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Abstract. This paper studies causal inference in randomized experiments
under network interference. Most of the literature assumes a model of inter-
ference under which treatments assigned to alters beyond a certain network
distance from the ego have no effect on the ego’s response. However, many
models of social interactions do not satisfy this assumption. This paper pro-
poses a substantially weaker model of “approximate neighborhood interference”
(ANI), under which treatments assigned to alters further from the ego have a
smaller, but potentially nonzero, impact on the ego’s response. We show that
ANI is satisfied in well-known models of social interactions. We also prove that,
under ANI, standard inverse-probability weighting estimators can consistently
estimate useful exposure effects and are asymptotically normal under asymp-
totics taking the network size large. For inference, we consider a network HAC
variance estimator. Under a finite population model, we show the estimator is
biased but that the bias can be interpreted as the variance of unit-level exposure
effects. This generalizes Neyman’s well-known result on conservative variance
estimation to settings with interference.
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1 Introduction

Randomized experiments in settings with network interference have seen increasing

use in economics and the social sciences.1 This paper develops methods for causal

inference in experiments under weak restrictions on interference. We consider a finite

population of n units connected through a network A. Let Yipdq denote the potential

outcome of unit i under the counterfactual that the network is assigned treatment

vector d “ pdiqni“1 P t0, 1un. The dependence of Yipdq on the entire vector of assign-

ments allows for “interference” or “spillovers” and distinguishes this setup from the

standard potential outcomes model. Interest centers on “exposure effects,” defined

below, that summarize how outcomes change in response to manipulations of d.

The main inferential challenge is that, with a single network, the econometrician

observes only one realization of the treatment assignment vector D “ pDiqni“1, where

Di P t0, 1u denotes unit i’s realized assignment. Identification of exposure effects is

therefore impossible without restrictions on the manner in which Yip¨q varies with

d. The predominant approach in the literature is to assume interference operates

through a low-dimensional vector of sufficient statistics.2 That is, YipDq is only a

function of D through a vector-valued exposure mapping of fixed dimension

Ti ” T pi,D,Aq.

For example, Cai et al. (2015) run an experiment to study the effect of attending

information sessions explaining the benefits of weather insurance on farmers’ take-up

of insurance. Spillover effects are of interest, since a farmer who attends a session may

pass the information to friends. The authors estimate linear versions of the model

YipDq “ ỸipTiq, where Ti “
˜

Di,

ř

j AijDj
ř

j Aij

¸

(1)

and Aij is an indicator for whether farmers i and j are friends. Here the exposure

mapping Ti is two-dimensional. Variation in its first component identifies the direct

effect of the intervention, while variation in the second identifies a spillover effect.

1E.g. Bandiera et al. (2009), Bond et al. (2012), Bursztyn et al. (2014), Miguel and Kremer
(2004), Paluck et al. (2016).

2E.g. Aronow and Samii (2017), Basse et al. (2019), Forastiere et al. (2016), Manski (2013),
Toulis and Kao (2013).
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More generally, exposure mappings, if correctly specified, substantially reduce the

dimensionality of the model, allowing us to reparameterize potential outcomes as

Yipdq “ Ỹiptq for t P T , (2)

where T is the range of T p¨q. Interest then centers on “exposure effects”

1

n

n
ÿ

i“1

`

Ỹiptq ´ Ỹipt1q
˘

(3)

for t, t1 P T , which measure the average in change in potential outcomes in response

to counterfactual manipulations of the exposure mapping.

The literature predominantly studies model (2) under the assumption that the

exposure mapping Ti only depends on treatments assigned to the K-neighborhood

of i for some small K.3 However, this imposes strong structural restrictions on the

underlying outcome process that are incompatible with a variety of models of social

interactions and contagion of interest in the networks literature (Guilbeault et al.,

2018; Jackson, 2010; Manski, 1993). In these models, interference can arise from units

outside of the ego’s K-neighborhood, for any K. This is the case for models with

endogenous peer effects, where outcomes are functions of the outcomes of neighbors

(Eckles et al., 2017). Another example is the Cai et al. (2015) setting, where under a

simple diffusion model, information obtained by treated units can eventually diffuse

to arbitrarily distant alters, which violates (1).

Important recent work studies misspecified exposure mappings (Chin, 2018; Sävje et al.,

2017; Sävje, 2019). The insight of this literature is that standard estimators for (3)

unbiasedly estimate meaningful exposure effects even without imposing (2) to restrict

interference, which indicates a certain robustness to more general patterns of inter-

ference. However, under what conditions inference can be made similarly robust is a

more challenging question. Without (2), potential outcomes can depend arbitrarily

on the entire assignment vector D, which makes large-sample inference impossible.

These papers accordingly propose a variety of high-level conditions weaker than (2)

that implicitly restrict interference in order to obtain large-sample results. Unfortu-

nately, the connection between these conditions and the literature on contagion and

social interactions remains unclear. It is an open question whether models in the

3This is the set of units whose network distance from i is at most K, formally defined in §2.
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networks literature violating (2) (e.g. models with endogenous peer effects or other

diffusion models) can satisfy these high-level conditions.

Our Contribution. We study inference on exposure effects with misspecified ex-

posure mappings under a new restriction on interference. We propose a model of

approximate neighborhood interference (ANI), which requires treatments assigned to

units far from the ego to have a small, but potentially nonzero, impact on the ego’s

response. Unlike the existing literature, we formally verify ANI in well-known mod-

els of social interactions. We then show that, under ANI, the data satisfies ψ-weak

dependence, a recently proposed notion of network weak dependence. This enables

us to apply limit theorems due to Kojevnikov et al. (2019) to establish that standard

inverse probability weighting (IPW) estimators are consistent for certain exposure

effects and asymptotically normal.

For inference, we consider a network HAC (heteroskedasticity and autocorrela-

tion consistent) variance estimator and characterize its asymptotic bias under a finite

population model. We show the bias can be interpreted as the variance of unit-level

exposure effects, which is fundamentally unidentified even under no interference. This

generalizes the well-known result on conservativeness of the standard variance estima-

tor of the difference-in-means estimate under no interference (e.g. Imbens and Rubin,

2015, Ch. 6.4.2) to settings with dependence due to interference.

Finally, we propose a novel bandwidth for the network HAC estimator based on

the average path length (APL) of the observed network. For a given bandwidth

rule, the HAC estimator has different rates of convergence depending on whether the

average K-neighborhood size in A grows exponentially or polynomially with K. The

utility of the APL is that its magnitude adapts to the neighborhood growth rate.

Kojevnikov et al. (2019) and Kojevnikov (2019) respectively provide consistency

results for network HAC and bootstrap variance estimators for ψ-weakly depen-

dent network data. Their results pertain to settings in which the data is mean-

homogeneous, which often holds in superpopulation models. We extend their results

to settings with mean-heterogeneous data, as is the case in finite population models.

Choi (2017) and Choi (2018) study causal inference without imposing an expo-

sure mapping model. These papers focus on different estimands than ours and assume

treatment responses satisfy a monotonicity condition, which we do not require. There

is also work on testing for interference, which can be used to test for correct specifi-
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cation of exposure models (e.g. Athey et al., 2018).

Several papers in econometrics study causal inference under interference (Baird et al.,

2018; He and Song, 2018; Lazzati, 2015; Leung, 2020; Vazquez-Bare, 2017; Viviano,

2019). The second paper studies a dynamic setting, whereas the others focus on a

static setting like ours but under correctly specified exposure mappings. Many as-

sume the special case of stratified interference whereby the data consists of many

clusters and interference only operates within clusters. We instead consider a single

large cluster with known network structure.

In the next section, we define the estimand and estimators and state basic as-

sumptions. Then §3 presents our model of interference and large-sample results. We

discuss variance estimation in §4. In §5, we illustrate the performance of our methods

in an empirical application and simulation study. Finally, §6 concludes. All proofs

are given in Appendix C.

2 Setup

We consider a finite population model in which the only random quantity is D, which

captures design uncertainty (Abadie et al., 2020; Imbens and Menzel, 2018). In the

special case of no interference, this corresponds to the well-known Neyman causal

model. The setup is advantageous because it allows for arbitrary dependence between

the network and potential outcomes. For example, links may form at higher rates be-

tween units with similar unobservables, which corresponds to unobserved homophily,

a well-known hindrance to identifying social interactions (Shalizi and Thomas, 2011).

Let Nn “ t1, . . . , nu denote the set of units. We assume A is an undirected and

unweighted network with no self-links, represented as an adjacency matrix with ijth

entry Aij P t0, 1u denoting a potential link between units i and j. Treatments D are

independent across units but not necessarily identically distributed, which allows for

assignment based on unit covariates and network position. For example, treatment

may be assigned “optimally” according to these characteristics (e.g. Viviano, 2019),

or randomization may be stratified, as in the empirical application in §5.1.

Recall from §1 the definition of an exposure mapping T p¨q. Let T Ď R
dT be the

range of T p¨q, and assume that T is discrete and dT does not depend on n. Most

of the literature assumes T p¨q is correctly specified in the sense that (2) holds, which

enables a simple definition of exposure effects (3). We instead follow the literature on

5



Michael P. Leung

misspecified exposure mappings and employ T p¨q only to define useful estimands that

summarize treatment and spillover effects but not to restrict the true interference

structure. This is a reasonable solution to the task of parsimoniously summarizing

the causal effect of a high-dimensional vector D on potential outcomes.

