In static Mirrlees, the inverse marginal utility is the cost of

a marginal increase in utility in consumption terms, so the cost of a marginal increase in

average utility in t = 1 is 1
φ
. Hence, if the cost of increasing average utility is small relative

to the cost of increasing the utility of (γ, x) agents ( 1
φ
< 1

u′(c1(γ,x))
), then Cγ (θ) is positive.

This is because the benefits of increasing the labor wedge of type (γ, θ) agents to relax the

ex-post incentive constraints of higher productivity agents (x ≥ θ types) outweighs the cost.

Furthermore, the degree of labor distortion increases with consumption inequality, which is

represented by u′(c1(γ,θ))
u′(c1(γ,x))

.
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When there is dynamic information and agents are time-consistent, then the labor wedge

is shaped by both the intratemporal and intertemporal components. This is similar to the

labor distortions in Findeisen and Sachs (2016). The intertemporal component contains

the term Dγ (θ) and is augmented by
1−F(θ|κL,H)

1−F (θ|κL)
for L-agents. Notice that Dγ (θ) can be

rewritten as [u′(c0(γ))]−1−φ−1

[u′(c1(γ,θ))]−1 . Therefore, by Proposition 1, we have DH (θ) > 0 and DL (θ) < 0.

This implies that the government can encourage investment in education through promising

a smaller labor wedge τw (H, θ) rather than raising c0 (H) . Similarly, it increases the labor

wedge of L-agents to discourage H-agents from working without a college degree. To that

end, the government also exploits the fact that H-agents who mimicked L-agents are more

likely to have higher productivity than actual L-agents, which is captured by
1−F(θ|κL,H)

1−F (θ|κL)
.

This shows how the optimal labor distortion for non-college grads leverages the difference in

productivity distribution between actual L-agents and H-agents who eschewed college.

When agents are present-biased, the present-bias component highlights the additional

force that influences the labor wedge. The present-bias component is comprised of two

potentially off-setting forces: the disagreement and myopic components,

Eγ(θ) =

[
u′ (c1 (γ, θ))

βu′ (c2 (γ, θ))
− 1

]
︸ ︷︷ ︸

disagreement component

−
(

1− β
β

)
u′ (c1 (γ, θ))

φ︸ ︷︷ ︸
myopic component

.

The disagreement component characterizes how the labor distortion is affected by the gov-

ernment’s policy of increasing retirement savings. The myopic component captures the fact

that present-biased agents do not fully internalize the returns from working. Observe that

when β = 1, the intertemporal wedge at t = 1 is zero so Eγ (θ) = 0 for any γ and θ. Fur-

thermore, the present-bias component for L-agents is amplified by g(θ|κL)

g(θ|κL,H)
, which is greater

than 1 by Assumption 1.6 Again, this shows how the difference in productivity distribution

for agents with varying innate abilities is used to relax the ex-ante incentive constraint.

To understand the disagreement component, recall from Proposition 1, where we showed

how the H-agents are offered a commitment device in t = 1 to relax the ex-ante incentive

constraints. It also provides commitment to L-agents conditional on their realized productiv-

ity. However, from the present-biased agents’ perspective in t = 1, the optimal consumption

path satisfies u′ (c1) = βu′ (c2) . Hence, the commitment the government provides is per-

ceived as an intertemporal distortion by agents in t = 1, which distorts their labor supply by

decreasing their incentives to work. This is reflected in the disagreement component which

increases the labor wedge when the government provides more commitment. As a result,

6Assumption 1 also implies hazard rate dominance: g (θ|κ) ≤ g (θ|κ′) for all θ when κ > κ′.
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there is a trade-off between the provision of work incentives and commitment. This suggests

that the consumption of more productive agents would be more front-loaded, because the

gains from higher production efficiency outweighs the cost of lower retirement savings.

To understand the myopic component, note that labor supply is incentivized with more

consumption in both t = 1 and t = 2. However, present-biased agents underestimate the

benefits of work because they discount retirement consumption more heavily. As a result,

the myopic component shows how the optimal labor wedge is decreased to correct for the

tendency of present-biased agents to undervalue the rewards for effort. Furthermore, due

to insurance motives, the myopic component decreases the labor wedge more for agents

with lower working-period consumption c1. So, less productive agents receive more help in

internalizing the benefits of working. The optimal labor wedge in Lockwood (2018) also con-

tains an economic force similar to the myopic component. However, Lockwood (2018) does

not characterize the optimal labor wedge with dynamic consumptiom, so the disagreement

component is absent in his characterization.

Lastly, notice that the myopic component always decreases the labor distortion, while the

disagreement component increases it unless the government does not provide commitment:
u′(c1)
u′(c2)

< β. As a result, the present-bias component is shaped by two opposing economic

forces. For H-agents, we can show that the disagreement component dominates the myopic

component for all levels of productivity. Meanwhile, for L-agents, the myopic component

dominates the disagreement component. To see this, notice that by (5) and (6) we can

rewrite the present-bias component as

EH (θ) =

(
(1− β)µ

πH

)
u′ (c1 (H, θ))

φ
,

EL (θ) = −

(1− β)µ
f(θ|κL,H)
f(θ|κL)

πL

 u′ (c1 (L, θ))

φ
.

Beyond the government’s paternalistic motives, providing H-agents with commitment also

encourages them to enroll in college, so the disagreement component dominates for H-agents.

At the same time, the value of providing L-agents with commitment is smaller to the gov-

ernment, so the myopic component dominates.

Since all of the components are composed of endogenous variables, we rely on our quan-

titative exercise to characterize the labor wedge. Appendix C quantifies the decomposition

of the optimal labor wedge. As we show there, the shape of the labor wedge is mostly de-

termined by our assumptions on the distribution of skills and the size of the intratemporal

component. By contrast, the present-bias component plays a minor role quantitatively.
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4 Quantitative Analysis

In this section, we quantify the model by imposing specific functional forms and cali-

brating their parameters. Then, we measure the quantitative significance of the theoretical

results presented in Section 3, as well as the welfare gains under the optimal tax system.

Table 1 presents the calibrated parameter values. We select the standard functional

forms for the utility of consumption u(c) = c1−σ

1−σ and the disutility of labor h(`) = `
1+ 1

η

1+ 1
η

, and

we assume they are constant over time. The risk aversion and the Frisch elasticity of labor

supply are then set to standard values of 2 and 0.5, respectively. The short- and long-run

discount factors are calibrated based on the values proposed by Nakajima (2012). The short-

term discount factor is 0.7, in the ballpark of the empirical estimates of Laibson et al. (2017).

The long-run discount factors are based on the annual rate of 0.9852 and compounded to

take into account the relative length of different periods. In the subsequent analysis we will

also make comparisons with a variant of our model for time-consistent agents (i.e. β = 1).

In that case, following Nakajima (2012), we recalibrate the effective discount factors based

on the annual rate of 0.9698. The purpose of such a recalibration is to separate the effect of

time-inconsistency in agents’ behavior from their effectively increased impatience.

In our calibrated model, we expand the definition of high school and college graduates by

admitting a wide range of real-world education outcomes. We associate the former with all

individuals who hold an Associate’s degree or less. The share of such low types in the 2015

Current Population Survey is 0.68. We associate the latter with all individuals who hold a

Bachelor’s, Master’s, Professional or Doctoral degree. We assume that t = 0 begins at age

18 and lasts 5.12 years for the high types (reflecting a weighted average across all degree

durations), or 0 years otherwise (hence, δ0 (eL) = 0). Agents work for 45 years and then

retire and live for 20 years in retirement. The annual cost of higher education is calculated

to be $15,700. Section B.2 in the Appendix discusses more details of our calibration.

In order to calibrate the distributions of skills for agents of different innate ability and

education, we create a separate model which we refer to as the “current policies” world.

This model is described in detail in Appendix B. We take this model to the data, solve

for optimal behavior and simulate large population of agents from each of the four groups:

(i.) factual high school graduates, (ii.) high school graduates, had they gone to college

(high school counterfactual), (iii.) factual college graduates, and (iv.) college graduates, had

they not gone to college (college counterfactual). We select the parameters governing the

distributions of skills such that the simulated distribution of lifetime earnings for each group

matches the one reported by Cunha and Heckman (2007). In particular, this study uses

a variation of the Roy model to infer counterfactual distributions of earnings for both high
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Table 1: Parameter values in the model

Symbol Meaning Value

π0(L) Share of low type 0.68
π0(H) Share of high type 0.32
σ Risk aversion 2
η Frisch elasticity 0.5
eH Cost of higher education 1.57

Discount factors: present bias

β Short-term discount factor 0.7
δ0(eL) High school period 0 long-term discount factor 0.00
δ1(eL) High school period 1 long-term discount factor 1.00
δ0(eH) College period 0 long-term discount factor 0.15
δ1(eH) College period 1 long-term discount factor 0.93
δ2 Retirement discount factor 0.27

Discount factors: time-consistent benchmark

δ0(eL) High school period 0 long-term discount factor 0.00
δ1(eL) High school period 1 long-term discount factor 1.00
δ0(eH) College period 0 long-term discount factor 0.19
δ1(eH) College period 1 long-term discount factor 0.85
δ2 Retirement discount factor 0.15

school and college graduates had they made the opposite education decision. Also, to correct

for the under-representation of high-end earnings in the data, we add an upper Pareto-tail

to each distribution such that the upper 10% of the mass is distributed according to a shape

parameter of 1.5, as in Saez (2001). Figure 1 presents the four distributions backed out as a

result of this procedure.

In what follows, we discuss our quantitative results. We begin with Table 2 which shows

the optimal intertemporal wedge in t = 0. In line with the hallmark dynamic Mirrlees result,

the government finds it optimal to tax savings in t = 0 in order to induce higher labor effort

from agents in the next period. Notice also that the optimal wedge amounts are in the

ballpark of the model with time-consistent agents, which is a result of our calibration that

holds the effective discount factor constant across the two models. Importantly though, the

wedge for present-biased agents is slightly higher, raising the consumption of college students

and providing additional incentive to make the college investment.7

7The intertemporal wedge for L-agents τk0 (L) is not shown since for our quantitative exercise, we assumed
L-agents do not have a student period (δ0 (eL) = 0).
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Figure 1: Calibrated distributions of skills for the four groups of agents

Table 2: Intertemporal wedge in period zero: present-bias vs. time-consistent case

Present-biased Time-consistent

τ k0 (H) 0.3244 0.2805

Figure 2 shows the optimal intertemporal wedges in t = 1 and conveys a key quantitative

result. The wedges are negative for a wide interval of low incomes, and are always smaller

than 1− β, which implies that the government offers savings subsidies.8 This is an expected

outcome in a model with paternalistic policies and agents who suffer from present bias. More

importantly, the wedges are significantly different for the two education groups. College

graduates enjoy a much higher subsidy than high school graduates at all income levels,

with the difference eventually disappearing for higher incomes. The government does so in

order to provide them with incentives to invest in college education ex-ante. Without such

incentives, H-agents worry that additional education will not deliver a sufficient increase in

their welfare, because their own present bias will prevent them from smoothing their higher

working-age income across the life cycle. By contrast, notice that in the variant of our model

with time-consistent agents, the optimal intertemporal wedge in the working-age period is

equal to zero for both education groups. This is because time-consistent agents are able to

raise retirement savings on their own.

8The theoretical result where the government decreases savings for sufficiently high θ is not quantitatively
significant since the distributions f (θ|κ) and f (θ|κL,H) are similar.
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Figure 2: Intertemporal wedge in the model with present-biased agents

Figure 3 presents the optimal labor wedges for both education groups according to the

two variants of our model: with present-biased agents or with time-consistent agents. The

optimal labor wedges follow a U-shaped pattern and converge to a constant for top income

levels, which is standard in Mirrlees taxation with Pareto-tailed productivity distributions

(Diamond, 1998; Saez, 2001). It is important to notice that optimal wedges mostly decline

with income and are significantly different for the two education groups. This resembles the

main result of Findeisen and Sachs (2016) and stems from the fact that H-agents must be

offered a separate income tax schedule to provide them with incentives to optimally choose

to go to college. Notice that the differences in optimal wedges between the present-biased

and time-consistent settings are very small, and arise predominantly at lowest incomes. This

implies that the presence of present-biased agents does not alter the normative prescriptions

in terms of the design of income tax schedules that the literature has established so far.

Appendix C reinforces this point by showing that the present-bias component of the optimal

labor wedge, as introduced in Section 3.2, is in general small quantitatively and declines

monotonically with income. This is in contrast to a setting without dynamic consumption,

where the myopic component is not mitigated by the disagreement component and marginal

income tax rates could become negative (Lockwood, 2018).
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Figure 3: Labor wedge in the model with present-biased agents

4.1 Welfare Gains from Optimal Policies

We now turn our attention to the calculation of potential welfare gains arising from the

optimal policies. We will compare our optimum to three separate benchmarks: optimal

policies for time-consistent agents, as well as optimal policies with present-biased agents

when either labor or intertemporal wedges are restricted to be education-independent.

4.1.1 Welfare Gains Relative to Optimal Time-Consistent Policies

As the first benchmark, we use the optimal policies dedicated to time-consistent agents,

for whom β = 1. We consider two possible policy implementations for time-consistent

agents.9 The first one, called the laissez-faire implementation, leaves the agents alone in

their retirement savings decision in period t = 1. Because the policy is dedicated for time-

consistent agents, the government is confident that agents will smooth consumption in line

with their time preferences. This is not the case for present-biased agents though, and we

expect our optimal policies to bring about significant welfare gains relative to this benchmark.

In order to isolate the effect of education-dependent savings incentives from mere subsi-

dization of retirement savings, we also consider a second implementation for time-consistent

agents which features mandatory savings. In this world, agents are forced to smooth their

9The details of these implementations are presented in Appendix D.
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consumption between working-life and retirement in line with the Euler equation. It does not

make a difference for time-consistent agents who would have made the same choice anyway.

On the other hand, the government helps present-biased agents save for retirement under

this implementation, but without taking advantage of the education-dependent intertempo-

ral wedge.

Table 3: Welfare gains over optimal policies for time-consistent agents

Mandatory savings Laissez-faire

% increase in lifetime consumption 0.96 2.19

Table 3 presents the welfare gains under our baseline parametrization relative to the two

time-consistent benchmarks. Consistent with prior expectations, the gains over laissez-faire

policies are the highest and amount to 2.19% of lifetime consumption. The gains come from

increased retirement savings and also from improved production efficiency. On the other

hand, the gains relative to mandatory savings is 0.96% of lifetime consumption, which is

considerably lower than laissez-faire policies, but still significant. Since mandatory savings

policy already forces agents to smooth their consumption, this implies the welfare gains of

the optimal education-dependent policies largely come from more efficient production.

4.1.2 Welfare Gains from Education-Dependent Wedges

We now turn our attention to the benchmark of optimal policies with present-biased

agents, but where some policies are restricted to be education-independent. Education-

independent policies are policies that are conditioned only on observed income y. We will

calculate the consumption-equivalent welfare gain from moving to the tax system where both

wedges depend on education attainment, relative to either of the two cases: (i.) education-

independent labor income tax and education-dependent savings subsidy and (ii.) education-

independent savings subsidy but education-dependent labor income tax.

Specifically, for case (i.) we solve the government’s problem under an additional con-

straint that, for any θ̂ and θ̃ such that y(H, θ̃) = y(L, θ̂) we have

h′
(
y(L,θ̂)

θ̂

)
θ̂u′
(
c1(L, θ̂)

) =
h′
(
y(H,θ̃)

θ̃

)
θ̃u′
(
c1(H, θ̃)

) (9)

In essence, regardless of education, agents with the same reported income face the same

labor tax. For case (ii.), on the other hand, we require the agents with the same reported

22



income, y(H, θ̃) = y(L, θ̂), face the same savings subsidy

u′
(
c1(L, θ̂)

)
u′
(
c2(L, θ̂)

) =
u′
(
c1(H, θ̃)

)
u′
(
c2(H, θ̃)

) (10)

Solving for optimal policies under constraints (9) and (10) is non-trivial because these

restrictions are contingent on allocations (declared income) rather than the underlying state

variables (productivity). We overcome this challenge by designing a computational algo-

rithm, described in Appendix E, which allows us to make the constraints conditional on

allocations. Figures 4(a) and 4(b) present the optimal wedges obtained under the two re-

strictions, along with the education-dependent benchmark.
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Figure 4: Optimal education-dependent and independent wedges

Table 4: Welfare gains over optimal education-independent policies

Education-independent: labor wedge intertemporal wedge

% increase in lifetime consumption 0.51 0.02

Table 4 shows welfare gains measured as a corresponding percentage increase in lifetime

consumption that would result from moving from a tax system in which one of the wedges

is education-independent to the optimal tax system (where all taxes depend on educational

attainment). First, if labor income taxes are allowed to be conditioned on education, the

resulting welfare gain is equivalent to a 0.51% increase in lifetime consumption. Second,

if savings subsidies are allowed to depend on education, the corresponding gain in lifetime

consumption would be 0.02%.
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The welfare implications of optimal education-dependent income taxes are in the ballpark

of the numbers reported by previous literature, for example Findeisen and Sachs (2016).

The novel component in this paper, education-dependent savings subsidies, are shown to

have much smaller welfare gains. This result is consistent with the broad literature in

macroeconomics which has found that consumption smoothing yields relatively small welfare

gains, given the standard parameter values. Most notably, Lucas (1987) showed that the

gain from eliminating all post-war business cycle fluctuations in the US would be equivalent

to a 0.05% increase in average consumption.

4.2 Testing Policies Without Screening

As a final step in our quantitative analysis of the model, we test whether the optimal

Mirrleesian screening approach is indeed preferable quantitatively to simpler alternatives. In

particular, we calculate the government’s value derived under the policy that all agents get

higher education, as well as one where no agents do.10
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Figure 5: Comparing optimal policies to alternatives without screening

Figure 5 presents the values associated with these alternative policies, along with the

optimal screening one. The values are presented as function of the annual monetary cost of

higher education, ranging from zero up to 40,000 USD (the actual calibrated cost, as Table

10In evaluating these policies, we use the counterfactual distributions of skills presented in Figure 1, as
well as counterfactual values for the discount factors δ0(e) and δ1(e)
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1 shows, is 15,700 USD). It can immediately be noticed that the optimal Mirrleesian policy

dominates both alternatives at all cost values, including zero. This is due to the fact that

going to college and beyond entails a significant opportunity cost of time spent in education.

It is also worth noticing that for realistic levels of the calibrated cost, sending no one to

college dominates the alternative of sending everyone to college.

5 Implementation

After characterizing the wedges, we are ready to discuss the implications of our findings on

the design of student loans, income taxes and retirement policies. In particular, this section

highlights how to decentralize policies where retirment savings is contingent on education

investment, which is the main innovation of the paper.11

For education policies, we consider a decentralization with student loans and income-

contingent repayment plans. Agents can take out a loan amount of L (e) , which is a function

of the education investment. After agents enter the work force, the loan repayment depends

on realized income. We abstract from parental financial assistance, so students solely rely

on student loans in t = 0.

For retirement savings, we consider two ways of implementing the optimum. First, we

present an implementation where the subsidy for retirement savings is both income and

education contingent. Finally, we examine an implementation with social security and a

retirement savings account where student loan repayments are also considered as contribu-

tions to the account. The latter captures the spirit of the recently proposed bills in the US

Congress, the Retirement Parity for Student Loans Act and the Retirement Security and

Savings Act, which intend to qualify student loan repayments for employer matching.

Before presenting the decentralized economy, it is important to note that we are departing

from the direct revelation mechanism in which agents report their type (γ, θ) . Instead, for

our implementation, policies are based on the observed education investment e, income y,

and savings. To do this, we first need to show that the optimal consumption from the

direct revelation mechanism {c0 (γ) , c1 (γ, θ) , c2 (γ, θ)}γ,θ∈Θ can be expressed as a function

of income y and education e. It is immediate that, by separating the agents according to their

innate ability, the optimal allocations can be rewritten as a function of education instead of

reported innate ability: c0 (γ) = c0 (eγ) and ct (γ, θ) = ct (eγ, θ) . The next lemma shows that

reported productivity can be replaced with income, so the government can implement the

optimum using policies that depend on income and education.

11We present the three period formulation of the problem here. Details on the life-cycle model are
presented in the appendix.
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Lemma 2 For any e ∈ {eL, eH} , the optimal consumption c1 (e, θ) and c2 (e, θ) are functions

of y (e, θ) : ct (e, θ) = ct (y (e, θ)) for any t ≥ 1.

5.1 Education-Contingent Retirement Savings Subsidy

For our first implementation, agents are offered a student loan L (e) in t = 0. They are

required to make income contingent repayments of [1− τ e (e, y)]L (e) in t = 1, where the

subsidy τ e (e, y) is a function of education expenses and income. In t = 1, agents also face

an income tax T (y) independent of education. Most importantly, agents can save s2 in a

retirement account at t = 1, where the savings are subsidized at a rate τ s (e, y) which is

a function of income and education investment. Furthermore, retirement savings s2 come

from after-tax funds, so the income and education dependent retirement savings account is

similar to a Roth 401(k). Finally, in each period, agents can save via the risk-free bond b,

which are taxed with a history-independent bond savings tax T k (b) .12

Given the proposed policies, at t = 1, agents with education level e and productivity θ

solve the following:

max
c1,y,c2,s2,b2

u (c1)− h
(y
θ

)
+ βδ2u (c2)

subject to

c1 + s2 + b2 + R̃1 (e) (1− τ e (e, y))L (e) = y − T (y) + R̃1 (e) b1 − T k (b2) ,

c2 = R2 (1 + τ s (e, y)) s2 +R2b2,

where R̃1 (e) = R1(e)
R0(e)

is the gross interest rate normalized by the difference between the

period lengths of t = 0 and t = 1. For example, R̃ (eL) = 0 since we assumed δ0 (eL) = 0 for

our quantitative analysis. Let {c∗1 (e, θ) , y∗ (e, θ) , c∗2 (e, θ)} denote the solution to the agents’

problem at t = 1 for any θ ∈ Θ and e ∈ {eL, eH} . Also, let U1 (e, θ) denote the value function

for the agents’ problem at t = 1. The agents’ problem with innate ability γ at t = 0 is

max
c0,e,b1

δ0 (e)u (c0) + βδ1 (e)

∫ θ

θ

[U1 (e, θ) + (1− β) δ2u (c∗2 (e, θ))] f (θ|κ (e, γ)) dθ

subject to

c0 + e+ b1 = L (e)− T k (b1) and e ∈ {eL, eH} .

Let P ss =
{

[L (e) , τ e (e, y)] , τ s (e, y) ,
[
T (y) , T k (b)

]}
. The following proposition states

12The bond savings tax helps the government deter agents from over-saving while simultaneously under-
supplying labor (Werning, 2011).
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that the optimum can be decentralized with an income-contingent student loans policy

(L (e) , τ e (e, y)) combined with an income and education dependent retirement subsidy

τ s (e, y) and tax policy
(
T (y) , T k (b)

)
.

Proposition 3 The optimum can be implemented with P ss.