Specifically, define the unit-level exposure effect

τipt, t1q “ µiptq ´ µipt1q, where µiptq “
ÿ

dPt0,1un

YipdqPpD “ d | Ti “ tq

and t, t1 P T . This contrasts the expected response of unit i under two different values

of the exposure mapping. The estimand of interest is the average effect

τpt, t1q “ µptq ´ µpt1q, where µptq “ 1

n

n
ÿ

i“1

µiptq, (4)

what Sävje (2019) calls a “misspecification-robust exposure effect.” This is analogous

to estimands proposed by Hudgens and Halloran (2008) but generalized to allow for

an incomplete network. We refer to these references for more detailed discussion

of interpretation, but the idea is analogous to (3), which is to compare the average

outcomes of units under two different values of the exposure mapping.

Recall Ti ” T pi,D,Aq, and define the generalized propensity score

πiptq “ Er1iptqs, where 1iptq “ 1tTi “ tu.4

We estimate τpt, t1q using the standard IPW estimator, which is unbiased:

τ̂pt, t1q “ µ̂ptq ´ µ̂pt1q, where µ̂ptq “ 1

n

n
ÿ

i“1

Yi
1iptq
πiptq

.

As discussed in §1, most of the literature focuses on K-neighborhood exposure

mappings. This requires T p¨q to only be a function of d,A through i’sK-neighborhood,

denoted NApi, Kq “ tj P Nn : ℓApi, jq ď Ku, where ℓApi, jq is the path distance

between i, j.5 To formalize this requirement, for any d P t0, 1un, define dNApi,Kq “
4Computation of πiptq depends on the exposure mapping and design. In §5.1 where treatments

are block randomized, we discuss use of the hypergeometric distribution.
5A path between i, j is a sequence of links Ak1k2

, Ak2k3
, . . . , Akm´1km

“ 1 such that k1 “ i,
km “ j, and ka ‰ kb for all a, b P t1, . . . ,mu. The length of this path is m ´ 1. The path distance

between i, j is the length of the shortest path between them, defined as 8 if no path exists.
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pdj : j P NApi, Kqq and ANApi,Kq “ pAkl : k, l P NApi, Kqq, respectively the subvector

of d and subnetwork of A on NApi, Kq. Let An denote the set of networks on n units.

Assumption 1 (Exposure Mappings). There exists K P N such that, for any n P N

and i P Nn, T pi,d,Aq “ T pi,d1,A1q for all d,d1 P t0, 1un and A,A1 P An such that

ANApi,Kq “ A1
N

A1 pi,Kq and dNApi,Kq “ d1
N

A1 pi,Kq.

This is a weak restriction satisfied by most exposure mappings of interest in the

literature. See for example (1) or the estimands in §5, where K “ 1.

Assumption 2 (Overlap). πiptq P rπ, πs Ă p0, 1q @n P N, i P Nn, A P An, t P T .

While overlap is standard, it can be restrictive. For instance, if Ti “ 1třj AijDj ą 0u
and treatments are i.i.d., then πip1q can be close to one if i’s degree

ř

j Aij is large.

However, overlap can be restored if we instead randomize treatment only to a smaller

subset of “eligible” units and restrict the sample to units with an eligible neighbor

(which changes the estimand). This is done in the empirical application in §5.1.

Hence, the choice of design and estimand are important for overlap.

Finally, we assume for convenience that potential outcomes are uniformly bounded.

Assumption 3 (Bounded Outcomes). supnPN,iPNn,dPt0,1un,APAn
|Yipdq| ă 8.

3 Approximate Neighborhood Interference

We next present our model of interference. Recall that dNApi,sq is the subvector of d

on i’s s-neighborhood. Define

∆n,ipsq “ max
 

|Yipdq ´ Yipd1q| : d,d1 P t0, 1un, dNApi,sq “ d1
NApi,sq

(

.

Assumption 4 (ANI). For θn,s ” maxiPNn
∆n,ipsq, supn θn,s Ñ 0 as s Ñ 8.6

The quantity ∆n,ipsq measures the largest perturbation in i’s potential outcome due

6This can be relaxed to θn,s ” maxiPNn
Er|YipDq ´ YipD

1q|s for random assignments D,D1 such
that DNApi,sq “ D1

NApi,sq and D´NApi,sq “ pDj : j R NApi, sqq is an independent copy of D1
´NApi,sq.

The assumption in Proposition 2 below can then be weakened by redefining σj “ Pp0 ă φpDj , εjq ď
βq in the definition of G.
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to interference induced by changes to the treatment assignments of alters outside of

i’s s-neighborhood. ANI requires the maximal such perturbation θn,s to decay to zero

with s. In the special case of correct specification (2), there is no interference from

units outside i’s K-neighborhood, so ∆n,ipsq “ 0 for all i and s ě K. In contrast,

ANI generally allows ∆n,ipsq ‰ 0 for all s but requires ∆n,ipsq to decay with s. This

means interference from outside of a unit’s s-neighborhood is increasingly negligible

as one expands the neighborhood radius s. Hence, ANI says that a unit’s response is

primarily, but not entirely, determined by the assignments of units close to it.7

The existence of interference is determined by A as well as the response model

Yip¨q. Hence, ANI pertains to both quantities. For instance, if A is empty, then for

s ą 0, ∆n,ipsq “ 0 for any Yip¨q, since no interference is possible without neighbors.

On the other hand, if Yipdq “ Ỹipdiq for all d, then for s ą 0, ∆n,ipsq “ 0 for any A.

3.1 Social Interactions Models

We next verify ANI for arbitrary A under two models of social interactions whose

reduced forms characterize Yip¨q. It may be possible to verify in other models, for

example the SIR model, but we leave this to future work. Our results yield uniform

bounds on θn,s that decay exponentially with s under restrictions on the strength of

social interactions.

Linear-in-Means Model. Consider a network version of the Manski (1993) model

Yi “ α ` β

ř

j AijYj
ř

j Aij

` Diγ ` εi, (5)

where tεiuni“1 is uniformly bounded (for Assumption 3). As usual, to ensure model

(5) is coherent, we assume

|β| ă 1. (6)

The model defines potential outcomes YipDq through its reduced form

Y “ α

1 ´ β
1 ` Dγ ` γβ

8
ÿ

k“0

βk
Ã

k`1
D `

8
ÿ

k“0

βk
Ã

k
ε

7Assumption 4 has some similarities with Assumption 6 of Chin (2018) in bounding the effect of
manipulations of treatment assignments of distant units, although Chin’s assumption also implicitly
restricts the design. For a CLT, we do not need a high-level condition analogous to his Assumption
5, which requires correlations between tYiu

n
i“1

to be sufficiently weak.
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(e.g. Bramoullé et al., 2009, eq. (6), assuming A is connected), where Y “ pYiqni“1,

ε is similarly defined, and Ã is the row-normalized version of A (divide each row

by its sum). The third term roughly says that the impact of treatments assigned to

k-neighbors is exponentially down-weighted by βk. This suggests the following result.

Proposition 1. If responses are realized according to the linear-in-means model, then

there exists C ą 0 such that Assumption 4 holds with θn,s ď C|β|s for all n.

Complex Contagion. We next consider a model of “complex contagion,” which

has been widely studied in the networks literature.8 Initialize a dynamic discrete-

time process at period 0 at some binary outcome vector Y 0 P t0, 1un. At each period

t, units update their outcomes according to

Y t
i “ 1

#

β

ř

j AijY
t´1
j

ř

j Aij

ě φpDi, εiq
+

, (7)

for some real-valued function φp¨q, to obtain their new outcomes Y t from last period’s

outcomes Y t´1 “ pY t´1
i qni“1. The rule says that unit i chooses outcome 1 over 0 if and

only if the fraction of neighbors choosing response 1 in the previous period is large

enough relative to the heterogeneous threshold φpDi, εiq. The parameter β controls

the extent to which social interactions matter.

Because the setup in §2 is static, we consider running the dynamic process until

the first period T such that Y T “ Y T´1. To ensure such a T exists for any Y 0,

we assume β ě 0 (Milgrom and Roberts, 1990). We then take Y T as the vector of

responses Y observed in the data. This process implicitly defines potential outcomes

pYipDqqni“1. Note that different starting values Y 0 can yield different outcomes Y .

To verify Assumption 4, we need a condition analogous to (6), which will be more

complicated to state, since the model is nonlinear. Define a weighted directed network

G on Nn with ijth entry Gij “ Aijσj for σj “ maxdPt0,1u 1 t0 ă φpd, εjq ď βu. Let

ρnps̄q “ sup
sąs̄

‖Gs‖1{s
8 “ sup

sąs̄

ˆ

max
iPNn

n
ÿ

j“1

pGsqij
˙1{s

for any s̄ ą 0, where ‖¨‖8 is the matrix norm induced by the vector 8-norm.