Figure 6 presents the optimal student loan repayment and retirement savings subsidies

for the two education groups as function of income. Panel 6(a) shows that for the H-agents

with income below 60,000 in present value, the repayment subsidy starts at over 80% and

decreases with income. Once the Pareto tail kicks in, the trend reverts and the optimal

subsidy increases before settling at around 120%. Panel 6(b) shows the savings subsidy

schedules. Notice that the optimal subsidies closely mirror the intertemporal wedges τ k1

depicted in Figure 2, where lower income levels receive more subsidies and the subsidy for

college graduates is higher for virtually all income levels.
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Figure 6: Optimal education-contingent subsidies

It is worth pointing out that the optimal student loans subsidy is determined by the labor

wedges. We set the income tax to match the labor wedge for L-agents, while the income

contingent student loans subsidies coupled with the marginal income tax rate replicates the

optimal labor wedge for H-agents. Since the optimal labor wedge for H-agents is larger with

the difference growing until income 60, 000, the student loans subsidy is decreasing up to

that amount. Beyond 60, 000, the difference in the labor wedges decreases initially and with

the optimal labor wedge for L-agents eventually rising above the labor wedge of H-agents,

which causes the student loans subsidy to increase. Also, since we appended the Pareto-tail

to the top 10% of the productivity distribution for each education group, the U -shaped dip

in the labor wedge for H-agents is much higher than the one for L-agents. As a result, the
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labor wedge for L-agents is much larger than the labor wedge for H-agents with incomes

between 70, 000 and 90, 000. This drives the significant increase in student loans subsidy

beyond 60, 000.

5.2 Student Loan Payment as Contribution to Retirement Savings

In this section, we consider an implementation with social security benefits and retire-

ment savings accounts that are linked to student loan repayments. The advantage of this

decentralization is that it adopts the main features of existing retirement policies. Further-

more, it demonstrates how the aforementioned retirement bills proposed in the US Congress

could be used to implement the optimum.

For this implementation, similar to the current system, all agents receive an income-

contingent social security benefit a (y) upon retirement. The retirement savings account is

defined by the contribution matching rate α ∈ [0, 1] and a contribution limit s̄. Retirement

account contributions come from pre-tax income and are only lump-sum taxed T ra upon

withdrawal, so the retirement savings account is similar to a traditional 401(k). Furthermore,

similar to current retirement savings accounts, matched contributions are not subject to the

contribution limit s̄.

The novelty of this implementation is that the amount of student loan repaid r (e, y) is

considered a contribution, so employers can further contribute αr (e, y) into the account. Let

φ (s2, r) denote the amount of assets in the retirement savings account as a function of the

deposit s2 and the student loan repayment r, so we have φ (s2, r) = (1 + α) s2 + αr. Similar

to the previous implementation, L (e) denotes the student loan taken out in t = 0, and T (y)

denotes the income tax in t = 1. Here, the student loan repayment is tax deductible and

reduces income tax by g (r) .

Given the proposed policies, at t = 1, agents with education investment e and produc-

tivity θ solve

max
c1,y,c2,s2,b2

u (c1)− h
(y
θ

)
+ βδ2u (c2)

subject to

c1 + s2 + b2 + r (e, y) = y − T (y − s2) + g (r (e, y)) + R̃1 (e) b1 − T k (b2) ,

c2 = a (y) +R2φ (s2, r (e, y)) +R2b2 − 1φ>0T
ra,

0 ≤ s2 ≤ s̄,

where 1φ>0 is an indicator function with 1φ>0 = 1 if and only if there are assets in the account,
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otherwise 1φ>0 = 0. Adopting the notation introduced in the previous implementation, the

agents’ problem with innate ability γ at t = 0 is

max
c0,e,b1

δ0 (e)u (c0) + βδ1 (e)

∫ θ

θ

[U1 (e, θ) + (1− β) δ2u (c∗2 (e, θ))] f (θ|κ (e, γ)) dθ

subject to

c0 + e+ b1 = L (e)− T k (b1) and e ∈ {eL, eH} .

Let P ra =
{

[L (e) , r (e, y)] , a (y) , [α, s̄] ,
[
T (y) , T k (b) , T ra, g (r)

]}
denote the policy instru-

ments for the proposed implementation. The following proposition shows that it is possible

to decentralize the optimum using P ra.

Proposition 4 The optimum can be implemented through P ra where student loan repay-

ments are considered contributions to the retirement savings account.

Figure 7 presents the student loan repayment schedule in our second implementation. The

solid green line shows the face value of the repayment which starts high and then decreases

initially, allowing college-graduates to accumulate additional (and decreasing in income)

contributions in their 401(k) plans. In order to maintain the optimal income-contingency in

loan repayments, these agents are offered the tax deduction, which makes their repayment

schedule increase in income, as represented by the dashed red line. Notice that once the

Pareto tail for high school graduates kicks in, the two trends revert.
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Figure 7: Optimal student loan repayment schedule r(e, y)
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The effective student loan repayment schedule, which is determined by the difference

between the repayment schedule and the tax deduction, is largely shaped by the optimal

labor distortion as explained in the previous implementation. What is significant is that this

decentralization uses student loan repayments as a retirement savings vehicle for college-

educated agents. More specifically, our implementation constructs the social security benefits

to match the optimal retirement consumption of high school graduates. The student loan

repayments at its face value are designed to supplement the social security benefits so college-

educated agents consume the optimum during retirement.

At the heart of the implementation is the idea that college graduates can save for retire-

ment while paying off their student loans. The contribution matching rate α that arises in

our proposed implementation amounts to 2.00%, which is in the ballpark of the actual rate

used by the IRS ruling from May 2018.

6 Discussion

6.1 Heterogeneous Present Bias

We extend our results to an environment with heterogeneous present bias by assuming

that agents with innate ability γ have present bias βγ, where 1 ≥ βH > βL. The perfect

correlation between innate ability and the degree of present bias allows us to bypass the

multi-dimensional screening problem, simplifying the analysis.13 Proposition 5 characterizes

the distortions and shows that the link between retirement savings and education investment

persists when the degree of present bias is heterogeneous.

Proposition 5 The constrained efficient allocation with heterogeneous present bias satisfies

i. the inverse Euler equations (3), (4) and for any θ ∈ Θ,

1

βHu′ (c2 (H, θ))
=

1

u′ (c1 (H, θ))
+

(
1− βH
βH

)(
πH + βHµ

πH + µ

)
1

u′ (c0 (H))
,

1

βLu′ (c2 (L, θ))
=

1

u′ (c1 (L, θ))
+

(
1− βL
βL

)πL − βHµ
(
f(θ|κL,H)
f(θ|κL)

)
πL − µ

 1

u′ (c0 (L))
,

where µ = [u′ (c0 (L))− u′ (c0 (H))]
[
u′(c0(L))

πL
+ u′(c0(H))

πH

]−1

.

13This setup is related to Golosov et al. (2013). They consider an environment with time-consistent agents
where productivity is perfectly correlated with the long-run discount factor.
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ii. the labor wedge for H-agents satisfies (7) and for L-agents:

τw (L, θ)

1− τw (L, θ)
= AL (θ)BL (θ)

×

[
CL (θ)−

(
1− F (θ|κL,H)

1− F (θ|κL)

)
DL (θ) +

βL
1−βL

g (θ|κL)
βH

1−βH
g (θ|κL,H)

EL (θ)

]
,

where Eγ(θ) =
[

u′(c1(γ,θ))
βγu′(c2(γ,θ))

− 1
]
−
(

1−βγ
βγ

)
u′(c1(γ,θ))

φ
and 1

φ
= Eγ

[
Eθ
(

1
u′(c1(γ,θ))

∣∣∣∣γ)] .
Though the economic forces determining the wedges for H-agents remain unchanged,

Proposition 5 shows us how the optimal policy leverages the difference in β for the L-agents’

wedges. For the intertemporal wedge τ k1 (L, θ) , recall that the optimal policy recommends

front-loading consumption for high-income L-agents. Here, this front-loading could be more

perverse. It takes advantage of the fact that H-agents value retirement consumption more

than L-agents, so a restriction on retirement savings further deters downward deviations

by H-agents. This logic is similar to the key finding in Golosov et al. (2013) which shows

that discouraging the consumption of a good preferred by high types among low types raises

welfare. The labor wedge for L-agents τw (L, θ) also differs from the case with homogeneous

β. Recall that, in the previous sections, the present-bias component EL (θ) for L-agents

is enhanced by the differences in the factual and counterfactual distributions to deter H-

agents from mimicking. Here, the labor distortion for L-agents coming from the present-bias

component is weakened. This is because H-agents are less tempted to mimic L-agents due

to the larger intertemporal distortion, which relieves the labor distortions stemming from

present bias.

A special case is when H-agents are time consistent while only L-agents are present-

biased (βH = 1 > βL). From Proposition 5, the H-agents’ wedges share the same properties

as the wedges for time-consistent agents. Also, the present-bias component EL (θ) no longer

influences the labor wedge of L-agents. Instead, the optimal policy takes advantage of

present-biased L-agents entirely through the intertemporal distortion in retirement savings

τ k1 (L, θ) , which is worsened with time-consistent H-agents. This implies that even though

linking student loan payments to retirement savings is not essential for time-consistent college

graduates, education-dependent savings policies are still optimal. We believe this case is

a theoretical curiosity, since empirical studies have demonstrated pervasive present-biased

behavior among college students (Ariely and Wertenbroch, 2002; Steel, 2007).
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6.2 Non-Sophistication

The paper has thus far assumed that the agents are sophisticated—fully aware of their

present bias. Sophisticated agents have a demand for commitment to prevent their future-

selves from under-saving. The optimal policy in this paper takes advantage of this demand by

assisting college graduates with their retirement savings to incentivize them to go to college

in the first place. We may also want to investigate the optimal education and retirement

savings policies for non-sophisticated agents.

For non-sophisticated agents, the government can use off-path policies to take advantage

of their incorrect beliefs. Following Yu (2019a), the government can introduce a menu of

savings options in t = 1. One of the options in the menu will be selected by the agents

on the equilibrium path while the other option is a decoy, the off-path policy. The decoy

option features a relatively backloaded consumption path—high retirement consumption but

lower working period consumption—compared to the on-path option. At t = 0, the non-

sophisticated agents underestimate their present bias and thus overestimate the value of

retirement consumption to their future-selves. As a result, they mispredict that they will

select the decoy option in t = 1. In reality, their future-selves prefer the more front-loaded on-

path option instead. Therefore, the government can exploit this incorrect belief by promising

college graduates with high retirement benefits—which never needs to be implemented on the

equilibrium path—to induce investment in higher education. In other words, the inclusion

of a decoy option in the menu can relax the ex-ante incentive constraint. In fact, Yu (2019a)

showed that if the consumption utility is unbounded above and below, then the ex-ante

incentive constraints can be fully relaxed. More details are provided in Appendix F.

Off-path policies are powerful, but the optimal policy should still feature the interdepen-

dence between retirement savings and education investment. This is due to two reasons.

First, the economy is most likely populated by agents with heterogeneous levels of sophisti-

cation. A menu with decoy options would not be able to fool sophisticated agents, so it is

optimal for the government to rely on the present paper’s policies for relatively more sophis-

ticated agents. Future work should explore the optimal combination of these two policies.

Second, governments may object to the use of off-path policies to mislead agents due to moral

or reputational reasons. In this case, it is optimal to implement the education-dependent

retirement savings even for non-sophisticated agents. As long as agents have some demand

for commitment, albeit lower than what is optimal, the government can still take advantage

of this demand by making retirement savings contingent on education investment. However,

this interdependence disappears when agents are näıve—fully unaware of their present bias.