8E.g. Granovetter (1978), Guilbeault et al. (2018), Jackson (2010), Montanari and Saberi (2010).
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Proposition 2. Let αn,s “ 2ρnps̄qs for s ą s̄ and αn,s “ 2 for s ď s̄. Suppose

responses are realized according to the complex contagion model. If supn ρnps̄q ă 1 for

some s̄ ą 0, then Assumption 4 holds with θn,s ď αn,s.

We next discuss the interpretation of supn ρnps̄q ă 1 in relation to (6). Let I be

the n ˆ n identity matrix. For the linear-in-means model to be coherent, we need

I ´ βÃ to be invertible, which is true provided

λmaxpβÃq ă 1, (8)

where λmaxp¨q is the spectral radius. This is equivalent to |β| ă 1, since Ã is row-

normalized (Bramoullé et al., 2009). On the other hand, ‖Gs‖1{s
8

sÑ8ÝÑ λmaxpGq by

Gelfand’s formula, so for any ǫ ą 0, we can choose s̄ large enough such that

sup
n

λmaxpGq ă 1 ´ ǫ implies sup
n

ρnps̄q ă 1 (9)

(Xu and Lee, 2015). The left-hand side is clearly analogous to (8). The difference

is that, in G, we weight each potential link Aij by σj , whereas in βÃ, the weight is

β{řk Aik. However, both weights are monotonically increasing in β, so both (8) and

(9) implicitly restrict social interactions, as measured by β.

3.2 Weak Dependence

Define Zi “ p1iptqπiptq´1 ´ 1ipt1qπipt1q´1qYi, so that τ̂pt, t1q “ n´1
řn

i“1 Zi. For large-

sample inference, we would like the data tZiuni“1 to be weakly dependent. Recall that

ℓApi, jq is the path distance between i, j in A. Since treatments are independent,

the indicators have a local dependence structure: 1iptq KK 1jptq if ℓApi, jq ą 2K by

Assumption 1. However, tYiuni“1 may be strongly dependent, since Yi can depend on

the entire vector D under Assumption 4. Nonetheless, we expect this dependence to

be sufficiently weak, since the assumption states that each Yi depends primarily on

the treatments of units nearby. We next formalize this idea.

Abusing notation, for any H,H 1 Ď Nn, define ℓApH,H 1q “ mintℓApi, jq : i P
H, j P H 1u. Let ZH “ pZi : i P Hq, Ld denote the set of bounded real-valued Lipschitz
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functions on R
d, and

Pnph, h1; sq “ tH,H 1 Ď Nn : |H | “ h, |H 1| “ h1, ℓApH,H 1q ě su .

Definition 1. A triangular array tZiuni“1 is ψ-weakly dependent if there exist (a)

uniformly bounded constants tθ̃n,sus,nPN such that supn θ̃n,s Ñ 0 as s Ñ 8, and (b) a

collection of functionals tψh,h1p¨, ¨quh,h1PN with ψh,h1 : Lh ˆ Lh1 Ñ r0,8q such that

|CovpfpZHq, f 1pZH 1qq| ď ψh,h1pf, f 1q θ̃n,s

for all f P Lh, f
1 P Lh1, and H,H 1 P Pnph, h1; 2s ` 2q with s ą 0.

This is essentially Definition 2.2 of Kojevnikov et al. (2019). It is analogous to a

notion of weak dependence proposed by Doukhan and Louhichi (1999) for time series

data but using path in place of temporal distance. The concept says two sets of

observations ZH and ZH 1 have small covariance if they are sufficiently distant.

For any Lipschitz fp¨q, let ‖f‖8 be its sup norm and Lippfq its Lipschitz constant.

Theorem 1 (Weak Dependence). Under Assumptions 1–4, tZiuni“1 is ψ-weakly de-

pendent with (a) θ̃n,s “ θn,s for all n P N and s ą 0, and (b) for some C ą 0,

ψh,h1pf, f 1q “ C p‖f‖8‖f
1‖8 ` h‖f 1‖8Lippfq ` h1‖f‖8Lippf 1qq

for all h, h1 P N, f P Lh, and f 1 P Lh1.

3.3 Large-Sample Theory

Having established that the data tZiuni“1 is ψ-weakly dependent, we can apply the

large-sample theory developed in Kojevnikov et al. (2019) to show that τ̂pt, t1q is con-

sistent and asymptotically normal. Their results require θn,s to decay to zero fast

enough. How fast depends on the network topology, in particular the growth rate of

s-neighborhood sizes. Intuitively, ANI says that Zi depends primarily on the observa-

tions associated with other units in NApi, sq. Hence, if the size of this neighborhood

grows rapidly with s, then for weak dependence, this needs to be counterbalanced by

having the covariances (controlled by θn,s) decay to zero faster with s.

We next present assumptions that formalize these ideas. To help clarify their

11
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content, in §A.1, we verify them for networks with polynomial and exponential neigh-

borhood growth rates when θn,s decays exponentially with s, as in the examples in

§3.1. Let N B
A

pi, sq “ tj P Nn : ℓApi, jq “ su be the s-neighborhood boundary of i, the

set of units exactly path distance s from i and δB
npsq “ n´1

řn

i“1|N
B
A

pi, sq|.

Assumption 5 (Weak Dependence for LLN).
řn

s“0 δ
B
npsqθn,s “ opnq.

This is Assumption 3.2 of Kojevnikov et al. (2019). Since the average s-neighborhood

boundary size grows with s, θn,s must decay to zero faster for the sum to be opnq.
It is useful to compare this to its analog for α-mixing spatial processes. Consider,

for example, Assumption 3(b) of Jenish and Prucha (2009), which essentially requires
ř8

s“1 s
d´1αpsq ă 8, where d is the dimension of the underlying space and αpsq is

the α-mixing coefficient, which measures dependence between sets of observations at

spatial distance s apart. In the spatial setting, the s-neighborhood boundary of i is

the set of units at any distance h P rs, s`1q from i. By their Lemma A.1(iii), the size

of this set is Opsd´1q. Thus, we have a similar trade-off between the sizes of spatial

s-neighborhood boundaries and the rate of decay of the mixing coefficient.

Theorem 2 (Consistency). Under Assumptions 1–5, |τ̂pt, t1q ´ τpt, t1q| pÝÑ 0.

The proof of the theorem indicates that we can sharpen the result to |τ̂pt, t1q ´
τpt, t1q| “ Oppn´1{2q if we strengthen Assumption 5 to

řn

s“0 δ
B
npsqθn,s “ Op1q.

Asymptotic normality requires a stronger version of Assumption 5. Let δnps, kq “
n´1

řn

i“1|NApi, sq|k, the kth moment of the s-neighborhood size, and

Hnps,mq “
 

pi, j, k, lq P N 4
n : k P NApi,mq, l P NApj,mq, ℓApti, ku, tj, luq “ s

(

.

This is the set of paired couples pi, jq and pk, lq such that the units within each couple

are at most path distance m apart from one another, and the two pairs are exactly

path distance s apart. Define σ2
n “ Varpn´1{2

řn

i“1 Ziq.

Assumption 6 (Weak Dependence for CLT). There exist ǫ ą 0 and a sequence of
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positive constants tmnunPN such that mn Ñ 8 and

max

#

σ´4
n

1

n2

n
ÿ

s“0

|Hnps,mnq|θ1´ǫ
n,s , σ´3

n n´1{2δnpmn, 2q, σ´1
n n3{2θ1´ǫ

n,mn

+

Ñ 0. (10)

This is essentially Assumption 3.4 of Kojevnikov et al. (2019). The first term in (10)

is key. Similar to Assumption 5, it requires θn,s to decay to zero fast enough relative to

s-neighborhood sizes. The second term restricts s-neighborhood growth rates, while

the third requires sufficiently fast decay of θn,s.

Theorem 3 (Asymptotic Normality). Under Assumptions 1–4 and 6,

?
n
`

τ̂ pt, t1q ´ τpt, t1q
˘

Varp?
nτ̂ pt, t1qq1{2

dÝÑ N p0, 1q.

In the typical case where the variance is asymptotically non-degenerate, meaning

lim infnÑ8 σ
2
n ą 0, the rate of convergence is

?
n.

4 Variance Estimation

For large-sample inference, we propose the variance estimator

σ̂2 “ 1

n

n
ÿ

i“1

n
ÿ

j“1

pZi ´ τ̂pt, t1qqpZj ´ τ̂pt, t1qq1tℓApi, jq ď bnu, (11)

where bn ě 0 is a bandwidth parameter discussed below. When bn “ 0, this reduces to

the sample variance of the Zi’s, which is only a valid estimator under no interference.

Choosing bn ą 0 places positive weight on pairs at most bn apart in the network,

which accounts for possible autocorrelation.9

In the special case of correctly specified exposure mappings, we can choose bn “
2K, since 1iptq KK 1jptq if ℓApi, jq ą 2K. This corresponds to the estimator of Leung

(2020). For misspecified exposure mappings, we need bn to grow with the sample

size, and its rate of growth depends on the network topology. In this case, (11)

9The estimator is easy in practice to compute. First calculate the path distance matrix
pℓApi, jqqi,jPNn

, which can be done very efficiently for sparse networks using Dijkstra’s algorithm
(e.g. the Python function dijkstra in the scipy.sparse.csgraph module). Then for adjacency
matrix G “ p1tℓApi, jq ď bnuqi,jPNn

and Z̃ “ pn´1{2pZi ´ τ̂ pt, t1qqqni“1
, we have σ̂2 “ Z̃ 1GZ̃.
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corresponds to a network version of a HAC estimator, which has been previously

used in practice (e.g. Acemoglu et al., 2015) and whose formal properties have been

studied by Kojevnikov et al. (2019) in a superpopulation setting. Our result below

characterizes its behavior in a finite population model.

Remark 1. Kojevnikov et al. (2019) considers more general kernel functions that

include the uniform kernel in (11). Kojevnikov (2019) proposes alternative weights

motivated by network bootstrap procedures, which are guaranteed to be positive

semidefinite (PSD) in finite sample, unlike kernel-based weights. A previous version

of this paper (Leung, 2019a) considered a modification of his wild bootstrap weights,

which are also guaranteed PSD and can be used as an alternative in instances where

(11) is not PSD (which never occurred in our simulations in §5.2). While these weights

all have the same asymptotic properties, in simulation experiments, we have found

that uniform weights better control size in smaller sample sizes than weights that

decay with distance.

Choice of Bandwidth. For σ̂2 to have good large-sample properties, we need to

restrict the rate at which |NApi, bnq| diverges with n (see Assumption 7). Hence, how

fast bn can diverge depends on how rapidly s-neighborhoods expand with s. In spatial

settings, K-neighborhood sizes grow polynomially with K, so bn is allowed to diverge

at a polynomial rate. (A faster rate is better for bias but worse for variance.) However,

in network settings, K-neighborhood sizes can also grow exponentially with K. Based

on the analysis in §A.2, we suggest bn be chosen as follows. Let δpAq “ n´1
ř

i,j Aij

denote the average degree and ∆pAq the average path length (APL).10 We propose

bn “ tmaxtb̃n, 2Kus for b̃n “
#

1

2
∆pAq if ∆pAq ą 2 logn

log δpAq
,

∆pAq1{3 otherwise,
(12)

where t¨s means round to the nearest integer. We suggest in practice the researcher

report results for several bandwidths in a neighborhood of (12).

As discussed above, bn is at least 2K to account for correlation in t1iptquni“1. The

fractions 1{2 and 1{3 come from verifying Assumption 7 below (see §A.2). The pur-

10The APL is the average value of ℓApi, jq over all pairs in the largest component of A. A compo-

nent of a network is a connected subnetwork such that all units in the subnetwork are disconnected
from those not in the subnetwork.
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pose of comparing ∆pAq and log n{ log δpAq is to determine whether K-neighborhood

sizes grow approximately exponentially or polynomially withK. As discussed in §A.2,

in the exponential case, the difference between the two is expected to converge to zero,

whereas in the polynomial case, ∆pAq is much larger, having polynomial order. See,

for example, the simulations in §5.2, which show at least a four-fold difference in APL

between the two regimes. Thus, (12) selects a bandwidth of logarithmic (polynomial)

order when neighborhood growth rates are approximately exponential (polynomial).11

Bias of σ̂2. Define

σ̂2
˚ “ 1

n

n
ÿ

i“1

n
ÿ

j“1

pZi ´ τipt, t1qqpZj ´ τjpt, t1qq1tℓApi, jq ď bnu and

Rn “ 1

n

n
ÿ

i“1

n
ÿ

j“1

pτipt, t1q ´ τpt, t1qqpτjpt, t1q ´ τpt, t1qq1tℓApi, jq ď bnu,

where σ̂2
˚ is an “oracle” version of σ̂2 that replaces τ̂ pt, t1q with τipt, t1q, while Rn is a

bias term. Theorem 4 below establishes that

σ̂2 “ σ̂2
˚ ` Rn ` opp1q and (13)

|σ̂2
˚ ´ Varp

?
nτ̂ pt, t1qq| pÝÑ 0. (14)

Equation (14) says that the oracle estimator is consistent for the variance, and (13)

says that our estimator is biased. The source of bias is mean-heterogeneity: τ̂pt, t1q is

consistent for τpt, t1q but not τipt, t1q, which is heterogeneous across units.

The bias Rn has the form of a HAC estimate of the variance of the unit-level

exposure effects. It is helpful to compare this to the case of no interference, where

Ti “ Di, t “ 1, and t1 “ 0, so that τpt, t1q is the usual average treatment effect (ATE).

Knowing that units are independent, we can choose bn “ 0, in which case

Rn “ 1

n

n
ÿ

i“1

`

τip1, 0q ´ τp1, 0q
˘2
.

11In the exponential case, we need bn “ Oplog nq for Varpσ̂2q to be small, which (12) accomplishes,
since ∆pAq is expected to be Oplog nq in this regime (see §A.2). In the polynomial case, a bandwidth
of logarithmic order is also valid, but the bias will vanish at a very slow rate (see Kojevnikov et al.,
2019, proof of Proposition 4.1). Our choice of ∆pAq1{3 substantially improves this rate, since ∆pAq
is polynomial in n in this regime.
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This is the well-known asymptotic bias of the standard variance estimator for the

difference-in-means estimate of the ATE (e.g. Imbens and Rubin, 2015, Theorem 6.2).

It measures the variance of the unit-level treatment effects and is generally impossible

to estimate in the finite population setting, so the variance estimator is conservative.

In the special case of homogeneous unit-level treatment effects, meaning τipt, t1q does

not vary with i, the bias is zero, a property also shared by our Rn. Thus, (13) gen-

eralizes Neyman’s well-known result on conservative variance estimation to a setting

with interference. The additional covariance terms in Rn weighted by 1tℓApi, jq ď bnu
can be thought of as accounting for dependence due to interference.

Remark 2. In the Appendix B, we compareRn with the bias of the Aronow and Samii

(2017) variance estimator used in the existing literature for correctly specified expo-

sure mappings. Simulation results there show that our bias is positive but can be

notably smaller than theirs. More generally, the asymptotic behavior of Rn depends

on the superpopulation model towards which our framework is agnostic. Since Rn

has the form of a network HAC, we expect that it typically converges to the popula-

tion variance of the unit-level exposure effects, although this requires additional weak

dependence conditions on the distributions of Yipdq and A. Some such conditions are

given in Theorem 4.2 of Leung (2019b).

To show consistency of σ̂2, define

Jnps,mq “
 

pi, j, k, lq P N 4
n : k P NApi,mq, l P NApj,mq, ℓApi, jq “ s

(

.

This is similar to, and in fact contains, Hnps,mq from Assumption 6.

Assumption 7 (Weak Dependence for σ̂2). For some ǫ ą 0, (a)
řn

s“0 δ
B
npsqθ1´ǫ

n,s “
Op1q, (b) δnpbn, 1q “ opn1{2q, (c) δnpbn, 2q “ opnq, (d)

řn

s“0|Jnps, bnq|θ1´ǫ
n,s “ opn2q.

Part (a) strengthens Assumption 5. The main assumptions are parts (b)–(d), which

regulate how fast bn grows relative to neighborhood sizes. In §A.2, we use these to

derive (12). Part (b) allows us to replace τ̂pt, t1q in σ̂2 with its expectation. Part

(d) is used to derive the asymptotic bias. It is similar to the first requirement of

Assumption 6, except we replace bn and Jnps, ¨q with mn and Hnps, ¨q.
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Theorem 4 (Variance Estimator). If bn Ñ 8 as n Ñ 8, then under Assumptions

1–4 and 7, (13) and (14) hold.

5 Numerical Illustrations

5.1 Empirical Application

We revisit a network experiment analyzed in Paluck et al. (2016) and Aronow and Samii

(2017) that studies the effect of an anti-conflict intervention on adolescent social norms

for antagonistic behavior, including harassment, rumor mongering, social exclusion,

and bullying. In the experimental design, 28 of 56 schools are first randomized into

treatment. Then within treated schools, a subset of students are selected as eligible

for treatment based on covariates, and half of eligibles are block randomized into

treatment. Treated students are invited to participate in bi-monthly meetings that

follow an anti-conflict curriculum designed in part by the researchers of the study. At

these meetings, a trained adult leader helps students identify social conflicts at their

school and design strategies to reduce conflict.

Aronow and Samii (2017) and part of the analysis of Paluck et al. (2016) examine

the causal effect of the offer to participate on endorsement of anti-conflict norms. This

is measured by self reports of wearing a wristband disseminated as part of the program

as a reward to students observed engaging in conflict-mitigating behavior. Through

the course of the experiment, over 2500 wristbands were disseminated and tracked.

We follow the analysis of Aronow and Samii (2017) and study similar exposure effects.

Unlike their analysis, we restrict the sample to the five largest treated schools to

illustrate what can be learned from data on a few large networks. In each of our

schools, the number of eligibles is exactly 64.

We estimate a treatment and a spillover effect. For the latter, the exposure map-

ping is Ti “ 1třj AijDj ą 0u, an indicator for whether at least one friend is of-

fered treatment. Following Aronow and Samii (2017), to ensure overlap, we restrict

to the “spillover sample” consisting of students that have at least one eligible friend

(n “ 1685). For the treatment effect, the exposure mapping is Ti “ Di, and we restrict

to the “treatment sample” consisting of students eligible for treatment (n “ 320).