This is because näıve agents believe their future-selves to be time-consistent, so this paper’s

retirement policies would not encourage them to increase investment in education.
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7 Conclusion

This paper formulates the optimal education and retirement policies in a dynamic Mir-

rlees model with present-biased agents. A novel contribution of this paper is to show that

the optimal retirement savings policy depends on education. More specifically, we show how

linking student loan repayments to retirement savings along with some qualitative changes

to existing policies can implement the optimum. We estimate the welfare gains from these

policies to be significant. Also, the inverse Euler equation does not hold with present-biased

agents, but the labor wedge is quantitatively similar to the case with time-consistent agents.
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Appendices (for online publication)

A Derivation of the Theoretical Results

A.1 The Optimization Problem

Given Lemma 1, the relaxed optimal tax problem is

max
P

∑
γ

πγ

[
δ0 (eγ)u (c0 (γ)) + δ1 (eγ)

∫ θ

θ

[U1 (γ, θ) + (1− β) δ2u (c2 (γ, θ))] f (θ|κγ) dθ

]

subject to

U1 (γ, θ) = u (c1 (γ, θ))− h
(
y (γ, θ)

θ

)
+ βδ2u (c2 (γ, θ)) , (11)

∂U1 (γ, θ)

∂θ
=
y (γ, θ)

θ2
h′
(
y (γ, θ)

θ

)
, (12)

δ0 (eH)u (c0 (H)) + βδ1 (eH)

∫ θ

θ

[U1 (H, θ) + (1− β) δ2u (c2 (H, θ))] f (θ|κH) dθ

≥ δ0 (eL)u (c0 (L)) + βδ1 (eL)

∫ θ

θ

[U1 (L, θ) + (1− β) δ2u (c2 (L, θ))] f (θ|κL,H) dθ,

and the resource constraint. As is standard, we ignore the monotonicity constraint—y (γ, θ)

is non-decreasing in θ—and check it later. Also, we assume that the ex-ante incentive

constraint for H-agents binds and show that the incentive constraint for L-agents holds.

Let (λγ (θ) , ξγ (θ) , µ, φ) be the multipliers on (11), (12), ex-ante incentive compatibility

and resource constraint respectively. Using standard Hamiltonian techniques, we derive the

following necessary conditions for optimality(
1 +

µ

πH

)
u′ (c0 (H)) =

(
1− µ

πL

)
u′ (c0 (L)) = φ,

(πH + βµ) δ1 (eH) f (θ|κH)− ξ′H (θ) = λH (θ) ,[
πL − βµ

(
f (θ|κL,H)

f (θ|κL)

)]
δ1 (eL) f (θ|κL)− ξ′L (θ) = λL (θ) ,

(1− β) (πH + βµ) δ1 (eH) f (θ|κH) + βλH (θ) =
φπHδ1 (eH) f (θ|κH)

u′ (c2 (H, θ))
,

(1− β)

[
πL − βµ

(
f (θ|κL,H)

f (θ|κL)

)]
δ1 (eL) f (θ|κL) + βλL (θ) =

φπLδ1 (eL) f (θ|κL)

u′ (c2 (L, θ))
,
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and for all γ, the boundary conditions hold: ξγ (θ) = ξγ
(
θ
)

= 0, and

λγ (θ)u′ (c1 (γ, θ)) = φπγδ1 (eγ) f (θ|κγ) ,

λγ (θ)
1

θ
h′
(
y (γ, θ)

θ

)
+ξγ (θ)

[
1

θ2
h′
(
y (γ, θ)

θ

)
+
y (γ, θ)

θ3
h′′
(
y (γ, θ)

θ

)]
= φπγδ1 (eγ) f (θ|κγ) .

Below, we show that the theoretical results follow from these conditions.

A.2 Proofs

Proof of Proposition 1: Conditions (5) and (6) and µ follow from the first order conditions.

The inverse Euler equations (3) and (4) are derived using the perturbation argument.

Let P =
{
c0 (γ) , [ct (γ, θ) , y (γ, θ)]t>0,θ∈Θ

}
γ

be the allocation that solves the constrained

efficient planning problem. We first derive (4) by considering a small increase in c2 (γ, θ)

across θ for a fixed γ. That is, for all θ, define u (c̃2 (γ, θ)) = u (c2 (γ, θ)) + ∆ for some small

∆. We simultaneously decrease c1 (γ, θ) for all θ such that u (c̃1 (γ, θ)) = u (c1 (γ, θ))− δ2∆.

Such perturbations do not affect the objective function, the ex-ante incentive compatibility

and the ex-post incentive compatibility. It only affects the resource constraint. Note that the

perturbation must be the same for all θ or else it may violate ex-post incentive compatibility,

which is not the case if β = 1. If P is optimal, then it must be that ∆ = 0 minimizes the

resource used, i.e.,

0 = arg min
∆

∫
Θ

[
−u−1 [u (c1 (γ, θ))− δ2∆]− 1

R2

u−1 [u (c2 (γ, θ)) + ∆]

]
f (θ|κγ) dθ.

Evaluating the first order condition of this problem at ∆ = 0 yields (4).

Similarly, to derive (3), we consider a small decrease in c1 (γ, θ) for all θ and γ such that

u (c̃1 (γ, θ)) = u (c1 (γ, θ))− 1
δ1(eγ)

∆ for some small ∆. We simultaneously increase c0 (γ) for

all γ such that u (c̃0 (γ)) = u (c0 (γ)) + 1
δ0(eγ)

∆. Since it is perturbed for all θ, the ex-post

incentive compatibility constraint is not affected. Also, notice that the ex-ante incentive

compatibility constraint and objective function are not affected, but the resource constraint

changes. Crucially, the perturbation must be the same for all γ or it may violate ex-ante

incentive compatibility, which is not the case if β = 1. If P is optimal, then ∆ = 0 solves,

min
∆

∑
γ

πγ

{−u−1
[
u (c0 (γ)) + ∆

δ0(eγ)

]
R0 (eγ)

− 1

R1 (eγ)

∫
Θ

u−1

[
u (c1 (γ, θ))− ∆

δ1 (eγ)

]
f (θ|κγ) dθ

}
.

Evaluating the first order condition of this problem at ∆ = 0 yields (3).

37



Proof of Proposition 2: From the first order conditions, we have

ξH (θ) =

∫ θ

θ

[λH (x)− (πH + βµ) δ1 (eH) f (x|κH)] dx,

ξL (θ) =

∫ θ

θ

[λL (x)− [πLf (x|κL)− βµf (x|κL,H)] δ1 (eL)] dx.

First, we derive (7). Since λγ (θ) = φπγδ1(eγ)f(θ|κγ)

u′(c1(γ,θ))
, we rewrite the first order condition on

y (H, θ) as

φπHδ1 (eH) f (θ|κH)

1−
1
θ
h′
(
y(H,θ)
θ

)
u′ (c1 (H, θ))


=

[
1

θ2
h′
(
y (H, θ)

θ

)
+
y (H, θ)

θ3
h′′
(
y (H, θ)

θ

)]∫ θ

θ

[λH (x)− (πH + βµ) δ1 (eH) f (x|κH)] dx.

Let Aγ(θ) = 1−F (θ|κγ)

θf(θ|κγ)
and Bγ(θ) = 1 +

y(γ,θ)
θ

h′′( y(γ,θ)θ )
h′( y(γ,θ)θ )

, then dividing both sides by

1
θ
h′
(
y(H,θ)
θ

)
φπHδ1 (eH) f (θ|κH) yields

1

1
θ
h′
(
y(H,θ)
θ

) − 1

u′ (c1 (H, θ))

= AH (θ)BH (θ)

∫ θ

θ

[
λH (x)

φπHδ1 (eH) f (x|κH)
− πH + βµ

φπH

]
f (x|κH)

1− F (θ|κH)
dx.

By definition 1
θ
h′
(
y(γ,θ)
θ

)
= (1− τw(γ, θ))u′ (c1 (γ, θ)) and from the first order condition,

λγ(x)

φπγδ1(eγ)f(x|κγ)
= 1

u′(c1(γ,x))
, so we have

1

u′ (c1 (H, θ))

(
τw (H, θ)

1− τw (H, θ)

)
= AH (θ)BH (θ)

[∫ θ

θ

1

u′ (c1 (H, x))

f (x|κH)

1− F (θ|κH)
dx− πH + βµ

φπH

]
.

Observe that βµ
φπH

= µ
φπH
− (1−β)µ

φπH
, then by the first order conditions, we can sub-

stitute in µ
φπH

= 1
u′(c0(H))

− 1
φ

and (1−β)µ
φπH

= 1
βu′(c2(H,θ))

− 1
u′(c1(H,θ))

−
(

1−β
β

)
1
φ
. Define

Cγ(θ) =
∫ θ
θ
u′(c1(γ,θ))
u′(c1(γ,x))

[
1− u′(c1(γ,x))

φ

]
f(x|κγ)

1−F (θ|κγ)
dx, Dγ (θ) = u′ (c1 (γ, θ))

[
1

u′(c0(γ))
− 1

φ

]
, and

Eγ(θ) =
[
u′(c1(γ,θ))
βu′(c2(γ,θ))

− 1
]
−
(

1−β
β

)
u′(c1(γ,θ))

φ
then multiplying both sides by u′ (c1 (H, θ)) to

yield (7).

38



Using a similar process as above, we have the following expression for γ = L

τw (L, θ)

1− τw (L, θ)
= AL (θ)BL (θ)

[
CL (θ)−

∫ θ

θ

(
πLf (x|κL)− βµf (x|κL,H)

φπL

)
u′ (c1 (L, θ))

1− F (θ|κL)
dx

]
,

and integrating gives us (8). Furthermore, from the first order condition for c0, we have

φ =
[

πH
u′(c0(H))

+ πL
u′(c0(L))

]−1

, combining it with (3) yields φ =

{
Eγ
[
Eθ
(

1
u′(c1(γ,θ))

∣∣∣∣γ)]}−1

.

Proof of Lemma 2: For a fixed γ, suppose there exists θ̃ and θ̂ such that

y
(
γ, θ̃
)

= y
(
γ, θ̂
)
. Let Φ (γ, θ) = u (c1 (γ, θ)) + βδ2u (c2 (γ, θ)) . There are two cases

to consider. First, suppose Φ
(
γ, θ̃
)
6= Φ

(
γ, θ̂
)
, then clearly the allocations are not

incentive compatible. Next, suppose Φ
(
γ, θ̃
)

= Φ
(
γ, θ̂
)
, and without loss of generality

c1

(
γ, θ̃
)
> c1

(
γ, θ̂
)

and c2

(
γ, θ̃
)
< c2

(
γ, θ̂
)
. Let π̃ and π̂ denote the measure of

(
γ, θ̃
)

and
(
γ, θ̂
)

agents. Let ūt = 1
π̃+π̂

[
π̃u
(
ct

(
γ, θ̃
))

+ π̂u
(
ct

(
γ, θ̂
))]

. By assigning these

agents the average utility, the total welfare is unchanged and incentive compatibility is

preserved. However, since u is strictly concave, the consumption level that gives ū1 and ū2

relaxes the resource constraint. This means that it is not optimal for c1

(
γ, θ̃
)
> c1

(
γ, θ̂
)

and c2

(
γ, θ̃
)
< c2

(
γ, θ̂
)

with Φ
(
γ, θ̃
)

= Φ
(
γ, θ̂
)
. In other words, the consumption paths

are equivalent for agents of the same level of income.

Proof of Proposition 3: First, following Werning (2011), we construct bond savings tax

T k (b) such that agents never purchase bonds. To see how, consider the government assigning

the optimal allocation from the direct revelation mechanism given past and current reports,

while agents are allowed to purchase any desired amount of bonds. Define a fictitious tax

T k1 (b2, r̃, θ) paid in t = 1 for each productivity realization θ, current bond level b1, past

report r̃γ, current report r̃θ, and bond savings b2, where r̃ = (r̃γ, r̃θ) . The tax T k1 (b2, r̃, θ) is

set such that

u
(
c1 (r̃) + R̃1 (e (r̃γ)) b1 − b2 − T k1 (b2, r̃, θ)

)
− h

(
y (r̃)

θ

)
+ βδ2u (c2 (r̃) +R2b2)

= u (c1 (γ, θ))− h
(
y (γ, θ)

θ

)
+ βδ2u (c2 (γ, θ)) .