Networks are measured by asking students to name up to ten students at the

school with “whom they chose to spend time with in the last few weeks, either in
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school, out of school, or online.” Consequently, A is directed. When computing the

number of treated friends for the exposure mappings, we use the directionality of

links. However, when computing network neighborhoods for our variance estimator,

we ignore the directionality of links to conservatively define larger neighborhoods and

avoid taking a stance on neighborhood definitions for directed networks.

We next provide some summary statistics. Within the treatment sample, the av-

erage outcome Yi is 0.16 (SD 0.37), and by block randomization, exactly 50 percent

are treated. Within the spillover sample, the average outcome is 0.11 (SD 0.32), and

58 percent (SD 0.49) have at least one treated friend. The data includes the blocks in

which eligible students are block-randomized, so we can compute the propensity scores

πiptq for each student using the hypergeometric distribution. For the exposure map-

ping Ti “ 1třj AijDj ą 0u, given N eligible neighbors, πip0q is the chance of having 0

out of N successes when drawing without replacement. Then n´1
řn

i“1
πip1q “ 0.597,

which is assuringly very close to empirical proportion of 58 percent.

The average out-degree n´1
ř

i,j Aij is 7.96. The APL is small, on average 3.37

across our five schools. Since there are n “ 3306 students, logn{ log δpAq “ 3.96,

which is very close to 3.37. Thus, given K “ 1, our suggested bandwidth (12) is

bn “ 2. We report results for the range of bandwidths t0, . . . , 3u, noting that 0

corresponds to i.i.d. standard errors.

Table 1: Estimates and SEs

Treatment Spillover

τ̂ p1, 0q 0.1500 0.0407
µ̂p1q 0.2375 0.1293
µ̂p0q 0.0875 0.0885
bn “ 0 0.0443 0.0167
bn “ 1 0.0460 0.0184
bn “ 2 0.0394 0.0205
bn “ 3 0.0470 0.0170

Columns display results for the treat-
ment (n “ 320) and spillover (n “
1685) effects. Rows “bn “ k” report
SEs for the indicated bandwidths.

Table 1 presents the results. The first row is the IPW estimator for the indi-

cated exposure effect, and the last four rows are standard errors for the indicated
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bandwidths. We find a large treatment effect of 0.15, which is significant at the 5

percent level across all bandwidths. The spillover effect is smaller at 0.04, with larger

standard errors, and is statistically insignificant for our suggested bandwidth bn “ 2

at the 5 percent level. The small spillover estimate is largely in line with the esti-

mates implied by Figure 3C of Paluck et al. (2016). It does not contradict the overall

message of their paper, since they find, for example, sizeable spillover effects when

comparing treated and untreated schools. In contrast, our analysis above only makes

comparisons within treated schools, using only a subsample of five schools.

To compare treated and untreated schools, note that in the latter, Yi “ 0 for

all i by design. Then our estimate of µ̂p0q for the treatment effect shows that even

untreated units are 8.8 percentage points more likely to wear wristbands in treated

compared to untreated schools. We compute standard errors for µ̂p0q by replacing

Zi and τ̂pt, t1q in (11) with 1iptqπiptq´1Yi and µ̂p0q. For bn “ 0, . . . , 3, the standard

errors range from 0.012 to 0.017, all of which indicate a statistically significant ef-

fect. Overall, these results indicate that, despite the potential conservativeness of our

estimator due to the bias term Rn, they can still deliver reasonable standard errors.

5.2 Monte Carlo

To study the finite sample properties of our estimators, we simulate data from the

two response models studied in §3.1 and two models of network formation calibrated

to the school data from §5.1. For the linear-in-means model, Yi “ VipD,A, εq for

VipD,A, εq “ α ` β

ř

j AijYj
ř

j Aij

` δ

ř

j AijDj
ř

j Aij

` Diγ ` εi

and pα, β, δ, γq “ p´1, 0.8, 1, 1q. For the complex contagion model, Yi “ 1tVipD,A, εq ą
0u for pα, β, δ, γq “ p´1, 1.5, 1, 1q. We simulate A from configuration and random ge-

ometric graph (RGG) models. The former is calibrated to the empirical out-degree

sequence přn

j“1
Aijqni“1 of the schools used in §5.1. This model (approximately) draws

an undirected network uniformly at random from the set of all networks with this de-

gree sequence (e.g. Jackson, 2010, Ch. 4.1.4). An RGG is a spatial network where units

only link with geographically close alters: Aij “ 1t‖ρi ´ ρj‖ ď rnu for ρi
iid„ Upr0, 1s2q

and rn “ pκ{pπnqq2. Since κ is the limiting expected degree of the model (Penrose,

2003), we set it equal to the average of the empirical out-degree sequence of the
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schools. Let tνiuni“1

iid„ N p0, 1q be independent of A. Under the configuration model,

we take νi “ εi. Under the RGG, εi “ pρi1 ´ 0.5q ` νi adding the centered first

component of i’s “location” ρi1. Since units with similar ρi1’s are more likely to form

links, this generates unobserved homophily.

Both network formation models have approximately the same average degree of

about 8 and are therefore sparse. For our purposes, the main distinction between them

is the APL. The configuration model is theoretically known to have a small APL of

logarithmic order in the network size (Van Der Hofstad, 2016), while the RGG model

generates a larger APL of polynomial order (Friedrich et al., 2013). We will therefore

choose different bandwidths for the two according to (12). We also note that the value

of the peer effect β in both outcome models is actually quite large. The calculations

in Appendices A.1 and A.2 suggest that both outcome models actually fail to satisfy

our weak dependence conditions under the configuration model (but not the RGG),

since it generates a low APL (and hence approximately exponential neighborhood

growth rates). Of course, these conditions are likely stronger than necessary, which

may explain the good performance in both designs below.

To show different sample sizes, we report results using the largest, two largest,

and four largest of the treated schools when calibrating the network models. In all

cases, we pool the degree sequences across the schools to treat them as one single

network. Following the design in §5.1, we randomly assign treatments to only units

classified as eligible in the data with probability 0.5.

We compute estimates and standard errors for the spillover effect τp1, 0q in §5.1,

whose exposure mapping is Ti “ 1třj AijDj ą 0u, again restricting to the sample of

units with an eligible neighbor. The standard errors use the bandwidth (12). Given

the APL differences discussed above, which can also be seen in the tables below, the

RGG uses b̃n “ ∆pAq1{3, while the configuration model uses b̃n “ ∆pAq{2.
To illustrate the performance of our bandwidth rule across different networks,

we redraw D, A, and ε for each of the 10k simulation draws. This corresponds to a

superpopulation design, so we expect our standard errors to yield confidence intervals

with coverage close to the nominal rate of 0.95. We report “oracle” standard errors,

which correspond to Varpτ̂p1, 0qq1{2, approximated by taking the standard deviation

of τ̂p1, 0q over 10k separate simulation draws. We also report “naive” i.i.d. standard

errors to illustrate the degree of dependence in the data.

Tables 2 and 3 present results for the configuration and RGG models, respectively.
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Table 2: Simulation Results: Configuration Model

Linear-in-Means Complex Contagion

# Schools 1 2 4 1 2 4

n̂p1q 199.3 399.7 804.2 199.3 399.7 804.2
n̂p0q 151.5 293.1 570.9 151.5 293.1 570.9
τ̂p1, 0q 0.311 0.317 0.313 0.077 0.077 0.080
Our SE 1.310 0.955 0.686 0.109 0.081 0.059
Oracle SE 1.402 0.986 0.694 0.117 0.084 0.060
Our Coverage 0.923 0.938 0.947 0.928 0.937 0.943
Oracle Coverage 0.947 0.950 0.954 0.948 0.950 0.951
Naive Coverage 0.544 0.549 0.563 0.729 0.725 0.730
APL 3.471 3.753 4.070 3.471 3.753 4.070
bn 2.000 2.000 2.000 2.000 2.000 2.000
Network Size 805 1456 2725 805 1456 2725

Cells are averages over 10k simulations. n̂ptq “
ř

i 1iptq gives the effective
sample size of µ̂ptq. “Coverage” rows display empirical coverage for 95% CIs.
“Naive” and “Oracle” respectively correspond to i.i.d. and true standard er-
rors.

In both tables n̂ptq “ ř

i 1iptq, which gives the effective sample sizes for µ̂p1q and µ̂p0q.
Row “Our SE” displays the standard error obtained from our variance estimator, and

“Our Coverage” displays the empirical coverage of the corresponding two-sided 95-

percent confidence interval. “Network Size” is the number of units in the network,

whereas the sample size is n̂p1q ` n̂p0q, since, as in the empirical application, we only

use units with an eligible neighbor for overlap.

The results show that the oracle coverage rates are all very close to 0.95, which

illustrates the quality of the normal approximation. Our standard errors perform

well, with coverage near 0.95. This is in spite of fairly large peer effects β, which

can be seen in the magnitudes of the spillover effect estimates. By contrast, naive

standard errors are severely anti-conservative.

6 Conclusion

The causal literature on interference typically assumes K-neighborhood exposure

mappings are correctly specified. This implies a limited model of interference in which

units further than distance K from the ego have no effect on the ego’s response for
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Table 3: Simulation Results: RGG Model

Linear-in-Means Complex Contagion

# Schools 1 2 4 1 2 4

n̂p1q 210.0 418.2 830.1 210.0 418.2 830.1
n̂p0q 155.5 297.8 576.7 155.5 297.8 576.7
τ̂ p1, 0q 0.702 0.700 0.700 0.088 0.089 0.089
Our SE 1.523 1.107 0.805 0.144 0.105 0.076
Oracle SE 1.601 1.142 0.824 0.152 0.108 0.079
Our Coverage 0.927 0.936 0.936 0.935 0.941 0.943
Oracle Coverage 0.953 0.950 0.947 0.950 0.951 0.954
Naive Coverage 0.519 0.522 0.525 0.626 0.641 0.623
APL 13.996 18.444 24.927 13.996 18.444 24.927
bn 2.007 3.000 3.000 2.007 3.000 3.000
Network Size 805 1456 2725 805 1456 2725

See table notes of Table 2.

some small, known K. Such a model is incompatible with those studied in the large

theoretical and empirical literature on contagion and social interactions, in which

units arbitrarily far from the ego can have an effect on the ego’s outcome. This paper

proposes a richer model of “approximate neighborhood interference” (ANI), under

which the effect on the ego’s outcome of treatment assigned to any alter is potentially

nonzero but decreasing with network distance between ego and alter. Unlike with ex-

isting models of interference, we show that ANI is satisfied by well-known models of

social interactions. We also show that our model is useful for large-sample inference,

proving that, under ANI, standard IPW estimators are consistent for exposure effects

and asymptotically normal.

For inference, we consider a network HAC variance estimator, which enables in-

ference robust to misspecification of exposure mappings under ANI. We show the

estimator is biased in a finite population setting. The bias term captures the vari-

ance of the unit-level treatment effects, which generalizes the well-known result on

conservative variance estimation under no interference to settings with dependence

due to interference. Finally, we propose a new bandwidth rule for the HAC estima-

tor, which trades off bias and variance in manner that adapts to the growth rate of

K-neighborhood sizes.
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A Verifying Assumptions

A.1 Assumption 6

We verify Assumption 6 for networks with either polynomial or exponential neigh-

borhood growth rates. We do so in the context of a model in which the variance is

non-degenerate, so that σ´2
n “ Op1q, and θn,s “ e´cp1´ǫq´1s for some c ě 0 and ǫ ą 0,

which holds for the examples in §3.1.

Polynomial Growth Rate. Suppose

max
iPNn

|NApi, sq| “ Csd (15)

for s sufficiently large and some C ą 0, d ě 1. Polynomial rates appear to be a prop-

erty of spatial networks, which are models in which link formation is less likely between

spatially distant units.12 Examples include latent space (Hoff et al., 2002) and RGG

models (Penrose, 2003). Appendix A of Leung (2019b) shows that, for the RGG, path

distance is of the same order as spatial distance for connected units. Since spatial

s-neighborhoods grow polynomially with s, it follows that network s-neighborhoods

also grow polynomially, with d equal to the underlying spatial dimension.

We next verify Assumption 6 under this setup for mn “ n1{pαdq, α ą 4. First

consider the third term in (10). This is Opn1.5e´cmnq and hence op1q, since mn is poly-

nomial in n. The second term n´3{2
řn

i“1|NApi,mnq|2 is order n´1{2m2d
n “ n2{α´0.5 “

op1q. Finally, for the first term in (10), observe that we can bound

|Hnps,mnq| ď
n
ÿ

i“1

ÿ

jPN B
A

pi,sq

|NApi,mnq| |NApj,mnq|, (16)

which is conservatively order nm2d
n s

d “ n2{α`1sd. Hence, the first term in (10) is

order n2{α´1
řn

s“0 s
de´cs “ op1q.

Exponential Growth Rates. Suppose

max
iPNn

|NApi, sq| “ Ceβs (17)

12This may require replacing the max in (15) with something weaker like an average, but the max
makes the verification argument far simpler.
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for some C, β ą 0 and s sufficiently large. In the extreme case of a k-regular tree

network, the left-hand side is exactly ks. Inhomogeneous random graphs, a large

class of models that includes the Erdős-Rényi and stochastic block models, have a

similar property (see Bollobás et al., 2007, proofs of Lemmas 14.2 and 14.3). The

usual heuristic argument (Barabási, 2015, Ch. 3.8) is that the average number of

units in a unit’s 1-neighborhood is the average degree δpAq “ n´1
ř

i,j Aij , so the

typical number in its s-neighborhood is « δpAqs, in which case β « log δpAq and

C « 1.

We verify Assumption 6 for mn “ αβ´1 log n, α P p1.5βc´1, 0.5q, with c from the

definition of θn,s above. Such an α exists only if c ą 3β, which requires θn,s to decay

sufficiently fast relative to neighborhood growth rates. The third term in (10) is order

n1.5e´cmn “ n1.5´cαβ´1 “ op1q. The second term is order n´1{2e2βmn “ n2α´0.5 “ op1q.
Finally, using (16), the first term of (10) is conservatively order

n´1e2βmn

n
ÿ

s“0

eβse´cs “ n2α´1

n
ÿ

s“0

epβ´cqs “ op1q.

A.2 Choice of Bandwidth

We use a mix of formal and heuristic arguments to show our proposed bandwidth

(12) satisfies Assumption 7(b)–(d) under different neighborhood growth rates. As in

§A.1, we suppose that σ´2
n “ Op1q and θn,s “ e´cp1´ǫq´1s for some c ě 0 and ǫ ą 0.

Polynomial Growth Rates. We first consider the case in which s-neighborhood

sizes grow polynomially with s in the sense of (15). Let ∇pAq be the diameter of A,

which is the maximum path length between pairs in the largest component. Then

max
i

|NApi,∇pAqq| “ αn, (18)

where α is the fraction of units in the largest component of A. Most real-world

networks have a “giant component” (Barabási, 2015) meaning α ą 0 for n large.

Then since the left-hand side of (18) is C∇pAqd under (15), ∇pAq “ Opn1{dq. This

is a well-known heuristic argument for the asymptotic behavior of the diameter or

average path length (Barabási, 2015, Ch. 3.8).13

13See Friedrich et al. (2013) for a formal argument for the RGG.
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Our bandwidth rule (12) is based on the APL ∆pAq rather than the diameter,

since the former is considered a more robust measurement of network width.14 While

the heuristics above pertain to the diameter, in fact the derived rate is accurate for the

APL. As written in Barabási (2015), Ch. 3.8, “for most networks [these heuristics offer]

a better approximation to the average distance between two randomly chosen nodes,

than to [the diameter]. This is because [the diameter] is often dominated by a few

extreme paths, while [the APL] is averaged over all node pairs, a process that supresses

[sic] the fluctuations.” Hence, our calculations below will assume ∆pAq « n1{d.

We can now verify Assumption 7(b)–(d). For (b), using our bandwidth choice

bn “ ∆pAq1{3 « n1{p3dq, n´1
řn

i“1|NApi, bnq| « bdn « n1{3 “ opn1{2q. Part (c) is the

same as the second part of (10) except with bn in place of mn. Then following the

argument in §A.1, n´1
řn

i“1|NApi, bnq|2 « b2dn « n2{3 “ opnq. Part (d) is the same as

the first part of (10) but with bn in place of mn and Jnps, ¨q in place of Hnps, ¨q. Note

that (16) applies with Jnps, ¨q in place of Hnps, ¨q, so

1

n2

n
ÿ

s“0

|Jnps, bnq|θ1´ǫ
n,s « n´1b2dn

n
ÿ

s“0

sde´cs “ Opn´1{3q.

Exponential Growth Rates. Now suppose (17), and take the typical case of β “
log δpAq and C “ 1 discussed after (17). The heuristics following (18) yield ∇pAq “
log n{ log δpAq, as in (3.18) of Barabási (2015). As discussed above, this heuristic is

actually more accurate for the APL, so we next assume ∆pAq « logn{ log δpAq.15
Choosing bn according to (12) yields bn « 0.5 logn{ log δpAq. Strictly speaking,

we will actually need bn « α logn{ log δpAq for some α ă 0.5, which we will assume

next. In practice, since path lengths take discrete values, we just simplify to α “ 0.5

in (12). For Assumption 7(b), n´1
řn

i“1
|NApi, bnq| ď ebn log δpAq « eα logn “ opn1{2q,

and (c) is similar. For (d), if c ą β “ log δpAq as in §A.1, then since (16) holds for

Jnps, ¨q in place of Hnps, ¨q,

1

n2

n
ÿ

s“0

|Jnps, bnq|θ1´ǫ
n,s « n´1e2bn log δpAq

n
ÿ

s“0

es log δpAqe´cs “ Opn2α´1q.