Next, by taking the supremum over all θ ∈ Θ, we obtain a bond savings tax T k1 (b2, r̃) =

supθ∈Θ T
k
1 (b2, r̃, θ) that is independent of productivity. Before we derive the bond savings
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tax in t = 0, let

V (b1, r̃γ, θ) = u
(
c1 (r̃γ, r̂θ) + R̃1 (e (r̃γ)) b1 − b̂2 − T k1

(
b̂2, r̃γ, r̂θ

))
− h

(
y (r̃γ, r̂θ)

θ

)
+ δ2u

(
c2 (r̃γ, r̂θ) +R2b̂2

)
,

where

(
r̂θ, b̂2

)
∈ arg max

r̃θ,b2

{
u
(
c1 (r̃) + R̃1 (e (r̃γ)) b1 − b2 − T k1 (b2, r̃)

)
− h

(
y (r̃)

θ

)
+ βδ2u (c2 (r̃) +R2b2)

}
.

Next, define T k0 (b1, r̃γ) = supγ∈{H,L} T
k
0 (b1, r̃γ, γ) with T k0 (b1, r̃γ, γ) chosen such that

δ0 (eγ)u
(
c0 (r̃γ)− b1 − T k0 (b2, r̃γ, γ)

)
+ βδ1 (e (r̃γ))E [V (b1, r̃γ, θ) |γ] = δ0 (eγ)u (c0 (γ))

+ βδ1 (eγ)

∫ θ

θ

[
u (c1 (γ, θ))− h

(
y (γ, θ)

θ

)
+ δ2u (c2 (γ, θ))

]
dF (θ|κ (eγ, γ)) .

Finally, by taking the supremum over all reports, we obtain a bond savings tax T k (b) =

supr̃t T
k
t (b, r̃t) , where r̃1 = r̃ and r̃0 = r̃γ, that only depends on bond purchases. With

T k (b) , agents do not purchase bonds while misreporting in equilibrium.

Next, we construct the other policy instruments. By Lemma 2, we can define the opti-

mal consumption derived from the direct mechanism as (c0 (e) , c1 (e, y) , c2 (e, y)) . First, we

construct the student loans and its income-contingent repayment schedule along with the

income tax. Let the loan amount be defined as

L (e) =

c0 (e) + e if e ∈ {eL, eH}

0 otherwise
,

and the income-contingent repayment subsidy is τ e (eL, y) = 1 and

τ e (eH , y) = 1+
1

R̃1 (eH)L (eH)

[
c1 (eH , y)−c1 (eL, y)+

c2 (eH , y)

R2 (1 + τ s (eH , y))
− c2 (eL, y)

R2 (1 + τ s (eL, y))

]
.

Let y (γ, θ) be the optimal output of type (γ, θ) agents in a direct revelation mechanism

and define Y = {y|y = y (γ, θ) with γ ∈ {L,H} and θ ∈ Θ} to be the admissible set of
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income. The income tax is

T (y) =

y − c1 (eL, y)− c2(eL,y)
R2(1+τs(eL,y))

if y ∈ Y

y if y /∈ Y
.

Next, we define the income and education contingent retirement savings subsidy as

1 + τ s (e, y) =


u′(c1(e,y))
βu′(c2(e,y))

if e ∈ {eL, eH}

0 otherwise
.

Finally, we check that the policy instruments implement the optimum. First, notice that

all agents choose e ∈ {eL, eH} , otherwise they will not have any retirement consumption.

Similarly, due to the income tax, all agents produce output y ∈ Y. Next, for any e ∈ {eL, eH}
and y ∈ Y, agents at t = 1 choose consumption to satisfy

u′ (c1)

βu′ (c2)
= 1 + τ s (e, y) and c1 +

c2

R2 (1 + τ s (e, y))
= c1 (e, y) +

c2 (e, y)

R2 (1 + τ s (e, y))
.

Clearly, agents optimally choose c1 = c1 (e, y) and c2 = c2 (e, y) . Also, by the taxation

principle, agents with productivity θ choose y = y (e, θ) . For the final step, notice that

given L (e) , agents with innate ability γ optimally choose education level eγ.

Proof of Proposition 4: By Lemma 2, we can define the optimal consumption derived from

the direct mechanism as (c0 (e) , c1 (e, y) , c2 (e, y)) . Similarly, we focus on an implementation

where agents do not purchase bonds due to the bond savings tax T k (b) , which is constructed

in the proof of Proposition 3.

For the policy instruments, we focus on an implementation where none of the agents

save in the retirement savings account, so s2 = 0. Agents with education eL rely on social

security for retirement consumption while agents with education eH depend on social security

benefits plus student loan repayment contributions in the retirement account. Let y (γ, θ)

be the optimal output of type (γ, θ) agents in a direct revelation mechanism and define

Y = {y|y = y (γ, θ) with γ ∈ {L,H} and θ ∈ Θ} to be the set of admissible income. First,

we construct the matching rate α to be

1 + α = inf
y∈Y,e∈{eL,eH}

u′ (c1 (e, y))

βu′ (c2 (e, y))
.

Next, we construct the social security benefit a (y) = c2 (eL, y) . We set the income tax to be
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T (y − s2) = y − s2 − c1 (eL, y) , and the tax deduction from student loan repayment is

g (r (eH , y)) = r (eH , y)− [c1 (eL, y)− c1 (eH , y)] and g (0) = 0.

Finally, we construct the student loans and its income-contingent repayment schedule along

with the tax on retirement savings account. Let the loan amount be defined as

L (e) =

c0 (e) + e if e ∈ {eL, eH}

0 otherwise
,

and the income-contingent repayment schedule is r (eL, y) = 0 and

r (eH , y) =
1

αR2

[c2 (eH , y)− c2 (eL, y) + T ra] .

We choose T ra such that r (eH , y) and g (R1r) are weakly positive. Let T ra (y) be a fictitious

tax schedule defined as

T ra (y) = max {0, c2 (eL, y)− c2 (eH , y) , c2 (eL, y)− c2 (eH , y) + αR2 [c1 (eL, y)− c1 (eH , y)]} .

Observe that given T ra (y) , both the repayment schedule and the tax deduction are weakly

positive for any income. Lastly, by taking the supremum over all income, we obtain an

income-independent lump-sum tax:

T ra = sup
y∈Y

T ra (y) .

For our last step, we check that the policy instruments implement the optimum. First,

notice that all agents would choose e ∈ {eL, eH} , otherwise c0 = 0. Next, due to the low

matching rate, all agents choose s2 = 0. As a result, given the taxes and social security

benefit, agents who invested eL consume c1 = c1 (eL, y) and c2 = c2 (eL, y) . Next, for

agents who invested eH , given the taxes, c1 = y − T (y) + g (r (eH , y)) − r (eH , y) and

c2 = a (y) + αR2r (eH , y)− T ra, so they optimally choose c1 = c1 (eH , y) and c2 = c2 (eH , y) .

Also, by the taxation principle, agents with productivity θ choose y = y (e, θ) . Finally,

notice that given L (e) , agents with innate ability γ optimally choose education level eγ.

Proof of Proposition 5: With heterogeneous β, the government’s problem remains the
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same except (11) is now

U1 (γ, θ) = u (c1 (γ, θ))− h
(
y (γ, θ)

θ

)
+ βγδ2u (c2 (γ, θ)) ,

for all γ and the ex-ante incentive constraint is

δ0 (eH)u (c0 (H)) + βHδ1 (eH)

∫ θ

θ

[U1 (H, θ) + (1− βH) δ2u (c2 (H, θ))] f (θ|κH) dθ

≥ δ0 (eL)u (c0 (L)) + βHδ1 (eL)

∫ θ

θ

[U1 (L, θ) + (1− βL) δ2u (c2 (L, θ))] f (θ|κL,H) dθ.

The results follow from the procedures outlined in the proofs for Proposition 1 and

Proposition 2.

B Approximating Current Policies

To approximate current income taxes in the United States, we follow Heathcote et al.

(2017) and assume an income tax function T (y) = y − λy1−τ . College students have access

to low-interest federal loans. In t = 0, agents take out loans with gross interest R < R1 (eH)

for loans below L. We model this as if agents who chose eH receive a lump-sum transfer of

T (eH) = RL when they start working. Agents who choose eL do not receive this transfer.

Upon retirement, agents receive social security benefits, which are income-dependent.

The regulation below has been translated to fit the context of our model. To derive an

agent’s social security benefits, first calculate the agent’s average indexed monthly earnings

(AIME) which is defined as AIME = y
12

for annual income y. In practice, the social security

administration takes 35 of the highest annual incomes from the 45 years of the agent’s work

life and calculate the average monthly earnings. Next, based on 2015 social security regu-

lations, the agent’s monthly benefit a(AIME) is determined by the following replacement

rates and bend points:

a(AIME) =



0.9× AIME if AIME ≤ 826

743.4 + 0.32× (AIME − 826) if 826 < AIME ≤ 4, 980

2, 072.68 + 0.15× (AIME − 4, 980) if 4, 980 < AIME ≤ 9, 875

2, 806.93 if AIME > 9, 875

.
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This immediately implies that the agent receives A(y) = 12×a (AIME) every year in social

security benefits.

Using the 2015 regulations, agents are subject to a flat social security tax Ts (y) , which

is defined as

Ts (y) =

0.124× y if y ≤ 118, 500

14, 694 if y > 118, 500
.

The tax is capped at an annual income of 118, 500. Furthermore, the social security benefits

are distributed from the social security tax.

We assume that agents accumulate retirement savings in a 401(k) account and a regular

savings account which pays a gross interest of R2. Let s2 denote savings in a 401(k) account

and b2 in the regular savings account. Contributions to the 401(k) account are capped at an

annual amount of 18, 000. We also assume an employer matching rate of 50%. Contributions

to defined contribution plans, such as 401(k), are pre-tax. This means that income tax

payments are deferred upon withdrawal when retiring. However, social security tax is not

deferred. Since contributions to 401(k) are matched, agents would first save in their 401(k)

accounts until the cap binds, before saving in their regular accounts.

B.1 Deriving Allocations for Current Policies

To determine the allocation of present-biased agents under the current policy, we adopt

subgame perfect Nash equilibrium as our solution concept.

B.1.1 The Working Period Problem

By backward induction, agents with productivity θ who took out a loan of b1 in t = 0

and invested e in education solve the following problem:

maxu (c1)− h (l) + βδ2u (c2)

subject to

c1 + b2 + s2 = θl − T (θl − s2)− Ts (θl)− R1 (e)

R0 (e)
b1 + 1e=eHT (eH) ,

c2 = 1.5R2s2 +R2b2 + A (θl)− T (1.5R2s2) ,

s2 ≤ c,
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where c is the upper-bound on contributions to the 401(k) account and 1e=eH = 1 only if

agents invested eH , or else 1e=eH = 0. Let χt (θ) denote the multiplier on the period t budget

constraint for agents who invested eH , and χ
t
(θ) be the multiplier for low-educated agents.

Using Only 401(k): When agents only use 401(k), then it means that agents choose to

save s2 < c.

We first look at agents who invested eH . The first order conditions for consumption and

savings s2 are

u′ (c1) = χ1 (θ) , βδ2u
′ (c2) = χ2 (θ) and χ1 (θ) = χ2 (θ) 1.5R2

(
θl − s2

1.5R2s2

)τ
.

This provides us with the following Euler equation:

u′ (c1) = 1.5β

(
θl − s2

1.5R2s2

)τ
u′ (c2) .

For labor supply, we have four different income regions to consider:

h′ (l) =



χ2 (θ)
{

1.5R2

(
θl−s2

1.5R2s2

)τ
B (θ, y, s2) + 0.9θ

}
if y ≤ 9, 912

χ2 (θ)
{

1.5R2

(
θl−s2

1.5R2s2

)τ
B (θ, y, s2) + 0.32θ

}
if 9, 912 < y ≤ 59, 760

χ2 (θ)
{

1.5R2

(
θl−s2

1.5R2s2

)τ
B (θ, y, s2) + 0.15θ

}
if 59, 760 < y ≤ 118, 500

χ2 (θ) 1.5R2

(
1

1.5R2s2

)τ
θλ (1− τ) if y > 118, 500

,

where B (θ, y, s2) = θλ (1− τ) (y − s2)−τ − 0.124θ As for agents who invested eL, the first

order conditions are the same except for replacing χt (θ) with χ
t
(θ) .