14I thank a referee for this suggestion.
15For a formal argument for inhomogeneous graphs, see Theorem 3.14 of Bollobás et al. (2007).
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B AS Variance Estimator

We provide a theoretical comparison of our variance estimator and that of Aronow and Samii

(2017) (henceforth AS) and provide simulation evidence on differences in conservative-

ness. Since their estimator is only valid under correctly specified exposure mappings,

we now assume (2). The estimand is

σ2
n “ Varp

?
nτ̂pt, t1qq “ V ptq ` V pt1q ` 2Cpt, t1q, where

Ψptq “ 1

n

n
ÿ

i“1

Ỹiptq2
1 ´ πiptq
πiptq

` 1

n

n
ÿ

i“1

ÿ

j‰i

ỸiptqỸjptq
πijptq ´ πiptqπjptq

πiptqπjptq
,

Cpt, t1q “ ´ 1

n

n
ÿ

i“1

n
ÿ

j“1

ỸiptqỸjpt1q
πijpt, t1q ´ πiptqπjpt1q

πiptqπjpt1q
.

Define πijpt, t1q “ Er1iptq1jpt1qs. The AS estimator given in their equation (11) is

σ̂2
AS “ V̂ ptq ` V̂ pt1q ` 2Ĉpt, t1q, where

V̂ ptq “ 1

n

n
ÿ

i“1

Y 2
i 1iptq
πiptq

1 ´ πiptq
πiptq

` 1

n

n
ÿ

i“1

ÿ

j‰i

Yi1iptqYj1jptq
πijpt, tq

πijpt, tq ´ πiptqπjptq
πiptqπjptq

1tπijpt, tq ‰ 0u

` 1

n

n
ÿ

i“1

ÿ

j‰i

ˆ

Y 2
i 1iptq
2πiptq

`
Y 2
j 1jptq
2πjptq

˙

1tπijpt, tq “ 0u,

Ĉpt, t1q “ ´ 1

n

n
ÿ

i“1

ÿ

j‰i

Yi1iptqYj1jpt1q
πijpt, t1q

πijpt, t1q ´ πiptqπjpt1q
πiptqπjpt1q

1tπijpt, t1q ‰ 0u

` 1

n

n
ÿ

i“1

n
ÿ

j“1

ˆ

Y 2
i 1iptq
2πiptq

`
Y 2
j 1jpt1q
2πjpt1q

˙

1tπijpt, t1q “ 0u.

This is conservative for σ2
n with bias

Rn,AS ” Erσ̂2
ASs ´ σ2

n “ 1

n

n
ÿ

i“1

pỸiptq ´ Ỹipt1qq2

` 0.5
1

n

n
ÿ

i“1

ÿ

j‰i

`

pỸiptq ` Ỹjptqq21tπijpt, tq “ 0u ` 2pỸiptq ´ Ỹjpt1qq21tπijpt, t1q “ 0u

` pỸipt1q ` Ỹjpt1qq21tπijpt1, t1q “ 0u
˘

.

The asymptotic bias of our estimator σ̂2 is Rn given in (13) with bn “ 2K, since
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we are assuming correct specification. It does not appear that Rn and Rn,AS can

generally be ordered. However, we can consider a few instructive special cases.

First consider no interference (K “ 0). Then Rn “ n´1
řn

i“1pτipt, t1q ´ τpt, t1qq2.
For the AS estimator, since πijpt, t1q ‰ 0 for all i ‰ j, Rn,AS “ n´1

řn

i“1 τipt, t1q2,
which is strictly larger than Rn whenever the treatment effect τpt, t1q is nonzero.

Indeed Rn,AS is larger by the square of the treatment effect, so that for large effects

and relatively small sample sizes, σ̂2
AS can be substantially more conservative than

σ̂2. Next consider homogeneous unit-level exposure effects, which corresponds

to τipt, t1q “ τpt, t1q for all i. In this case, Rn “ 0, whereas Rn,AS does not simplify

in general and is strictly positive if, for example, τipt, t1q ‰ 0 for all i. Finally,

consider the has-treated-neighbor spillover effect in §5, where t “ 1, t1 “ 0, and

Ti “ 1třj AijDj ą 0u. Call a unit i “eligible” if ErDis ą 0. Let Eij be the event

that the set of i’s eligible neighbors in A equals the set of eligible neighbors i has

in common with j. Then πijp1, 0q “ 0 if and only if Eij occurs, and πijps, sq ‰ 0 for

all s and units i and j who have at least one eligible neighbor. Thus, assuming the

population consists of all units with eligible neighbors,

Rn,AS “ 1

n

n
ÿ

i“1

τip1, 0q2 ` 1

n

n
ÿ

i“1

ÿ

j‰i

pỸip1q ´ Ỹjp0qq21tEiju, whereas (19)

Rn “ 1

n

n
ÿ

i“1

pτip1, 0q ´ τp1, 0qq2

` 1

n

n
ÿ

i“1

ÿ

j‰i

pτip1, 0q ´ τp1, 0qqpτjp1, 0q ´ τp1, 0qq1tℓApi, jq ď 2u.
(20)

While the first terms of both expressions can be ordered as in the no-interference

case, the remaining terms cannot. The remaining term in (20) is an estimate of the

covariances of unit-level exposure effects, but the remainder in (19) does not have an

obvious interpretation. However, we can provide simulation evidence on magnitudes.

We simulate networks calibrated to the data in the empirical application as in

§5.2 but use a different outcome model to impose correct specification: Ỹip0q “ εi `
ř

j Aijεj{
ř

j Aij and Ỹip1q “ βi ` Ỹip0q, where tεiuni“1

iid„ N p0, 1q is independent of

tβiuni“1

iid„ N p1, 1q. The fraction in Ỹip0q can be interpreted as exogenous peer effects

in unobservables. It serves to generate network autocorrelation in baseline outcomes.

As in §5.2, the sample is the set of units with eligible neighbors. The left half of
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Table 4 reports the average values of Rn,AS and Rn across 5000 simulation draws. We

see that Rn,AS is 3–5 times larger than Rn on average.

In the previous design, τip1, 0q is independent across i. To introduce network auto-

correlation in unit-level exposure effects, we instead take Ỹip1q “ βi`
ř

j Aijβj{
ř

j Aij`
Ỹip0q. The right half of Table 4 reports the results. For the configuration model, Rn,AS

is twice as large as Rn on average, and for the RGG model, it is 25 percent larger.

Table 4: Comparison of Average Bias

Independent Effects Autocorrelated Effects

Configuration RGG Model Configuration RGG Model

# Schools 1 2 1 2 1 2 1 2

Rn,AS 9.4 10.2 7.1 7.6 154.6 158.7 170.0 180.0
Rn 1.9 1.9 2.0 2.0 67.6 73.8 136.6 144.1
n 350.8 692.8 365.5 716.1 350.8 692.8 365.5 716.1

Cells are averages over 5k simulations. n “ # units with eligible neighbors.

C Proofs

Proof of Proposition 1. The reduced form of the linear-in-means model is

Yipdq “ α` diγ ` εi ` 1

#

ÿ

j

Aij ą 0

+

ˆ
˜

αβ

1 ´ β
` γβ

8
ÿ

k“0

βk

˜

n
ÿ

j1“1

Aij1
ř

ℓAiℓ

n
ÿ

j2“1

Aj1j2
ř

ℓAj2ℓ

¨ ¨ ¨
n
ÿ

jk`1“1

Ajkjk`1
ř

ℓAjk`1ℓ

djk`1

¸

`
8
ÿ

k“1

βk

˜

n
ÿ

j1“1

Aij1
ř

ℓAiℓ

n
ÿ

j2“1

Aj1j2
ř

ℓAj2ℓ

¨ ¨ ¨
n
ÿ

jk“1

Ajk´1jk
ř

ℓAjkℓ

εjk

¸¸

.

for d “ pdiqni“1 P t0, 1un. Consider a counterfactual linear-in-means model in which

the network is ANApi,sq rather than A. This means that the set of units is NApi, sq
rather than Nn, and outcomes are realized according to (5) but with primitives

pdNApi,sq, ANApi,sq, εNApi,sqq rather than pd,A, εq, where ε “ pεiqni“1 and εNApi,sq “
pεi : i P NApi, sqq. Let Y

psq
i pdq be unit i’s outcome in this counterfactual model. To

compare Y
psq
i pdq with Yipdq, consider the kth term in the first series of the previous
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equation (the term multiplying γβ ¨βk). We can rewrite this as
řn

j“1 ω
k
ijdj, where ωk

ij

is the following weighted sum of all walks of length k ` 1 from i to j:

ωk
ij “

n
ÿ

j1“1

n
ÿ

j2“1

¨ ¨ ¨
n
ÿ

jk´1“1

Aij1
ř

ℓAiℓ

Aj1j2
ř

ℓAj2ℓ

¨ ¨ ¨ Ajkj
ř

ℓAjℓ

ď 1.

Thus, in going from Yipdq to Y
psq
i pdq, we lose terms in ωk

ij involving walks that traverse

paths of length greater than s. We can conservatively bound this loss by including

all walks with length exceeding s in the loss. Then since ωk
ij ď 1 and dj is binary,

|Yipdq ´ Y
psq
i pdq| ď γβ

8
ÿ

k“s`1

|β|k ` sup
i

|εi|
8
ÿ

k“s`1

|β|k

for s ě 1. Since εi is uniformly bounded, the right-hand side is bounded by a constant

times |β|s. Furthermore, since d is arbitrary, everything above holds replacing d with

d1 such that dNApi,sq “ d1
NApi,sq. Since Y

psq
i pdq “ Y

psq
i pd1q, the result follows from the

triangle inequality.

Proof of Proposition 2. The arguments that follow borrow ideas from the proof

of Proposition 1 of Xu and Lee (2015) and that of Theorem 6.1 of Leung (2019b).

Let Ci be the set of units in the strongly connected component of G containing i and

C`
i “ Ci Y tk P Nn : Dj P Ci such that Ajkp1 ´ σiq “ 1u .

Let Yipdq be i’s outcome under the complex contagion model when the network is

assigned treatments according to d “ pdiqni“1. As in the proof of Proposition 1,

consider a counterfactual model in which the network is AC`

i

rather than A. This

means that the set of units is C`
i rather than Nn, and outcomes are realized according

to the same model but with primitives pdC`

i

, AC`

i

, εC`

i

q rather than pd,A, εq. Let

Y
psq
i pdq be i’s outcome in this counterfactual model. Key to our argument is the fact

Yipdq “ Y
psq
i pdq. (21)

To see why, note that if σi “ 0, then i has a dominant strategy Y ˚
i pdq, and as soon

as Y t
i pdq “ Y ˚

i pdq at some period t of the dynamic process, Y t`s
i pdq “ Y t

i pdq for all

s ą 0. If instead σi “ 1, then i’s outcome may potentially change at any period t in
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the process, depending on the outcomes of neighboring units at t´ 1.

Generalizing this logic, consider any path in A connecting units i and j. If σk “ 1

for all units k along that path, then unit i’s outcome may change at any period t in

the dynamic process, depending on the outcome of j at some prior period. However,

if for all such paths, there exists some unit k along that path such that σk “ 0, then

unit i’s outcome will never be affected by unit’s j outcome at any past period. Now,

if j R C`
i , then by construction, there exists such a unit k along any path connecting i

and j. Therefore, unit i’s eventual outcome Yipdq is invariant to the removal of units

NnzC`
i from the network, and (21) follows. This is the same logic as the decentralized

selection mechanism assumption in Appendix A of Leung (2019b). Thus,

|Yipdq ´ Y
psq
i pdq| ď 1tYipdq ‰ Y

psq
i pdqu ď 1tAC`

i

Ę ANApi,squ
ď

ÿ

j1‰¨¨¨‰js´2

Aij1σj1Aj1j2σj2 ¨ ¨ ¨ ¨ ¨ Ajs´3js´2
σjs´2

“
ÿ

j

pGs´2qij. (22)

The first two inequalities use (21). The third uses the union bound and the fact that

AC`
i

Ę ANApi,sq implies there exists a path of length s ´ 2 from i to js´2 P NApi, sq
such that σk “ 1 for all units k on that path.

For all s, |Yipdq ´ Y
psq
i pdq| ď 1. For s ´ 2 ą s̄, (22) ď ρnps̄qs. Since d is

arbitrary, everything above holds replacing d with d1 such that dNApi,sq “ d1
NApi,sq.

Since Y
psq
i pdq “ Y

psq
i pd1q, the result follows from the triangle inequality.

Proof of Theorem 1. Let h, h1 P N, s ą 0, H,H 1 P Pnph, h1; 2s` 2q, f P Lh, and

f 1 P Lh1. Define ξ “ fpZHq and ζ “ f 1pZH 1q. Let D1,D2 each be independent copies

of D, Dps,ξq “ pDNApi,sq,D
1
´NApi,sqq, and Dps,ζq “ pDNApi,sq,D

2
´NApi,sqq. Define

Z
ps,ξq
i “ YipDps,ξqq

ˆ

1tT pi,Dps,ξq,Aq “ tu
πiptq

´ 1tT pi,Dps,ξq,Aq “ t1u
πipt1q

˙

,

Z
ps,ζq
i “ YipDps,ζqq

ˆ

1tT pi,Dps,ξq,Aq “ tu
πiptq

´ 1tT pi,Dps,ζq,Aq “ t1u
πipt1q

˙

.

Finally, let ξpsq “ fppZps,ξq
i : i P Hqq and ζ psq “ f 1ppZps,ζq

i : i P H 1qq. Recall that T p¨q is

a K-neighborhood exposure mapping (Assumption 1). Since Zi is uniformly bounded

by Assumptions 2 and 3, |Covpξ, ζq| ď 2‖f‖8‖f
1‖8. Thus, we can choose C in the

theorem large enough such that |Covpξ, ζq| ď ψh,h1pf, f 1qθn,s for any s ď K ´ 1.

30



Approximate Neighborhood Interference

Now, fix any s ą K ´ 1, so that 2s` 2 ą 2K. By Assumption 1, ℓApH,H 1q ą 2K

implies pZps,ξq
i : i P Hq KK pZps,ζq

i : i P Hq. Then there exists C ą 0 such that

|Covpξ, ζq| ď |Covpξ ´ ξpsq, ζq| ` |Covpξpsq, ζ ´ ζ psqq|
ď C‖f 1‖8Er|ξ ´ ξpsq|s ` C‖f‖8Er|ζ ´ ζ psq|s
ď C ph‖f 1‖8Lippfq ` h1‖f‖8Lippf 1qq θn,s.

The last line follows because under Assumption 1,

1tT pi,Dps,ξq,Aq “ tu
πiptq

“ 1tT pi,Dps,ζq,Aq “ tu
πiptq

“ 1tT pi,D,Aq “ tu
πiptq

for any t P T , and Assumption 4 implies maxiPNn
Er|Yi ´ YipDps,ξqq|s ď θn,s.

Proof of Theorem 2. Since Erτ̂pt, t1qs “ τpt, t1q, we only need to show that

Varpτ̂pt, t1qq “ op1q. Since treatments are independent across units, by Assumption 4,

CovpZi, Zjq “ 0 if pi, jq are not connected in A. Hence,

Varpτ̂pt, t1qq “ 1

n2

n
ÿ

i“1

VarpZiq `
n´1
ÿ

s“1

1

n2

n
ÿ

i“1

ÿ

j‰i

1tℓApi, jq “ suCovpZi, Zjq.

Using Theorem 1 and uniform boundedness of Zi, the right-hand side is bounded

above by Cpn´1 ` n´2
řn´1

s“1 θn,s
řn

i“1|N
B
A

pi, sq|q for some universal positive constant

C, and this is op1q by Assumption 5.

Proof of Theorem 3. Apply Theorem 3.2 of Kojevnikov et al. (2019).

Proof of Theorem 4. Observe that (14) follows from Proposition 4.1 of Kojevnikov et al.

(2019), since our Assumption 7 implies their Assumption 4.1. Define

rn “ 2

n

n
ÿ

i“1

n
ÿ

j“1

pZi ´ τpt, t1qqpτpt, t1q ´ τ̂ pt, t1qq1tℓApi, jq ď bnu

` pτpt, t1q ´ τ̂ pt, t1qq2 1
n

n
ÿ

i“1

n
ÿ

j“1

1tℓApi, jq ď bnu.

To establish (13), note that there are two parts of alleged opp1q term in (13). The
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first is due to replacing τ̂pt, t1q with τpt, t1q in the formula for σ̂2. This replacement

creates the remainder term rn. Since Zi is uniformly bounded, for some C ą 0,

|rn| ď C‖τpt, t1q ´ τ̂pt, t1q‖ 1
n

n
ÿ

i“1

n
ÿ

j“1

1tℓApi, jq ď bnu.

The summation term is equal to δnpbn, 1q. The norm term isOppn´1{2q, since Assumption 7(a)

implies that Varpτ̂ pt, t1qq “ Opn´1q (see the proof of Theorem 2). Hence, the previous

display is opp1q by Assumption 7(b).

The remaining parts of the alleged opp1q term in (13) are the cross terms

2

n

n
ÿ

i“1

n
ÿ

j“1

pZi ´ τipt, t1qqpτjpt, t1q ´ τpt, t1qq1tℓApi, jq ď bnu.

We show this is opp1q. For Wi “ řn

j“1pτjpt, t1q ´ τpt, t1qq1tℓApi, jq ď bnu,

E

„ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

n
ÿ

j“1

pZi ´ τipt, t1qqpτjpt, t1q ´ τpt, t1qq1tℓApi, jq ď bnu
ˇ

ˇ

ˇ

ˇ



ď 1

n
E

„ˆ n
ÿ

i“1

pZi ´ τipt, t1qqWi

˙21{2

ď
ˆ

1

n2

n
ÿ

i“1

VarpZiqW 2
i ` ψ̄

1

n2

n
ÿ

s“0

θn,s

n
ÿ

i“1

ÿ

j‰i

1tℓApi, jq “ su|WiWj|

˙1{2

,

for some ψ̄ ą 0 by Theorem 1. Since Zi is uniformly bounded, for some C ą 0,

n´2
řn

i“1 VarpZiqW 2
i ď Cn´1δnpbn, 2q, which is op1q by Assumption 7(c). Likewise,

1

n2

n
ÿ

s“0

θn,s

n
ÿ

i“1

ÿ

j‰i

1tℓApi, jq “ su|WiWj | ď C

n2

n
ÿ

s“0

θn,sJnps, bnq

for some C ą 0, and this is op1q by Assumption 7(d).
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