Using Both 401(k) and Savings: When agents start saving in the regular savings

account—b2 > 0, then it means that s2 = c.

We first analyze the case where agents invested eH in t = 0. Suppose the agent has saved

s2 = c, then the agent can only continue to save with the standard savings account. We can

rewrite the sequential budget constraint into its present value terms:

c1 +
c2 − λ (1.5R2c)

1−τ − A (θl)

R2

= λ (θl − c)1−τ − Ts (θl)− R1 (eH)

R0 (eH)
b1 + T (eH) .

Let χ (θ) denote the multiplier on the present-valued budget constraint. The first order
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conditions on consumption are

u′ (c1) = χ (θ) and βu′ (c2) = χ (θ) .

The first order condition for labor is

h′ (l) =



χ (θ)
[
θλ (1− τ) (θl − c)−τ − 0.124θ + 0.9

R2
θ
]

if y ≤ 9, 912

χ (θ)
[
θλ (1− τ) (θl − c)−τ − 0.124θ + 0.32

R2
θ
]

if 9, 912 < y ≤ 59, 760

χ (θ)
[
θλ (1− τ) (θl − c)−τ − 0.124θ + 0.15

R2
θ
]

if 59, 760 < y ≤ 118, 500

χ (θ) θλ (1− τ) (θl − c)−τ if y > 118, 500

,

We can derive a similar set of first order conditions for agents who obtained education

level eL.

B.1.2 The Schooling Period Problem

Let (č1 (e, θ) , y̌ (e, θ) , č2 (e, θ)) denote the solution to the problem in Section B.1.1, which

is the optimal consumption path and output agents choose in t = 1 given education e and

producticity θ. Agents with innate ability γ solve the following problem:

max
c0,e,b1

δ0 (e)u (c0) + βδ1 (e)

∫ θ

θ

[
u (č1 (e, θ))− h

(
y̌ (e, θ)

θ

)
+ δ2u (č2 (e, θ))

]
f (θ|κ (e, γ)) dθ

subject to

c0 + e = b1 and e ∈ {eL, eH} .

In essence, agents take out a yearly loan of b1 to pay for their schooling and consumption in

t = 1.

B.2 Calibration

In this section we calibrate the model to resemble the “real world” as closely as possible.

The goal is to back out the distribution of productivities across different education groups.

To this extent, we first pick a number of parameters externally and summarize them in Table

5. Then, we calibrate the distributions of skills internally to match the evidence on lifetime

earning provided by Cunha and Heckman (2007).

The values of risk aversion and Frisch elasticity of labor are standard and set to 2 and
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Table 5: Parameter values in the model

Symbol Meaning Value Source

γ Risk aversion 2
}

Standard valuesη Frisch elasticity 0.5

τ Tax progressivity 0.161
}

Heathcote and
Tsujiyama (2017)λ Taxation level 0.839

c 401(k) contribution limit 1.80


Approximated
from data

eH Cost of college 1.57
rm Commercial interest on student loans 0.1
rg Government interest on student loans 0.05
b̄g Cap on government-subsidized student loans 5.75

β Short-term discount factor 0.7


Based on
Nakajima (2012)

δ0(eL) High school period 0 long-term discount factor 0.00
δ1(eL) High school period 1 long-term discount factor 1.00
δ0(eH) College period 0 long-term discount factor 0.15
δ1(eH) College period 1 long-term discount factor 0.93
δ2 Retirement discount factor 0.270

Time-consistent benchmark (β = 1)


Based on
Nakajima (2012)

δ0(eL) High school period 0 long-term discount factor 0.00
δ1(eL) High school period 1 long-term discount factor 1.00
δ0(eH) College period 0 long-term discount factor 0.19
δ1(eH) College period 1 long-term discount factor 0.85
δ2 Retirement discount factor 0.154

Note: All monetary parameters are denominated in 10,000 of 2015 US dollars.

0.5, respectively. Next, we discuss the calibration of the current tax system. The parameters

of the income tax function τ and λ are borrowed from Heathcote and Tsujiyama (2017) and

apply to income level normalized by average income in the economy.14 The upper bound for

401(k) contributions c is set to $18,000 and reflects the present value of lifetime contribution

limits based on the limit in 2015. As for the financing of student loans, we assume for

simplicity that the annual interest rates an agent may obtained through private market and

through a government-subsidized scheme are 10% and 5%, respectively. The amount of

subsidized loan is capped at $57,500, in line with the regulations for Stafford loans in the

US. We further assume that an agent takes ten years to repay the student loans.

14We calculate average income directly using the factual distributions of lifetime income from Cunha
and Heckman (2007) and the shares of high school and college graduates (and beyond) of 0.68 and 0.32,
respectively, from the CPS. The average lifetime income amounts to $1,570,900.
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The annual cost of higher education eH is assumed to be $15,700, which is calculated

for 2015 based on average tuition costs of private and public colleges plus different types of

graduate degrees15 as well as relative enrollment data for both types of college.16 Table 6

presents a breakdown of different higher education outcomes, along with average costs and

durations, which we use to calculate this parameter.

Table 6: Breakdown of higher education outcomes

Degree type % of population Duration Annual cost

Associate’s and less 67.7 0 0
Bachelor’s only 20.3 4 15, 396
Master’s 8.0 6 16, 140
Professional 1.9 8 27, 210
Doctoral 2.1 10 6, 158

Total 100 5.12 15, 695

Note: distribution of educational attainment is from CPS 2015. The durations and

annual costs are cumulative. The data on costs of various higher degrees are taken

from NCES, Digest of Education Statistics and expressed in 2015 dollars. We ignore

the cost and duration of Associate’s degrees as those are often combined with jobs.

In calibrating the short- and long-term discount factors we primarily follow Nakajima

(2012) who uses a general equilibrium model with present-biased agents and targets a capital-

output ratio of 3. We adopt his assumed value of the short-term discount factor of 0.7

which places in the midrange of estimates found by Laibson et al. (2017). The annual

long-run discount factor is δannual = 0.9852 following Nakajima (2012) which we in turn use

to calculate effective discount rates across the three periods in our model. These effective

discount rates also reflect the relative lengths of the periods, which may differ across agents

of different education groups. Because high school graduates start working right away, they

never actually experience the education period 0; hence their parameter δ0(eL) is zero and

δ1(eL) is one. On the other hand, college graduates spend 5.12 years in period 0, which

reflects the average duration of undergraduate and graduate studies in the US (Table 6

presents a detailed breakdown), and then another 45 years in period 1. This yields δ0(eH) =
1−δ5.12annual

1−δ45annual
= 0.15 and δ1(eH) =

δ5.12annual−δ
50.12
annual

1−δ45annual
= 0.93. We assume that both education types

spend 45 years working and 20 years in retirement. This yields a common retirement period

discount factor of δ2 =
δ45annual−δ

65
annual

1−δ45annual
= 0.27.17

15Source: College Board, Annual Survey of Colleges and NCES, Digest of Education Statistics
16Source: NCES, Digest of Education Statistics, and Current Population Survey 2015
17Because the college type first spends four years on education before they start to work, we assume that

they also retire four years later, at age 67, and live four years longer. This is consistent with a significant
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For our analysis in the main body of the paper we also use the benchmark of time-

consistent agents, i.e. the world where β = 1. For reference, we present here the analogous

derivations of the effective long-run discount factors for that case. Once again following

Nakajima (2012) we assume an annual discount rate δannual = 0.9698. Then, with the same

reasoning we assume δ0(eL) = 0 and δ1(eL) = 1 for high school graduates, compared to

δ0(eH) = 0.19 and δ1(eH) = 0.85 for college graduates. The discount factor for retirement

amounts to δ2 = 0.15.

Having established the external parameters, we turn to the parameters governing the

distribution of skills which are set through solving and simulating the model. For each of

the four groups of agents: (i.) factual high school graduates, (ii.) high school graduates, had

they gone to college, (iii.) factual college graduates, and (iv.) college graduates, had they not

gone to college, we observe the empirical distributions of lifetime earnings reported by Cunha

and Heckman (2007). Roughly speaking, these distributions are obtained by estimating a

Roy-type model on combined NLSY and PSID data and generating counterfactuals for both

education groups. As it is commonly known, panel surveys such as these tend to under-

represent the upper tail of the earnings distribution. For this reason, similar to Findeisen

and Sachs (2016), we add an upper Pareto-tail with the shape parameter of 1.5 (Saez (2001)).

For each distribution, we select an income threshold at which we attach the Pareto tail such

that the upper 10% of the mass is distributed according to it. We pick the scale parameter

such that the (smoothed out) PDF of the empirical distribution of earnings from Cunha and

Heckman (2007) intersects at the threshold with the Pareto PDF Table 7 summarizes the

parameters of the Pareto tail that we add to each of the empirical distribution of lifetime

earnings.

Table 7: Adding a Pareto tail to lifetime income distributions

HS fact. HS counter. COL fact. COL counter.

Threshold 203.7 257.6 288.4 212.8
Scale parameter 62.9 80.2 89.4 63.8

Note: The thresholds refer to present value of lifetime earnings and are expressed in

$10,000s of 2015 dollars. Thresholds are selected in each case such that 10% of total

mass is distributed according to Pareto distribution with the shape parameter of 1.5.

To capture the earnings distribution with a fat upper tail in our model, we assume

that agents’ skills θ follow a mixture of two distributions, a normal distribution and a two-

piece distribution (lognormal-Pareto) as described in Nigai (2017). The probability density

body of research which shows college graduates live longer than non-college graduates (Meara et al., 2008).
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function of our mixture is then given by

f(θ) =p×
[

1

2πσ1

exp

{
(θ − µ1)2

2σ2
1

}]
(13)

+(1− p)×


ρ

Φ
(
αs(α,ρ)

) 1√
2πs(α,ρ)θ

exp
{
−1

2

(
αs(α, ρ)− log(θT )−log(θ)

s(α,ρ)

)}
, if θ ∈ (0, θT )

(1− ρ)α(θT )α

θα+1 , if θ ∈ [θT ,∞)

In equation (13), µ and σ are the mean and standard deviation of the normal distribu-

tion, and p is the probability of drawing it. The two-piece lognormal-Pareto distribution

comes with a shape parameter α, which we fix at 1.5, and two scale parameters, ρ and θT .

Intuitively, θT is the threshold value at which the standard lognormal distribution turns into

Pareto, while ρ ∈ (0, 1) represents the fraction of total mass that is distributed according to

lognormal. We have hence 5 parameters to pin down for each of the four groups of agents,

(µ, σ, ρ, θT , p), in order to replicate the empirical distributions of earning provided by Cunha

and Heckman (2007) and augmented with the Pareto tail. To do so, we solve for the optimal

policy functions in each of the four cases and simulate random draws for 100,000 agents. We

use a global optimization algorithm to minimize the distance between the simulated CDF of

lifetime earnings and the targeted one. Table 8 shows all components of our mixture density

defined in (13) matter quantitatively and altogether result in a good fit for model-derived

distributions of earnings in each group. Figures 8-9 depict the CDF of lifetime earnings

in the model and their empirical targets across the four groups of agents. Notice that all

estimations result in an excellent fit to the data, with an exception of High School counter-

factual. However, this distribution does not affect the model solution in any way and it is

only necessary to verify that the low type indeed prefers to reveal truthfully.

Table 8: Parameters of productivity distributions

Symbol Meaning
Value

HS fact. HS counter. COL fact. COL counter.

µ Mean of normal 7.91 8.99 10.34 8.25
σ St. dev. of normal 2.15 2.44 3.48 2.15
θT Threshold for Pareto 8.36 8.45 18.24 8.10
ρ Fraction of lognormal 0.39 0.48 0.65 0.43
p Probability of normal 0.64 0.60 0.66 0.56

Note: Productivities drawn from these distributions are in annual terms.
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Figure 8: Distributions of lifetime income - factual
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Figure 9: Distributions of lifetime income - counterfactual

C Decomposition of the Labor Wedge

In this section, we quantify the decomposition of the labor wedge introduced in Section

3.2. Figure 10 presents the numerical approximation of the labor wedge components A,C,D

and E as function of income for the high innate ability type.18 The A component depends

on the inverse hazard rate of the distribution of θ and declines at first, before increasing and

converging to a constant due to the presence of a Pareto tail. By contrast, the intratemporal

component C increases and then converges, resulting in the overall convergence of the labor

18We ignore the B components because, given the functional forms we impose, it reduces to a constant. We
also omit the decomposition for the low innate ability type because in our calibrated model the period-zero
consumption of L-agents is not pinned down. As a result, the intertemporal component is not well-defined.
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wedge at the top of the distribution. The offsetting role that comes from the intertemporal

component D is much smaller in size and decreases monotonically.

Decomposition of the labor wedge
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Figure 10: Labor wedge components for the high innate ability type

The novel aspect of our paper is the introduction of E, the present bias component. As

can be noticed, this components declines monotonically but its magnitude is also very small

compared to components D, or especially C. Consequently, the labor wedge is generally not

much affected by the present bias, and any difference shows up most prominently at the

lowest levels of income, as evident in Figure 3.

To get a better understanding of this result, we can decompose the present bias element

further into the disagreement component and the myopic component, as explained in Section

3.2. Figure 11 plots these two components on a single graph for the high innate ability

type. Notice immediately that they offset each other for the most part and so the difference

between them, the present bias component of the labor wedge, is quantitatively very small.

This is similar for L-agents, which is plotted in Figure 12.
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Figure 12: Decomposition of the present bias element of the labor wedge for L-agents

D Time-Consistent Benchmarks

In this section, we present details of the implementation of the time-consistent optimal

policies, which we use as benchmark for welfare calculations in Section 4.1. We consider two

ways to implement the optimal allocation for time-consistent agents: mandatory retirement

savings and laissez faire retirement savings. The two different implementations lead to

different measures of welfare improvement.

First, we characterize the optimal allocations for time-consistent agents in a direct mech-
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anism. Let
{
c̃0 (γ) , [c̃t (γ, θ) , ỹ (γ, θ)]t>0,θ∈Θ

}
be the optimal allocation for time-consistent

agents. The optimal allocation for time-consistent agents satisfies the following:

u′ (c̃1 (γ, θ)) = u′ (c̃2 (γ, θ)) .

This implies that c̃1 (γ, θ) = c̃2 (γ, θ) = c̃ (γ, θ) . For t = 0, the government implements c̃0 (γ)

by providing agents a student loan of

L (eH) = c̃0 (H) + eH and L (eL) = c̃0 (L) + eL.

Next, we proceed to consider two different methods to decentralize the optimal allocations

in t = 1 and t = 2.

D.1 Mandatory Savings

Consider a mandatory minimum savings rule that forces agents to smooth consump-

tion: c̃1 (γ, θ) = c̃2 (γ, θ) . For time-consistent agents, the policy implements the optimum.

However, for present-biased agents, the minimum savings rule is not incentive compatible.

To see how the minimum savings rule changes the behavior of present-biased agents, we

first analyze how agents would change their reports of θ. Since for our quantitative exercise,

u (c) = c1−σ

1−σ and h
(
y
θ

)
= 1

1+ 1
η

(
y
θ

)1+ 1
η . Then, for a given report of innate ability γ̂ and the

time-consistent allocations, present-biased agents choose a report θ̂ to maximize the utility

at t = 0. In essence, a θ-agent solves

max
θ̂
u
(
c̃1

(
γ̂, θ̂
))
− h

 ỹ
(
γ̂, θ̂
)

θ

+ βδ2u
(
c̃2

(
γ̂, θ̂
))

.

From the argument above and the assumptions on the utility function, the problem can be

rewritten as

max
θ̂
u
(
c̃
(
γ̂, θ̂
))
− 1

1 + 1
η

 ỹ
(
γ̂, θ̂
)

(1 + βδ2)
1

1+ 1
η θ

1+ 1
η

.

We know that when β = 1, the solution to the problem above is θ̂ = θ, because the mechanism

satisfies incentive compatibility for time-consistent agents by assumption. Thus, we can
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transform the problem into the following alternative problem:

max
θ̂
u
(
c̃
(
γ̂, θ̂
))
− 1

1 + 1
η

 ỹ
(
γ̂, θ̂
)

α (1 + δ2)
1

1+ 1
η θ

1+ 1
η

,

where α =
(

1+βδ2
1+δ2

) 1

1+ 1
η . Immediately, we can see that agents optimally report θ̂ = αθ,

because the problem is similar to a time-consistent agent with productivity αθ. As a result,

the present-biased agents with productivity θ do not report truthfully and instead report

(
1 + βδ2

1 + δ2

) 1

1+ 1
η
θ.

This result is intuitive, because the reward for working is spread evenly between the two

periods with mandatory savings. Since present-biased agents put less weight on retirement

consumption, the mandatory savings policy provides less incentives for them to work. Their

optimal strategy is to under-report their productivity to work less.

Finally, in t = 0, agents know that they will report
(

1+βδ2
1+δ2

) 1

1+ 1
η θ in t = 1. As a result,

given the optimal time-consistent allocation, H-agents solve the following:

max

{
u (c̃0 (H))+β

δ1 (eH)

δ0 (eH)

∫ θ

θ

u(c̃1

(
H, θ̂

))
− h

 ỹ
(
H, θ̂

)
θ

+ δ2u
(
c̃2

(
H, θ̂

)) dF (θ|κH) ,

δ0 (eL)

δ0 (eH)
u (c̃0 (L))+β

δ1 (eL)

δ0 (eH)

∫ θ

θ

u(c̃1

(
L, θ̂

))
− h

 ỹ
(
L, θ̂

)
θ

+ δ2u
(
c̃2

(
L, θ̂

)) dF (θ|κL,H)

}
,

where θ̂ =
(

1+βδ2
1+δ2

) 1

1+ 1
η θ.

D.2 Laissez Faire Savings

Another way to implement the optimum is for the government to allow agents to save

freely for retirement. This is because with time-consistent agents, it is not necessary for

the government to introduce any additional incentives for retirement savings. Hence, to

implement the optimal allocation for time-consistent agents, the government only needs to

introduce appropriate income taxes at t = 1 and student loans in t = 0. However, under

laissez faire savings, present-biased agents do not smooth consumption and it is also not

incentive compatible.
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To find out how present-biased agents behave, we first derive the income tax T̃ (y) that

implements the optimum for time-consistent agents. At t = 1, time-consistent agents solves

the following:

max
c1,c2,y

u (c1)− h
(y
θ

)
+ δ2u (c2)

subject to

c1 + s2 = y − T̃ (y) and c2 = R2s2.

Let Ỹ be the set of optimal income for TC agents:

Ỹ = {y|y = ỹ (γ, θ) , ∀γ ∈ {L,H} , θ ∈ Θ} .

By Lemma 2, we can rewrite the allocations in terms of income: c̃t (ỹ (γ, θ)) = c̃ (γ, θ) .

As a result, we can define the following income tax, which implements the optimum for

time-consistent agents:

T̃ (y) =

y if y /∈ Ỹ

y − c̃ (y)− 1
R2
c̃ (y) if y ∈ Ỹ .

.

For simplicity, we assume that if the government observes an off-path income level that it

didn’t expect, it usurps all of the output and leaves the agent without any consumption.

Next, we outline how present-biased agents behave under laissez faire savings. Given

laissez faire savings and the income tax above, present-biased agents solve the following at

t = 1,

max
c1,c2,y

u (c1)− h
(y
θ

)
+ βδ2u (c2)

subject to

c1 + s2 = y − T̃ (y) and c2 = R2s2.

We can rewrite the problem as

max
c1,c2,y

u (c1)− h
(y
θ

)
+ βδ2u (c2)

subject to

c1 +
1

R2

c2 =

(
1 +

1

R2

)
c̃ (y) and y ∈ Ỹ .

It is clear that agents never choose y /∈ Ỹ , because all of the output would be confiscated.

As a result, for any given y ∈ Ỹ , present-biased agents choose consumption (ĉ1 (y) , ĉ2 (y))
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to satisfy

u′ (ĉ1 (y)) = βu′ (ĉ2 (y))

and

ĉ1 (y) +
1

R2

ĉ2 (y) = c̃ (y) +
1

R2

c̃ (y) .

It is obvious that agents do not choose the optimum for time-consistent agents. Hence, there

will be intertemporal inefficiencies. In addition to the intertemporal inefficiencies, the agents

might also choose suboptimal output. Agents choose y by solving the following:

max
y∈Ỹ

u (ĉ1 (y))− h
(y
θ

)
+ βδ2u (ĉ2 (y)) ,

where (ĉ1 (y) , ĉ2 (y)) is defined above.

After solving for the optimal allocations for t = 1, 2, we can solve for the agent’s education

choices in t = 0. The process is the same as the one for mandatory savings.

D.3 Welfare Comparisons

To evaluate the welfare improvement of the paper’s proposed policies, we measure the

change of moving from mandatory savings or laissez faire savings to the policies introduced

in Section 5.

However, this welfare evaluation is not straightforward. We need to guarantee the al-

locations chosen by present-biased agents under mandatory savings or laissez faire savings

are feasible. This is because, from the analysis above, output of present-biased agents is

further distorted under policies designed for TC agents. Therefore, the government budget

constraint does not hold with present-biased agents under mandatory savings or laissez faire

savings.

To facilitate the welfare comparison, we introduce an external government expenditure

G > 0 in the time-consistent setup, so that the resource constraint becomes

∑
γ

πγ

{
− c̃0 (γ)

R0 (eγ)
− eγ +

1

R1 (eγ)

∫
Θ

[
ỹ (γ, θ)− c̃1 (γ, θ)− 1

R2

c̃2 (γ, θ)

]
f (θ|κγ) dθ

}
≥ G.

We interpret G as an emergency fund the government uses to supplement the agents’

consumption when total output is lower than expected. Hence, we require G to

be sufficiently large so that the allocations chosen by the present-biased agents,
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{
ĉ0 (γ) , [ĉt (γ, θ) , ŷ (γ, θ)]t>0,θ∈Θ

}
, are feasible:

∑
γ

πγ

{
− ĉ0 (γ)

R0 (eγ)
−eγ+

1

R1 (eγ)

∫
Θ

[
ŷ (γ, θ)− ĉ1 (γ, θ)− 1

R2

ĉ2 (γ, θ)

]
f (θ|κγ) dθ

}
≥ 0. (14)

D.4 Quantitative Implementation

In our quantitative exercise, we design a fixed-point algorithm to find the value of G such

that the resource constraint in (14) binds. The algorithm can be summarized as follows:

1. Start with an initial value for government spending G0.

2. Solve for the optimal allocations with time-consistent agents.

3. Use the allocations, implemented either through mandatory savings or laissez-faire

arrangement, to solve for the best response of present-biased agents. Calculate the

resulting gap in the resource constraint which stems from present-biased agents under-

reporting their productivity type. Denote the gap G1.

4. Check if |G0 −G1| < ε, where ε is a tolerance criterion. If yes, we have found a fixed

point. If not, update G0 and go back to step 1.

Table 9 summarizes the fixed-point amount of government spending G under both im-

plementations which balances the resource constraint under present-biased agents.

Table 9: Fixed-point amount of government spending that balances the resource constraint

Mandatory savings Laissez-faire

10.19 11.27

E Solving for Optimal Education-Independent Policies

In this section, we describe the computational algorithm used to solve for the bench-

mark case of optimal allocations conditional on the labor or the intertemporal wedge being

education-independent. The challenge lies in the fact that while the allocations that we

solve for are a function of productivity θ, the education-independence constraint on wedges

is imposed for each observable income y(γ, θ) which itself is an allocation.

To overcome this challenge we adopt the following approach:
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1. Create an exogenous grid for income consisting of Ny points. This grid is separate

from the original grid for productivity θ on which the allocations are defined.

2. Consider a generic set of allocations {c1(γ, θ), c2(γ, θ), y(γ, θ)}γ∈{H,L}. For each point

on the exogenous income grid defined in step 1, ŷi, find θ̂i and θ̃i such that:

y(L, θ̂i) = ŷi = y(H, θ̃i)

We use linear interpolation to evaluate income at off-grid productivity values.

3. Solve for the optimal allocations under an additional set of Ny constraints, each one

defined by a point on the exogenous grid for income from step 1, as follows.

• For the case of education-independent labor wedge:

h′
(
y(L,θ̂i)

θ̂i

)
θ̂iu′

(
c1(L, θ̂i)

) =
h′
(
y(H,θ̃i)

θ̃i

)
θ̃iu′

(
c1(H, θ̃i)

)
• For the case of education-independent intertemporal wedge:

u′
(
c1(L, θ̂i)

)
u′
(
c2(L, θ̂i)

) =
u′
(
c1(H, θ̃i)

)
u′
(
c2(H, θ̃i)

)
Once again, we use linear interpolation to evaluate consumption in both period at

off-grid values of productivity.

F Off-Path Policies for Non-Sophisticated Agents

The paper has focused on sophisticated present-biased agents. Sophisticated agents fully

anticipate the behavior of their future-selves, so they have a demand for commitment. On

the other hand, non-sophisticated agents underestimate the severity of their bias and tend

to demand too little commitment. We explore the implications of non-sophistication on the

design of optimal policy in this section.

To model non-sophistication, we follow O’Donoghue and Rabin (2001). Agents at t = 0

perceive their present bias in t = 1 to be β̂ ∈ [β, 1]. Let W1

(
c1, c2, y; γ, θ, e, β̂

)
denote the

non-sophisticated agents’ perceived utility in t = 1:

W1

(
c1, c2, y; γ, θ, e, β̂

)
= u (c1)− h

(y
θ

)
+ β̂δ2u (c2) .
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If β̂ = β, agents are sophisticated and fully aware of the bias. If β̂ = 1, agent are fully

näıve and believe their future-selves to be time-consistent. Partially näıve agents know

they are present-biased, β̂ < 1, but they underestimate its severity, β̂ > β. For this exten-

sion, we assume all agents are non-sophisticated and have heterogeneous and unobservable

sophistication distributed within support
[
β̂, 1
]
, where β̂ ∈ (β, 1] .

Yu (2019a) showed that it is optimal for the government to take advantage of the mis-

specified beliefs of present-biased agents through the preference arbitrage mechanism (PAM).

PAM features off-path allocation used to exploit the incorrect beliefs, which are referred to as

the imaginary allocations and denoted as (cI , yI). The allocation the government implements

on-path is called the real allocations denoted as (c, y) . We assume that u is unbounded below

and above (u (R+) = R). For H-agents, the government designs the menu

P̂H =
{
c0 (H) ,

[
cI1, y

I , cI2
]
, [c1 (H, θ) , y (H, θ) , c2 (H, θ)]θ∈Θ

}
.

At t = 1, H-agents choose between imaginary and real allocations. The consumption path

of the imaginary allocations is backloaded (cI2 > cI1), while the consumption path of the real

allocation is relatively less back-loaded. It is designed this way so that at t = 0, the agents

mistakenly believe their future-selves will choose the imaginary allocations. However, they

end-up selecting the real allocations instead. Since the ex-ante incentive constraints are non-

binding for L-agents, the government does not need to design imaginary allocations for them,

so P̂L =
{
c0 (L) , [c1 (L, θ) , y (L, θ) , c2 (L, θ)]θ∈Θ

}
. Similar to Yu (2019a), it is not necessary

to design imaginary allocations tailored for each level of sophistication. It is possible to find

a single set of imaginary allocations such that it implements the same real allocations for

agents of any sophistication.

Lemma 3 For non-sophisticated present-biased agents, the ex-ante incentive compatibility

constraint is non-binding at the optimum.

Proof From Yu (2019a), we first choose the imaginary allocations such that it satisfies the

preference arbitrage constraint: for any θ,

u
(
cI1
)
−h

(
yI

θ

)
+ β̂δ2u

(
cI2
)
≥ max

θ̂

u(c1

(
H, θ̂

))
− h

y
(
H, θ̂

)
θ

+ β̂δ2u
(
c2

(
H, θ̂

)) .

In essence, in t = 0, agents believe their future-selves would choose the imaginary allocation

over the real allocation. Notice that the real allocations may not be incentive compatible

under the erroneous belief. Next, the imaginary allocations have to satisfy the executability
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constraints to makes sure that agents eventually choose the real allocation: for any θ,

U1 (H, θ) = u (c1 (H, θ))− h
(
y (H, θ)

θ

)
+ βδ2u (c2 (H, θ)) ≥ u

(
cI1
)
− h

(
yI

θ

)
+ βδ2u

(
cI2
)
.

Thus, the ex-ante incentive compatibility constraint is

δ0 (eH)u (c0 (H)) + βδ1 (eH)

∫ θ

θ

[
u
(
cI1
)
− h

(
yI

θ

)
+ δ2u

(
cI2
)
.

]
f (θ|κH) dθ ≥ U0 (L;H) .

Next, we show how the imaginary allocations can be designed such that the ex-ante in-

centive constraint is non-binding for all sophistication levels. Denote I (θ) = u
(
cI1
)
−h

(
yI

θ

)
and set I (θ) = U1 (H, θ)−βδ2u

(
cI2
)

so the executability constraints are binding. Hence, the

preference arbitrage constraints can be expressed as u
(
cI2
)
≥ J

(
θ, β̂
)
, for all θ ∈ Θ where

J
(
θ, β̂
)

=
maxθ̂

{
u(c1(H,θ̂))−h

(
y(H,θ̂)
θ

)
+β̂δ2u(c2(H,θ̂))

}
−U1(H,θ)

(β̂−β)δ2
. Since the preference arbitrage con-

straints need to hold for all productivity realizations and sophistication, it is clear that cI2 is

chosen to satisfy u
(
cI2
)
≥ maxθ,β̂ J

(
θ, β̂
)
. Similarly, the ex-ante incentive constraint can be

rewritten as u
(
cI2
)
≥ K, where K = 1

(1−β)δ2

{
U0(L;H)−δ0(eH)u(c0(H))

βδ1(eH)
−
∫ θ
θ
U1 (H, θ) dF (θ|κH)

}
.

Since u is unbounded above, for any real allocation, the imaginary retirement consumption

cI2 can be chosen to satisfy u
(
cI2
)
≥ max

{
maxθ,β̂ J

(
θ, β̂
)
, K
}
. Also, since u is unbounded

below, it is possible to adjust cI1 for any given yI so that I (θ) = U1 (H, θ) − βδ2u
(
cI2
)
. As

a result, it is always possible to find a single set of imaginary allocations for all levels of

sophistication such that the ex-ante incentive constraints are non-binding for any allocation

implemented on the equilibrium path.

To understand Lemma 3, note that non-sophisticated agents at t = 0 overestimate the

value of retirement consumption to their future-selves. PAM takes advantage of incorrect

beliefs by encouraging education investment through an increased imaginary retirement con-

sumption cI2, which H-agents believe they will choose in t = 1. However, their future-selves

forsake it for more immediate gratification—the relatively less back-loaded real allocations.

The following proposition describes the optimal wedges for non-sophisticated agents.

Proposition 6 The constrained efficient allocation for non-sophisticated agents satisfies

i. full insurance in t = 0 : c0 (H) = c0 (L) ,

ii. the inverse Euler equations: for any γ, 1
u′(c0(γ))

= Eθ
(

1
u′(c1(γ,θ))

)
= Eθ

(
1

u′(c2(γ,θ))

)
, and,

for any θ, 1
βu′(c2(γ,θ))

= 1
u′(c1(γ,θ))

+
(

1−β
β

)
1

u′(c0(γ))
,
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iii. the labor wedge for any γ and θ satisfies τw(γ,θ)
1−τw(γ,θ)

= Aγ (θ)Bγ (θ)Cγ (θ) .

Proof By Lemma 3, the optimization problem with non-sophisticated agents is the same as

the original problem except the ex-ante incentive constraints are non-binding, so µ = 0. As

a result, the first order conditions are

u′ (c0 (H)) = u′ (c0 (L)) = φ,

and for all γ,

πγδ1 (eγ) f (θ|κγ)− ξ′γ (θ) = λγ (θ) ,

(1− β) πγδ1 (eγ) f (θ|κγ) + βλγ (θ) =
φπγδ1 (eγ) f (θ|κγ)

u′ (c2 (γ, θ))
,

λγ (θ)u′ (c1 (γ, θ)) = φπγδ1 (eγ) f (θ|κγ) ,

ξγ (θ) = ξγ
(
θ
)

= 0,

λγ (θ)
1

θ
h′
(
y (γ, θ)

θ

)
+ξγ (θ)

[
1

θ2
h′
(
y (γ, θ)

θ

)
+
y (γ, θ)

θ3
h′′
(
y (γ, θ)

θ

)]
= φπγδ1 (eγ) f (θ|κγ) .

By rearranging the first order conditions, the results follow.

Proposition 6 demonstrates the government’s ability to fully insure agents against differ-

ences in innate ability γ. This is not surprising, because Lemma 3 stated that the government

can screen innate ability without distortions by utilizing PAM. As a result, the only distor-

tions in the economy stem from the unobserved productivity θ realized in t = 1.

Since innate ability is screened for free but productivity is not, Proposition 6 shows that

the intertemporal wedge τ k0 (γ) is characterized by the standard inverse Euler equation for

all innate ability types. This is because the government no longer needs the additional

intertemporal distortions illustrated in Proposition 1 on τ k0 (γ) to incentivize investment

in human capital. The imaginary allocations are sufficient for that purpose. However,

productivity remains unobservable by the government, so savings in t = 0 is still restricted

and shaped by the inverse Euler equation to relax the ex-post incentive constraints.

More interestingly, Proposition 6 shows that all agents are provided with a commitment

device: for any γ and θ, u
′(c1(γ,θ))
u′(c2(γ,θ))

> β. With non-sophisticated agents, the government can

focus on its paternalistic goals since it no longer needs to manipulate retirement savings

to screen innate ability. More specifically, notice for any γ, the expected intertemporal

distortion is

E
[
τ k1 (γ, θ)

]
= (1− β)

[
1− E [u′ (c1 (γ, θ))]

u′ (c0 (γ))

]
.

62



Since the inverse Euler implies u′ (c0 (γ)) < E [u′ (c1 (γ, θ))] , we have E
[
τ k1 (γ, θ)

]
< 0. In

essence, agents over-save for retirement in expectation. This is due to the disagreement

between the paternalistic government and present-biased agents at t = 1. The government

uses this disagreement to deter downward deviations in productivity by back-loading the

consumption of lower productivity types. At the same time, more productive agents who

produce higher output are rewarded with a more front-loaded consumption path. Since it

is more cost effective to increase production efficiency by decreasing working-period con-

sumption c1 of low productivity agents than to increase it for high productivity agents, the

consumption path is slightly back-loaded on average. Without this disagreement, it is most

efficient to motivate agents to work by respecting their intertemporal preferences and screen

through the standard downward labor distortion.

Finally, Proposition 6 shows that the optimal labor distortion is determined solely by

the intratemporal component. This means the economic forces that shape the labor wedge

are essentially static. Recall from Proposition 2 that both the intertemporal and present-

bias components are integral to the optimal provision of dynamic incentives through labor

distortion. Since the ex-ante incentive constraint is non-binding, the forces that determine

the provision of dynamic incentives are absent from the labor wedge. As a result, the

intertemporal and present-bias components no longer influence labor distortion.
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